Abstract

To reduce surface loss in luminescent solar concentrators (LSCs), we systematically apply organic wavelength-selective mirrors, chiral nematic (cholesteric) liquid crystals, onto the LSCs with an air gap and determine their effect on waveguide output. The highest output is achieved using a scattering background and cholesteric mirror with a reflection band significantly redshifted (150nm) from the emission peak of the fluorescent dye. The use of an air gap results in light bending away from the wave guide surface normal and, consequently, a redshift of the cholesteric mirrors is required. Up to 35% more dye-emitted light energy exits the waveguide edge after application of the cholesteric, and an increase in absolute edge power of 12% was found for a waveguide using a separate scatterer.

© 2010 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. M. Swanson, “The promise of concentrators,” Prog. Photovolt. 8, 93-111 (2000).
    [CrossRef]
  2. I. Antón, D. Pachón, and G. Sala, “Characterization of optical collectors for concentration photovoltaic applications,” Prog. Photovolt. 11, 387-405 (2003).
    [CrossRef]
  3. M. Bosi and C. Pelosi, “The potential of III-V semiconductors as terrestrial photovoltaic devices,” Prog. Photovolt. 15, 51-68 (2007).
    [CrossRef]
  4. T. Uematsu, Y. Yazawa, Y. Miyamura, S. Muramatsu, H. Ohtsuka, K. Tsutsiu, and T. Warabisako, “Static concentrator photovoltaic module with prism array,” Sol. Energy Mat. Sol. Cells 67, 415-423 (2001).
    [CrossRef]
  5. R. Tremblay, “Electromagnetic wave concentrator,” U.S. patent 4,505,264 (19 March 1985).
  6. G. A. Rosenberg, “Device for concentrating optical radiation,” U.S. patent 5,877,874 (2 March 1999).
  7. W. H. Weber and J. Lambe, “Luminescent greenhouse collector for solar radiation,” Appl. Opt. 15, 2299-2300 (1976).
    [CrossRef] [PubMed]
  8. A. Goetzberger and W. Greubel, “Solar energy conversion with fluorescent collector,” Appl. Phys. 14, 123-129 (1977).
    [CrossRef]
  9. J. A. Levitt and W. H. Weber, “Materials for luminescent greenhouse solar collectors,” Appl. Opt. 16, 2684-2689 (1977).
    [CrossRef] [PubMed]
  10. B. A. Swartz, T. Cole, and A. H. Zewail, “Photon trapping and energy transfer in multiple-dye plastic matrices: an efficient solar-energy concentrator,” Opt. Lett. 1, 73-75 (1977).
    [CrossRef] [PubMed]
  11. J. S. Batchelder, A. H. Zewail, and T. Cole, “Luminescent solar concentrators. 1: Theory of operation and techniques for performance evaluation,” Appl. Opt. 18, 3090-3110 (1979).
    [CrossRef] [PubMed]
  12. I. B. Hagemann, “Examples of successful architectural integration of PV: Germany,” Prog. Photovolt. 12, 461-470 (2004).
    [CrossRef]
