Abstract

Flash ladar systems are compact devices with high frame rates that hold promise for robotics applications, but these devices suffer from poor spatial resolution. This work develops a wavelet preprocessing stage to enhance registration of multiple frames and applies super-resolution to improve the resolution of flash ladar range imagery. The triangle orientation discrimination methodology was used for a subjective evaluation of the effectiveness of super-resolution for flash ladar. Results show statistically significant increases in the probability of target discrimination at all target ranges, as well as a reduction in subject response times for super-resolved imagery.

© 2010 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. T. C. Ng, SIMTech technical reports (2005), Vol. 6, No. (1), 13–18.
  2. Committee on Army Unmanned Ground Vehicle Technology, “Technology development for Army unmanned ground vehicles,” Sandia Report (2002).
  3. MESA Imaging, SwissRanger SR-3000 Manual (2006), http://www.mesa-imaging.ch/.
  4. G. Rosenbush, T. H. Hong, R. D. Eastman, “Super- resolution enhancement of flash LADAR range data,” Proc. SPIE 6736, 673614 (2007).
    [CrossRef]
  5. P. Vandewalle, S. Susstrunk, M. Vetterli, “A frequency domain approach to registration of aliased images with application to super-resolution,” EURASIP J. Appl. Signal Process. 2006, 71459 (2006).
    [CrossRef]
  6. S. S. Young, R. G. Driggers, “Super-resolution image reconstruction from a sequence of aliased imagery,” Appl. Opt. 45, 5073–5085 (2006).
    [CrossRef] [PubMed]
  7. N. Devitt, S. Moyer, S. S. Young, “Effect of image enhancement on the search and detection task in the urban terrain,” Proc. SPIE 6207, 62070D (2006).
    [CrossRef]
  8. R. G. Driggers, K. Krapels, S. Murrill, S. Young, M. Thielke, J. Schuler, “Super-resolution performance for undersampled imagers,” Opt. Eng. 44, 014002 (2005).
    [CrossRef]
  9. P. Bijl, J. M. Valeton, “Triangle orientation discrimination: the alternative to MRTD and MRC,” Opt. Eng. 37, 1976–1983 (1998).
    [CrossRef]
  10. S. S. Young, R. G. Driggers, E. L. Jacobs, Signal Processing and Performance Analysis for Imaging Systems (Artech House, 2008).
  11. D. Anderson, H. Herman, A. Kelly, “Experimental characterization of commercial flash ladar devices,” in Proceedings of the International Conference of Sensing and Technol ogy (Massey University, 2005), http://www-ist.massey.ac.nz/conferences/icst05/proceedings/icst_2005.htm.
  12. M. Price, R. D. Eastman, J. Kennedy, T. Hong, “Training and optimization of operation parameters for flash LADAR cameras,” in Proceedings of the IEEE International Conference on Robotics and Automation (IEEE, 2007), pp. 3408–3413.
    [CrossRef]
  13. W. H. Press, S. A. Teukolsky, W. T. Vetterling, B. P. Flannery, Numerical Recipes in C: The Art of Scientific Computing (Cambridge U. Press, 1992).
  14. E. L. Lehmann, J. P. Romano, Testing Statistical Hypotheses (Springer-Verlag, 2005).

2007 (1)

G. Rosenbush, T. H. Hong, R. D. Eastman, “Super- resolution enhancement of flash LADAR range data,” Proc. SPIE 6736, 673614 (2007).
[CrossRef]

2006 (3)

P. Vandewalle, S. Susstrunk, M. Vetterli, “A frequency domain approach to registration of aliased images with application to super-resolution,” EURASIP J. Appl. Signal Process. 2006, 71459 (2006).
[CrossRef]

S. S. Young, R. G. Driggers, “Super-resolution image reconstruction from a sequence of aliased imagery,” Appl. Opt. 45, 5073–5085 (2006).
[CrossRef] [PubMed]

N. Devitt, S. Moyer, S. S. Young, “Effect of image enhancement on the search and detection task in the urban terrain,” Proc. SPIE 6207, 62070D (2006).
[CrossRef]

2005 (1)

R. G. Driggers, K. Krapels, S. Murrill, S. Young, M. Thielke, J. Schuler, “Super-resolution performance for undersampled imagers,” Opt. Eng. 44, 014002 (2005).
[CrossRef]

1998 (1)

P. Bijl, J. M. Valeton, “Triangle orientation discrimination: the alternative to MRTD and MRC,” Opt. Eng. 37, 1976–1983 (1998).
[CrossRef]

Anderson, D.

