Abstract

Examples of optimal designs for a fused-silica transmitted grating with high-intensity tolerance are discussed. It has the potential of placing up to 99% incident polarized light in a single diffraction order. The modal method has been used to analyze the effective indices for TE and TM polarization propagating through the grating region, and the eigenvalue equation of the modal method is transformed to a new form. It is shown that the effective indices of the first two modes depend on the value of the period under Littrow mounting with filling factor f=0.5. The polarization properties of the polarizing beam splitter are analyzed by rigorous coupled-wave analysis (RCWA) at the wavelength of 1.064μm. The optimal design perfectly matches the RCWA simulation result.

© 2010 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. T. Clausnitzer, T. Kämpfe, E.-B. Kley, A. Tünnermann, A. V. Tishchenko, and O. Parriaux, “Investigation of the polarization-dependent diffraction of deep dielectric rectangular transmission gratings,” Appl. Opt. 46, 819-826 (2007).
    [CrossRef] [PubMed]
  2. H. J. Zhao, N. S. Qiao, and D. R. Yuan, “Design of novel polarization beam splitters based on the subwavelength solarization gratings,” in Proceedings of the 6th International Conference on Electromagnetic Field Problems and Applications, Vol. 22 of ISI Press Series (ISI, 2008), pp. 57-60.
    [PubMed]
  3. T. Clausnitzer, T. Kämpfe, E.-B. Kley, A. Tünnermann, A. V. Tishchenko, and O. Parriaux, “Highly-dispersive dielectric transmission gratings with 100% diffraction efficiency,” Opt. Express 16, 5577-5584 (2008).
    [CrossRef] [PubMed]
  4. B. Wang, C. H. Zhou, S. Q. Wang, and J. J. Feng, “Polarizing beam splitter of a deep-etched fused-silica grating,” Opt. Lett. 32, 1299-1301 (2007).
    [CrossRef] [PubMed]
  5. R. C. Enger and S. K. Case, “Optical elements with high ultrahigh spatial-frequency surface corrugations,” Appl. Opt. 22, 3220-3228 (1983).
    [CrossRef] [PubMed]
  6. J. Neauport, E. Lavastre, G. Razé, G. Dupuy, N. Bonod, M. Balas, G. de Villele, J. Flamand, S. Kaladgew, and F. Desserouer, “Effect of electric field on laser induced damage threshold of multilayer dielectric gratings,” Opt. Express 15, 12508-12522 (2007).
    [CrossRef] [PubMed]
  7. M. G. Moharam, D. A. Pommet, E. B. Grann, and T. K. Gaylord, “Stable implementation of the rigorous coupled-wave analysis for surface-relief gratings: enhanced transmittance matrix approach,” J. Opt. Soc. Am. A 12, 1077-1086 (1995).
    [CrossRef]
  8. L. F. Li, “Use of Fourier series in the analysis of discontinuous periodic structures,” J. Opt. Soc. Am. A 13, 1870-1876 (1996).
    [CrossRef]
  9. H. J. Zhao, D. R. Yuan, P. Wang, Y. H. Lu, and H. Ming, “Design of fused-silica subwavelength polarizing beam splitter grating based on modal method,” Chin. Phys. Lett. 27, 024214(2010).
    [CrossRef]
  10. R. E. Collin, “Reflection and transmission at a slotted dielectric interface,” Can. J. Phys. 34, 398-411 (1956).
    [CrossRef]
  11. S. M. Rytov, “Electromagnetic properties of a finely stratified medium,” Sov. Phys. JETP 2, 466-475 (1956).
  12. I. C. Botten, M. S. Craig, R. C. McPhedran, J. L. Adams, and J. R. Andrewartha, “The dielectric lamellar diffraction grating,” Opt. Acta. 28, 413-428 (1981).
    [CrossRef]
  13. A. V. Tishchenko, “Phenomenological representation of deep and high contrast lamellar gratings by means of the modal method,” Opt. Quantum Electron. 37, 309-330 (2005).
    [CrossRef]
  14. P. Sheng, R. S. Stepleman, and P. N. Sanda, “Exact eigenfunctions for square-wave gratings--application to diffraction and surface-plasmon calculations,” Phys. Rev. B 26, 2907-2916(1982).
    [CrossRef]

2010

H. J. Zhao, D. R. Yuan, P. Wang, Y. H. Lu, and H. Ming, “Design of fused-silica subwavelength polarizing beam splitter grating based on modal method,” Chin. Phys. Lett. 27, 024214(2010).
[CrossRef]

2008

2007

2005

A. V. Tishchenko, “Phenomenological representation of deep and high contrast lamellar gratings by means of the modal method,” Opt. Quantum Electron. 37, 309-330 (2005).
[CrossRef]

1996

1995

1983

1982

P. Sheng, R. S. Stepleman, and P. N. Sanda, “Exact eigenfunctions for square-wave gratings--application to diffraction and surface-plasmon calculations,” Phys. Rev. B 26, 2907-2916(1982).
[CrossRef]

1981

I. C. Botten, M. S. Craig, R. C. McPhedran, J. L. Adams, and J. R. Andrewartha, “The dielectric lamellar diffraction grating,” Opt. Acta. 28, 413-428 (1981).
[CrossRef]

1956

R. E. Collin, “Reflection and transmission at a slotted dielectric interface,” Can. J. Phys. 34, 398-411 (1956).
[CrossRef]

S. M. Rytov, “Electromagnetic properties of a finely stratified medium,” Sov. Phys. JETP 2, 466-475 (1956).

Adams, J. L.