  13. M. Carrascosa, S. Unamuno, and F. Aguilo-Lopez, “Monte Carlo simulation of the performance of PMMA luminescent solar collectors,” Appl. Opt. 22, 3236-3241 (1983).
    [CrossRef] [PubMed]
  14. K. Heidler, “Efficiency and concentration ratio measurements of fluorescent solar concentrators using a xenon measurement system,” Appl. Opt. 20, 773-777 (1981).
    [CrossRef] [PubMed]
  15. J. Roncali and F. Garnier, “Photon-transport properties of luminescent solar concentrators: analysis and optimization,” Appl. Opt. 23, 2809-2817 (1984).
    [CrossRef] [PubMed]
  16. J. S. Batchelder, A. H. Zewail, and T. Cole, “Luminescent solar concentrators. 2: Experimental and theoretical analysis of their possible efficiencies,” Appl. Opt. 20, 3733-3754 (1981).
    [CrossRef] [PubMed]
  17. I. Baumberg, O. Berezin, A. Drabkin, B. Gorelik, L. Kogan, M. Voskobojnik, and M. Zaidman, “Effect of polymer matrix on photo-stability of photo-luminescent dyes in multi-layer polymeric structures,” Polym. Degred. Stabil. 73, 403-410(2001).
    [CrossRef]
  18. M. G. Debije, P. P. C. Verbunt, B. C. Rowan, B. S. Richards, and T. Hoeks, “Measured surface loss from luminescent solar concentrator waveguides,” Appl. Opt. 47, 6763-6768(2008).
    [CrossRef] [PubMed]
  19. J. C. Goldschmidt, M. Peters, A. Bösch, H. Helmers, F. Dimroth, S. W. Glunz, and G. P. Willeke, “Increasing the efficiency of fluorescent concentrator systems,” Sol. Energy Mat. Sol. Cells 93, 176-182 (2009).
    [CrossRef]
  20. B. S. Richards, A. Shalav, and R. P. Corkish, “A low escape-cone-loss luminescent solar concentrator,” in Proceedings of the 19th European Photovoltaic Solar Energy Conference (WIP Renewable Energies, 2004).
  21. J. C. Goldschmidt, M. Peters, L. Prönneke, L. Steidl, R. Zentel, B. Bläsi, A. Gombert, S. W. Glunz, G. P. Willeke, and U. Rau, “Theoretical and experimental analysis of photonic structures for fluorescent concentrators with increased efficiencies,” Phys. Status Solidi A 205, 2811-2821 (2008).
    [CrossRef]
  22. C. Oseen, “The theory of liquid crystals,” Trans. Faraday Soc. 29, 883-899 (1933).
    [CrossRef]
  23. D. J. Broer, G. N. Mol, J. A. M. M. van Haaren, and J. Lub, “Photo-induced diffusion in polymerizing chiral-nematic media,” Adv. Mater. 11, 573-578 (1999).
    [CrossRef]
  24. M. G. Debije, J.-P. Teunissen, M. J. Kastelijn, P. P. C. Verbunt, and C. W. M. Bastiaansen, “The effect of a scattering layer on the edge output of a luminescent solar concentrator,” Sol. Energy Mat. Sol. Cells 93, 1345-1350 (2009).
    [CrossRef]
  25. A. R. Burgers, L. H. Slooff, and M. G. Debije, “Reduction of escape cone losses in luminescent concentrators with cholesteric mirrors,” Proc. SPIE 7043, 704306 (2008).
    [CrossRef]
  26. J. Prost, P. G. de Gennes, The Physics of Liquid Crystals (Oxford U. Press, 1994).