D. Anderson, H. Herman, A. Kelly, “Experimental characterization of commercial flash ladar devices,” in Proceedings of the International Conference of Sensing and Technol ogy (Massey University, 2005), http://www-ist.massey.ac.nz/conferences/icst05/proceedings/icst_2005.htm.

Bijl, P.

P. Bijl, J. M. Valeton, “Triangle orientation discrimination: the alternative to MRTD and MRC,” Opt. Eng. 37, 1976–1983 (1998).
[CrossRef]

Devitt, N.

N. Devitt, S. Moyer, S. S. Young, “Effect of image enhancement on the search and detection task in the urban terrain,” Proc. SPIE 6207, 62070D (2006).
[CrossRef]

Driggers, R. G.

S. S. Young, R. G. Driggers, “Super-resolution image reconstruction from a sequence of aliased imagery,” Appl. Opt. 45, 5073–5085 (2006).
[CrossRef] [PubMed]

R. G. Driggers, K. Krapels, S. Murrill, S. Young, M. Thielke, J. Schuler, “Super-resolution performance for undersampled imagers,” Opt. Eng. 44, 014002 (2005).
[CrossRef]

S. S. Young, R. G. Driggers, E. L. Jacobs, Signal Processing and Performance Analysis for Imaging Systems (Artech House, 2008).

Eastman, R. D.

G. Rosenbush, T. H. Hong, R. D. Eastman, “Super- resolution enhancement of flash LADAR range data,” Proc. SPIE 6736, 673614 (2007).
[CrossRef]

M. Price, R. D. Eastman, J. Kennedy, T. Hong, “Training and optimization of operation parameters for flash LADAR cameras,” in Proceedings of the IEEE International Conference on Robotics and Automation (IEEE, 2007), pp. 3408–3413.
[CrossRef]

Flannery, B. P.

W. H. Press, S. A. Teukolsky, W. T. Vetterling, B. P. Flannery, Numerical Recipes in C: The Art of Scientific Computing (Cambridge U. Press, 1992).

Herman, H.

D. Anderson, H. Herman, A. Kelly, “Experimental characterization of commercial flash ladar devices,” in Proceedings of the International Conference of Sensing and Technol ogy (Massey University, 2005), http://www-ist.massey.ac.nz/conferences/icst05/proceedings/icst_2005.htm.

Hong, T.

M. Price, R. D. Eastman, J. Kennedy, T. Hong, “Training and optimization of operation parameters for flash LADAR cameras,” in Proceedings of the IEEE International Conference on Robotics and Automation (IEEE, 2007), pp. 3408–3413.
[CrossRef]

Hong, T. H.

G. Rosenbush, T. H. Hong, R. D. Eastman, “Super- resolution enhancement of flash LADAR range data,” Proc. SPIE 6736, 673614 (2007).
[CrossRef]

Jacobs, E. L.

S. S. Young, R. G. Driggers, E. L. Jacobs, Signal Processing and Performance Analysis for Imaging Systems (Artech House, 2008).

Kelly, A.

D. Anderson, H. Herman, A. Kelly, “Experimental characterization of commercial flash ladar devices,” in Proceedings of the International Conference of Sensing and Technol ogy (Massey University, 2005), http://www-ist.massey.ac.nz/conferences/icst05/proceedings/icst_2005.htm.

Kennedy, J.

M. Price, R. D. Eastman, J. Kennedy, T. Hong, “Training and optimization of operation parameters for flash LADAR cameras,” in Proceedings of the IEEE International Conference on Robotics and Automation (IEEE, 2007), pp. 3408–3413.
[CrossRef]

Krapels, K.

R. G. Driggers, K. Krapels, S. Murrill, S. Young, M. Thielke, J. Schuler, “Super-resolution performance for undersampled imagers,” Opt. Eng. 44, 014002 (2005).
[CrossRef]

Lehmann, E. L.

E. L. Lehmann, J. P. Romano, Testing Statistical Hypotheses (Springer-Verlag, 2005).

Moyer, S.

N. Devitt, S. Moyer, S. S. Young, “Effect of image enhancement on the search and detection task in the urban terrain,” Proc. SPIE 6207, 62070D (2006).
[CrossRef]

Murrill, S.

R. G. Driggers, K. Krapels, S. Murrill, S. Young, M. Thielke, J. Schuler, “Super-resolution performance for undersampled imagers,” Opt. Eng. 44, 014002 (2005).
[CrossRef]

Ng, T. C.