I. C. Botten, M. S. Craig, R. C. McPhedran, J. L. Adams, and J. R. Andrewartha, “The dielectric lamellar diffraction grating,” Opt. Acta. 28, 413-428 (1981).
[CrossRef]

Andrewartha, J. R.

I. C. Botten, M. S. Craig, R. C. McPhedran, J. L. Adams, and J. R. Andrewartha, “The dielectric lamellar diffraction grating,” Opt. Acta. 28, 413-428 (1981).
[CrossRef]

Balas, M.

Bonod, N.

Botten, I. C.

I. C. Botten, M. S. Craig, R. C. McPhedran, J. L. Adams, and J. R. Andrewartha, “The dielectric lamellar diffraction grating,” Opt. Acta. 28, 413-428 (1981).
[CrossRef]

Case, S. K.

Clausnitzer, T.

Collin, R. E.

R. E. Collin, “Reflection and transmission at a slotted dielectric interface,” Can. J. Phys. 34, 398-411 (1956).
[CrossRef]

Craig, M. S.

I. C. Botten, M. S. Craig, R. C. McPhedran, J. L. Adams, and J. R. Andrewartha, “The dielectric lamellar diffraction grating,” Opt. Acta. 28, 413-428 (1981).
[CrossRef]

de Villele, G.

Desserouer, F.

Dupuy, G.

Enger, R. C.

Feng, J. J.

Flamand, J.

Gaylord, T. K.

Grann, E. B.

Kaladgew, S.

Kämpfe, T.

Kley, E.-B.

Lavastre, E.

Li, L. F.

Lu, Y. H.

H. J. Zhao, D. R. Yuan, P. Wang, Y. H. Lu, and H. Ming, “Design of fused-silica subwavelength polarizing beam splitter grating based on modal method,” Chin. Phys. Lett. 27, 024214(2010).
[CrossRef]

McPhedran, R. C.

I. C. Botten, M. S. Craig, R. C. McPhedran, J. L. Adams, and J. R. Andrewartha, “The dielectric lamellar diffraction grating,” Opt. Acta. 28, 413-428 (1981).
[CrossRef]

Ming, H.

H. J. Zhao, D. R. Yuan, P. Wang, Y. H. Lu, and H. Ming, “Design of fused-silica subwavelength polarizing beam splitter grating based on modal method,” Chin. Phys. Lett. 27, 024214(2010).
[CrossRef]

Moharam, M. G.

Neauport, J.

Parriaux, O.

Pommet, D. A.

Qiao, N. S.

H. J. Zhao, N. S. Qiao, and D. R. Yuan, “Design of novel polarization beam splitters based on the subwavelength solarization gratings,” in Proceedings of the 6th International Conference on Electromagnetic Field Problems and Applications, Vol. 22 of ISI Press Series (ISI, 2008), pp. 57-60.
[PubMed]

Razé, G.

Rytov, S. M.

S. M. Rytov, “Electromagnetic properties of a finely stratified medium,” Sov. Phys. JETP 2, 466-475 (1956).

Sanda, P. N.

P. Sheng, R. S. Stepleman, and P. N. Sanda, “Exact eigenfunctions for square-wave gratings--application to diffraction and surface-plasmon calculations,” Phys. Rev. B 26, 2907-2916(1982).
[CrossRef]

Sheng, P.

P. Sheng, R. S. Stepleman, and P. N. Sanda, “Exact eigenfunctions for square-wave gratings--application to diffraction and surface-plasmon calculations,” Phys. Rev. B 26, 2907-2916(1982).
[CrossRef]

Stepleman, R. S.

P. Sheng, R. S. Stepleman, and P. N. Sanda, “Exact eigenfunctions for square-wave gratings--application to diffraction and surface-plasmon calculations,” Phys. Rev. B 26, 2907-2916(1982).
[CrossRef]

Tishchenko, A. V.

Tünnermann, A.

Wang, B.

Wang, P.

H. J. Zhao, D. R. Yuan, P. Wang, Y. H. Lu, and H. Ming, “Design of fused-silica subwavelength polarizing beam splitter grating based on modal method,” Chin. Phys. Lett. 27, 024214(2010).
[CrossRef]

Wang, S. Q.

Yuan, D. R.

H. J. Zhao, D. R. Yuan, P. Wang, Y. H. Lu, and H. Ming, “Design of fused-silica subwavelength polarizing beam splitter grating based on modal method,” Chin. Phys. Lett. 27, 024214(2010).
[CrossRef]

H. J. Zhao, N. S. Qiao, and D. R. Yuan, “Design of novel polarization beam splitters based on the subwavelength solarization gratings,” in Proceedings of the 6th International Conference on Electromagnetic Field Problems and Applications, Vol. 22 of ISI Press Series (ISI, 2008), pp. 57-60.
[PubMed]

Zhao, H. J.