2009 (2)

J. C. Goldschmidt, M. Peters, A. Bösch, H. Helmers, F. Dimroth, S. W. Glunz, and G. P. Willeke, “Increasing the efficiency of fluorescent concentrator systems,” Sol. Energy Mat. Sol. Cells 93, 176-182 (2009).
[CrossRef]

M. G. Debije, J.-P. Teunissen, M. J. Kastelijn, P. P. C. Verbunt, and C. W. M. Bastiaansen, “The effect of a scattering layer on the edge output of a luminescent solar concentrator,” Sol. Energy Mat. Sol. Cells 93, 1345-1350 (2009).
[CrossRef]

2008 (3)

A. R. Burgers, L. H. Slooff, and M. G. Debije, “Reduction of escape cone losses in luminescent concentrators with cholesteric mirrors,” Proc. SPIE 7043, 704306 (2008).
[CrossRef]

J. C. Goldschmidt, M. Peters, L. Prönneke, L. Steidl, R. Zentel, B. Bläsi, A. Gombert, S. W. Glunz, G. P. Willeke, and U. Rau, “Theoretical and experimental analysis of photonic structures for fluorescent concentrators with increased efficiencies,” Phys. Status Solidi A 205, 2811-2821 (2008).
[CrossRef]

M. G. Debije, P. P. C. Verbunt, B. C. Rowan, B. S. Richards, and T. Hoeks, “Measured surface loss from luminescent solar concentrator waveguides,” Appl. Opt. 47, 6763-6768(2008).
[CrossRef] [PubMed]

2007 (1)

M. Bosi and C. Pelosi, “The potential of III-V semiconductors as terrestrial photovoltaic devices,” Prog. Photovolt. 15, 51-68 (2007).
[CrossRef]

2004 (1)

I. B. Hagemann, “Examples of successful architectural integration of PV: Germany,” Prog. Photovolt. 12, 461-470 (2004).
[CrossRef]

2003 (1)

I. Antón, D. Pachón, and G. Sala, “Characterization of optical collectors for concentration photovoltaic applications,” Prog. Photovolt. 11, 387-405 (2003).
[CrossRef]

2001 (2)

T. Uematsu, Y. Yazawa, Y. Miyamura, S. Muramatsu, H. Ohtsuka, K. Tsutsiu, and T. Warabisako, “Static concentrator photovoltaic module with prism array,” Sol. Energy Mat. Sol. Cells 67, 415-423 (2001).
[CrossRef]

I. Baumberg, O. Berezin, A. Drabkin, B. Gorelik, L. Kogan, M. Voskobojnik, and M. Zaidman, “Effect of polymer matrix on photo-stability of photo-luminescent dyes in multi-layer polymeric structures,” Polym. Degred. Stabil. 73, 403-410(2001).
[CrossRef]

2000 (1)

R. M. Swanson, “The promise of concentrators,” Prog. Photovolt. 8, 93-111 (2000).
[CrossRef]

1999 (1)

D. J. Broer, G. N. Mol, J. A. M. M. van Haaren, and J. Lub, “Photo-induced diffusion in polymerizing chiral-nematic media,” Adv. Mater. 11, 573-578 (1999).
[CrossRef]

1984 (1)

1983 (1)

1981 (2)

1979 (1)

1977 (3)

1976 (1)

1933 (1)

C. Oseen, “The theory of liquid crystals,” Trans. Faraday Soc. 29, 883-899 (1933).
[CrossRef]

Aguilo-Lopez, F.

Antón, I.

I. Antón, D. Pachón, and G. Sala, “Characterization of optical collectors for concentration photovoltaic applications,” Prog. Photovolt. 11, 387-405 (2003).
[CrossRef]

Bastiaansen, C. W. M.

M. G. Debije, J.-P. Teunissen, M. J. Kastelijn, P. P. C. Verbunt, and C. W. M. Bastiaansen, “The effect of a scattering layer on the edge output of a luminescent solar concentrator,” Sol. Energy Mat. Sol. Cells 93, 1345-1350 (2009).
[CrossRef]

Batchelder, J. S.

Baumberg, I.

I. Baumberg, O. Berezin, A. Drabkin, B. Gorelik, L. Kogan, M. Voskobojnik, and M. Zaidman, “Effect of polymer matrix on photo-stability of photo-luminescent dyes in multi-layer polymeric structures,” Polym. Degred. Stabil. 73, 403-410(2001).
[CrossRef]

Berezin, O.

I. Baumberg, O. Berezin, A. Drabkin, B. Gorelik, L. Kogan, M. Voskobojnik, and M. Zaidman, “Effect of polymer matrix on photo-stability of photo-luminescent dyes in multi-layer polymeric structures,” Polym. Degred. Stabil. 73, 403-410(2001).
[CrossRef]

Bläsi, B.

J. C. Goldschmidt, M. Peters, L. Prönneke, L. Steidl, R. Zentel, B. Bläsi, A. Gombert, S. W. Glunz, G. P. Willeke, and U. Rau, “Theoretical and experimental analysis of photonic structures for fluorescent concentrators with increased efficiencies,” Phys. Status Solidi A 205, 2811-2821 (2008).
[CrossRef]

Bösch, A.