T. C. Ng, SIMTech technical reports (2005), Vol. 6, No. (1), 13–18.

Press, W. H.

W. H. Press, S. A. Teukolsky, W. T. Vetterling, B. P. Flannery, Numerical Recipes in C: The Art of Scientific Computing (Cambridge U. Press, 1992).

Price, M.

M. Price, R. D. Eastman, J. Kennedy, T. Hong, “Training and optimization of operation parameters for flash LADAR cameras,” in Proceedings of the IEEE International Conference on Robotics and Automation (IEEE, 2007), pp. 3408–3413.
[CrossRef]

Romano, J. P.

E. L. Lehmann, J. P. Romano, Testing Statistical Hypotheses (Springer-Verlag, 2005).

Rosenbush, G.

G. Rosenbush, T. H. Hong, R. D. Eastman, “Super- resolution enhancement of flash LADAR range data,” Proc. SPIE 6736, 673614 (2007).
[CrossRef]

Schuler, J.

R. G. Driggers, K. Krapels, S. Murrill, S. Young, M. Thielke, J. Schuler, “Super-resolution performance for undersampled imagers,” Opt. Eng. 44, 014002 (2005).
[CrossRef]

Susstrunk, S.

P. Vandewalle, S. Susstrunk, M. Vetterli, “A frequency domain approach to registration of aliased images with application to super-resolution,” EURASIP J. Appl. Signal Process. 2006, 71459 (2006).
[CrossRef]

Teukolsky, S. A.

W. H. Press, S. A. Teukolsky, W. T. Vetterling, B. P. Flannery, Numerical Recipes in C: The Art of Scientific Computing (Cambridge U. Press, 1992).

Thielke, M.

R. G. Driggers, K. Krapels, S. Murrill, S. Young, M. Thielke, J. Schuler, “Super-resolution performance for undersampled imagers,” Opt. Eng. 44, 014002 (2005).
[CrossRef]

Valeton, J. M.

P. Bijl, J. M. Valeton, “Triangle orientation discrimination: the alternative to MRTD and MRC,” Opt. Eng. 37, 1976–1983 (1998).
[CrossRef]

Vandewalle, P.

P. Vandewalle, S. Susstrunk, M. Vetterli, “A frequency domain approach to registration of aliased images with application to super-resolution,” EURASIP J. Appl. Signal Process. 2006, 71459 (2006).
[CrossRef]

Vetterli, M.

P. Vandewalle, S. Susstrunk, M. Vetterli, “A frequency domain approach to registration of aliased images with application to super-resolution,” EURASIP J. Appl. Signal Process. 2006, 71459 (2006).
[CrossRef]

Vetterling, W. T.

W. H. Press, S. A. Teukolsky, W. T. Vetterling, B. P. Flannery, Numerical Recipes in C: The Art of Scientific Computing (Cambridge U. Press, 1992).

Young, S.

R. G. Driggers, K. Krapels, S. Murrill, S. Young, M. Thielke, J. Schuler, “Super-resolution performance for undersampled imagers,” Opt. Eng. 44, 014002 (2005).
[CrossRef]

Young, S. S.

N. Devitt, S. Moyer, S. S. Young, “Effect of image enhancement on the search and detection task in the urban terrain,” Proc. SPIE 6207, 62070D (2006).
[CrossRef]

S. S. Young, R. G. Driggers, “Super-resolution image reconstruction from a sequence of aliased imagery,” Appl. Opt. 45, 5073–5085 (2006).
[CrossRef] [PubMed]

S. S. Young, R. G. Driggers, E. L. Jacobs, Signal Processing and Performance Analysis for Imaging Systems (Artech House, 2008).

Appl. Opt. (1)

EURASIP J. Appl. Signal Process. (1)

P. Vandewalle, S. Susstrunk, M. Vetterli, “A frequency domain approach to registration of aliased images with application to super-resolution,” EURASIP J. Appl. Signal Process. 2006, 71459 (2006).
[CrossRef]

Opt. Eng. (2)

R. G. Driggers, K. Krapels, S. Murrill, S. Young, M. Thielke, J. Schuler, “Super-resolution performance for undersampled imagers,” Opt. Eng. 44, 014002 (2005).
[CrossRef]

P. Bijl, J. M. Valeton, “Triangle orientation discrimination: the alternative to MRTD and MRC,” Opt. Eng. 37, 1976–1983 (1998).
[CrossRef]

Proc. SPIE (2)

G. Rosenbush, T. H. Hong, R. D. Eastman, “Super- resolution enhancement of flash LADAR range data,” Proc. SPIE 6736, 673614 (2007).
[CrossRef]

N. Devitt, S. Moyer, S. S. Young, “Effect of image enhancement on the search and detection task in the urban terrain,” Proc. SPIE 6207, 62070D (2006).
[CrossRef]

Other (8)

T. C. Ng, SIMTech technical reports (2005), Vol. 6, No. (1), 13–18.

Committee on Army Unmanned Ground Vehicle Technology, “Technology development for Army unmanned ground vehicles,” Sandia Report (2002).