H. J. Zhao, D. R. Yuan, P. Wang, Y. H. Lu, and H. Ming, “Design of fused-silica subwavelength polarizing beam splitter grating based on modal method,” Chin. Phys. Lett. 27, 024214(2010).
[CrossRef]

H. J. Zhao, N. S. Qiao, and D. R. Yuan, “Design of novel polarization beam splitters based on the subwavelength solarization gratings,” in Proceedings of the 6th International Conference on Electromagnetic Field Problems and Applications, Vol. 22 of ISI Press Series (ISI, 2008), pp. 57-60.
[PubMed]

Zhou, C. H.

Appl. Opt.

Can. J. Phys.

R. E. Collin, “Reflection and transmission at a slotted dielectric interface,” Can. J. Phys. 34, 398-411 (1956).
[CrossRef]

Chin. Phys. Lett.

H. J. Zhao, D. R. Yuan, P. Wang, Y. H. Lu, and H. Ming, “Design of fused-silica subwavelength polarizing beam splitter grating based on modal method,” Chin. Phys. Lett. 27, 024214(2010).
[CrossRef]

J. Opt. Soc. Am. A

Opt. Acta.

I. C. Botten, M. S. Craig, R. C. McPhedran, J. L. Adams, and J. R. Andrewartha, “The dielectric lamellar diffraction grating,” Opt. Acta. 28, 413-428 (1981).
[CrossRef]

Opt. Express

Opt. Lett.

Opt. Quantum Electron.

A. V. Tishchenko, “Phenomenological representation of deep and high contrast lamellar gratings by means of the modal method,” Opt. Quantum Electron. 37, 309-330 (2005).
[CrossRef]

Phys. Rev. B

P. Sheng, R. S. Stepleman, and P. N. Sanda, “Exact eigenfunctions for square-wave gratings--application to diffraction and surface-plasmon calculations,” Phys. Rev. B 26, 2907-2916(1982).
[CrossRef]

Sov. Phys. JETP

S. M. Rytov, “Electromagnetic properties of a finely stratified medium,” Sov. Phys. JETP 2, 466-475 (1956).

Other

H. J. Zhao, N. S. Qiao, and D. R. Yuan, “Design of novel polarization beam splitters based on the subwavelength solarization gratings,” in Proceedings of the 6th International Conference on Electromagnetic Field Problems and Applications, Vol. 22 of ISI Press Series (ISI, 2008), pp. 57-60.
[PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Geometry of the fused-silica rectangular transmission grating.

Fig. 2
Fig. 2

Effective indices of the low-order pro pagating model as a function of the grating periods for a filling factor 0.5.

Fig. 3
Fig. 3

Eigenvalue relation F ( n eff 2 ) for f = 0.5 , Λ = 0.607 μm .

Fig. 4
Fig. 4

Diffraction efficiency simulated by RCWA method in the zeroth transmitted order for TM polarization and 1 st transmitted order for TE polarization as a function of the groove depth.

Fig. 5
Fig. 5

Polarization extinction ratio in the zeroth transmitted order for TM polarization and 1 st transmitted order for TE polarization versus period. The filling factor is f = 0.5 , the groove depth is 1.335 μm , and the incident wavelength is λ = 1.064 μm .

Fig. 6
Fig. 6

Polarization extinction ratio in the zeroth transmitted order for TM polarization and 1 st transmitted order for TE polarization dependence on (a) the incidence wavelength and (b) the incidence angle. The filling factor is f = 0.5 , the period is 0.607 μm , and the groove depth is 1.335 μm .

Tables (1)

Tables Icon

Table 1 Groove Depth h for TE Polarization for Λ = 0.607 μm

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

θ = arcsin [ m λ 2 Λ ] ,
cos α Λ = F ( n eff 2 ) ,
F ( n eff 2 ) = cos ( β b ) cos ( γ g ) β 2 + γ 2 2 β γ sin ( β b ) sin ( γ g ) ,
F ( n eff 2 ) = ( β + γ ) 2 4 β γ cos Λ ( β γ ) 2 ( β γ ) 2 4 β γ cos Λ ( β + γ ) 2 .
F ( n eff 2 ) = ( n 1 2 β + n 2 2 γ ) 2 4 n 1 2 n 2 2 β γ cos Λ ( β γ ) 2 ( n 1 2 β n 2 2 γ ) 2 4 n 1 2 n 2 2 β γ cos Λ ( β + γ ) 2 .
Δ n eff , TE = | n eff , TE 0 n eff , TE 1 | = 0.3986.
h m = ( 2 m 1 ) 2 Δ n eff , TE λ , m = 1 , 2 , 3 .
E 0 = 10 lg η 0 TM η 0 TE , E 1 = 10 lg η 1 TE η 1 TM ,

Metrics