J. C. Goldschmidt, M. Peters, A. Bösch, H. Helmers, F. Dimroth, S. W. Glunz, and G. P. Willeke, “Increasing the efficiency of fluorescent concentrator systems,” Sol. Energy Mat. Sol. Cells 93, 176-182 (2009).
[CrossRef]

Bosi, M.

M. Bosi and C. Pelosi, “The potential of III-V semiconductors as terrestrial photovoltaic devices,” Prog. Photovolt. 15, 51-68 (2007).
[CrossRef]

Broer, D. J.

D. J. Broer, G. N. Mol, J. A. M. M. van Haaren, and J. Lub, “Photo-induced diffusion in polymerizing chiral-nematic media,” Adv. Mater. 11, 573-578 (1999).
[CrossRef]

Burgers, A. R.

A. R. Burgers, L. H. Slooff, and M. G. Debije, “Reduction of escape cone losses in luminescent concentrators with cholesteric mirrors,” Proc. SPIE 7043, 704306 (2008).
[CrossRef]

Carrascosa, M.

Cole, T.

Corkish, R. P.

B. S. Richards, A. Shalav, and R. P. Corkish, “A low escape-cone-loss luminescent solar concentrator,” in Proceedings of the 19th European Photovoltaic Solar Energy Conference (WIP Renewable Energies, 2004).

de Gennes, P. G.

J. Prost, P. G. de Gennes, The Physics of Liquid Crystals (Oxford U. Press, 1994).

Debije, M. G.

M. G. Debije, J.-P. Teunissen, M. J. Kastelijn, P. P. C. Verbunt, and C. W. M. Bastiaansen, “The effect of a scattering layer on the edge output of a luminescent solar concentrator,” Sol. Energy Mat. Sol. Cells 93, 1345-1350 (2009).
[CrossRef]

A. R. Burgers, L. H. Slooff, and M. G. Debije, “Reduction of escape cone losses in luminescent concentrators with cholesteric mirrors,” Proc. SPIE 7043, 704306 (2008).
[CrossRef]

M. G. Debije, P. P. C. Verbunt, B. C. Rowan, B. S. Richards, and T. Hoeks, “Measured surface loss from luminescent solar concentrator waveguides,” Appl. Opt. 47, 6763-6768(2008).
[CrossRef] [PubMed]

Dimroth, F.

J. C. Goldschmidt, M. Peters, A. Bösch, H. Helmers, F. Dimroth, S. W. Glunz, and G. P. Willeke, “Increasing the efficiency of fluorescent concentrator systems,” Sol. Energy Mat. Sol. Cells 93, 176-182 (2009).
[CrossRef]

Drabkin, A.

I. Baumberg, O. Berezin, A. Drabkin, B. Gorelik, L. Kogan, M. Voskobojnik, and M. Zaidman, “Effect of polymer matrix on photo-stability of photo-luminescent dyes in multi-layer polymeric structures,” Polym. Degred. Stabil. 73, 403-410(2001).
[CrossRef]

Garnier, F.

Glunz, S. W.

J. C. Goldschmidt, M. Peters, A. Bösch, H. Helmers, F. Dimroth, S. W. Glunz, and G. P. Willeke, “Increasing the efficiency of fluorescent concentrator systems,” Sol. Energy Mat. Sol. Cells 93, 176-182 (2009).
[CrossRef]

J. C. Goldschmidt, M. Peters, L. Prönneke, L. Steidl, R. Zentel, B. Bläsi, A. Gombert, S. W. Glunz, G. P. Willeke, and U. Rau, “Theoretical and experimental analysis of photonic structures for fluorescent concentrators with increased efficiencies,” Phys. Status Solidi A 205, 2811-2821 (2008).
[CrossRef]

Goetzberger, A.

A. Goetzberger and W. Greubel, “Solar energy conversion with fluorescent collector,” Appl. Phys. 14, 123-129 (1977).
[CrossRef]

Goldschmidt, J. C.