MESA Imaging, SwissRanger SR-3000 Manual (2006), http://www.mesa-imaging.ch/.

S. S. Young, R. G. Driggers, E. L. Jacobs, Signal Processing and Performance Analysis for Imaging Systems (Artech House, 2008).

D. Anderson, H. Herman, A. Kelly, “Experimental characterization of commercial flash ladar devices,” in Proceedings of the International Conference of Sensing and Technol ogy (Massey University, 2005), http://www-ist.massey.ac.nz/conferences/icst05/proceedings/icst_2005.htm.

M. Price, R. D. Eastman, J. Kennedy, T. Hong, “Training and optimization of operation parameters for flash LADAR cameras,” in Proceedings of the IEEE International Conference on Robotics and Automation (IEEE, 2007), pp. 3408–3413.
[CrossRef]

W. H. Press, S. A. Teukolsky, W. T. Vetterling, B. P. Flannery, Numerical Recipes in C: The Art of Scientific Computing (Cambridge U. Press, 1992).

E. L. Lehmann, J. P. Romano, Testing Statistical Hypotheses (Springer-Verlag, 2005).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1

SwissRanger SR-3000 flash ladar camera (Mesa Imaging, Switzerland).

Fig. 2
Fig. 2

Near-infrared regions of super-resolution benefit, with SR-3000 flash ladar located in the top left region, where super-resolution provides significant benefit.

Fig. 3
Fig. 3

Gray-scale range imagery of (a) original TOD target image at range of 5 m , and (b) super-resolved image.

Fig. 4
Fig. 4

The k y -domain spectrum of the original flash ladar image overlaid with the spectrum of the super-resolved image displayed in decibel scale, showing that the super-resolved image recovers the high-frequency band from the aliased original image.

Fig. 5
Fig. 5

(Top) Unaliased spectrum of signal sampled above Nyquist frequency, (mid) at Nyquist frequency, and (bottom) aliased when sampled below Nyquist frequency.

Fig. 6
Fig. 6

Triangle orientation discrimination target consisting of an equilateral triangle ( 7.5 cm per side) cut into a square board ( 50 cm × 50 cm ).

Fig. 7
Fig. 7

Registration accuracy in terms of MAE obtained with wavelet preprocessing, Canny preprocessing, and no preprocessing at different undersampling factors.

Fig. 8
Fig. 8

(Top) Gray-scale range imagery and (bottom) color-coded range imagery for (left) original image and (right) super-resolved image of TOD target at range of 5 m .

Fig. 9
Fig. 9

(Top) Gray-scale range imagery and (bottom) color-coded range imagery for (left) original image and (right) super-resolved image of TOD target at range of 4 m .

Fig. 10
Fig. 10

Chance-corrected probability of target discrimination at each range with standard error bars showing intersubject variability.

Fig. 11
Fig. 11

Average subject response times with standard error bars showing intersubject variability.

Tables (3)

Tables Icon

Table 1 Cell Format and Naming Convention for Each Target Range

Tables Icon

Table 2 Computed p-Values for Each Target Range using Paired t-test Comparing the Probability of Target Discrimination of Super-Resolved versus Original Flash Ladar Imagery a

Tables Icon

Table 3 Computed p-Values for Each Target Range using Paired t-Test Comparing the Response Times of Super-Resolved versus Original Flash Ladar Imagery a

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

S 1 ( k x ) = k y | F ( k x , k y ) | 2 ,
S 2 ( k y ) = k x | F ( k x , k y ) | 2 ,
E = 1 n i = 1 n ε i = 1 n i = 1 n ε x i 2 + ε y i 2 .
C R = R H R B R H + R B · 100.
P corrected = P P g 1 P g .
t = x ¯ A x ¯ B Var ( x A ) + Var ( x B ) 2 Cov ( x A , x B ) N .

Metrics