J. C. Goldschmidt, M. Peters, A. Bösch, H. Helmers, F. Dimroth, S. W. Glunz, and G. P. Willeke, “Increasing the efficiency of fluorescent concentrator systems,” Sol. Energy Mat. Sol. Cells 93, 176-182 (2009).
[CrossRef]

J. C. Goldschmidt, M. Peters, L. Prönneke, L. Steidl, R. Zentel, B. Bläsi, A. Gombert, S. W. Glunz, G. P. Willeke, and U. Rau, “Theoretical and experimental analysis of photonic structures for fluorescent concentrators with increased efficiencies,” Phys. Status Solidi A 205, 2811-2821 (2008).
[CrossRef]

Gombert, A.

J. C. Goldschmidt, M. Peters, L. Prönneke, L. Steidl, R. Zentel, B. Bläsi, A. Gombert, S. W. Glunz, G. P. Willeke, and U. Rau, “Theoretical and experimental analysis of photonic structures for fluorescent concentrators with increased efficiencies,” Phys. Status Solidi A 205, 2811-2821 (2008).
[CrossRef]

Gorelik, B.

I. Baumberg, O. Berezin, A. Drabkin, B. Gorelik, L. Kogan, M. Voskobojnik, and M. Zaidman, “Effect of polymer matrix on photo-stability of photo-luminescent dyes in multi-layer polymeric structures,” Polym. Degred. Stabil. 73, 403-410(2001).
[CrossRef]

Greubel, W.

A. Goetzberger and W. Greubel, “Solar energy conversion with fluorescent collector,” Appl. Phys. 14, 123-129 (1977).
[CrossRef]

Hagemann, I. B.

I. B. Hagemann, “Examples of successful architectural integration of PV: Germany,” Prog. Photovolt. 12, 461-470 (2004).
[CrossRef]

Heidler, K.

Helmers, H.

J. C. Goldschmidt, M. Peters, A. Bösch, H. Helmers, F. Dimroth, S. W. Glunz, and G. P. Willeke, “Increasing the efficiency of fluorescent concentrator systems,” Sol. Energy Mat. Sol. Cells 93, 176-182 (2009).
[CrossRef]

Hoeks, T.

Kastelijn, M. J.

M. G. Debije, J.-P. Teunissen, M. J. Kastelijn, P. P. C. Verbunt, and C. W. M. Bastiaansen, “The effect of a scattering layer on the edge output of a luminescent solar concentrator,” Sol. Energy Mat. Sol. Cells 93, 1345-1350 (2009).
[CrossRef]

Kogan, L.

I. Baumberg, O. Berezin, A. Drabkin, B. Gorelik, L. Kogan, M. Voskobojnik, and M. Zaidman, “Effect of polymer matrix on photo-stability of photo-luminescent dyes in multi-layer polymeric structures,” Polym. Degred. Stabil. 73, 403-410(2001).
[CrossRef]

Lambe, J.

Levitt, J. A.

Lub, J.

D. J. Broer, G. N. Mol, J. A. M. M. van Haaren, and J. Lub, “Photo-induced diffusion in polymerizing chiral-nematic media,” Adv. Mater. 11, 573-578 (1999).
[CrossRef]

Miyamura, Y.

T. Uematsu, Y. Yazawa, Y. Miyamura, S. Muramatsu, H. Ohtsuka, K. Tsutsiu, and T. Warabisako, “Static concentrator photovoltaic module with prism array,” Sol. Energy Mat. Sol. Cells 67, 415-423 (2001).
[CrossRef]

Mol, G. N.

D. J. Broer, G. N. Mol, J. A. M. M. van Haaren, and J. Lub, “Photo-induced diffusion in polymerizing chiral-nematic media,” Adv. Mater. 11, 573-578 (1999).
[CrossRef]

Muramatsu, S.

T. Uematsu, Y. Yazawa, Y. Miyamura, S. Muramatsu, H. Ohtsuka, K. Tsutsiu, and T. Warabisako, “Static concentrator photovoltaic module with prism array,” Sol. Energy Mat. Sol. Cells 67, 415-423 (2001).
[CrossRef]

Ohtsuka, H.

T. Uematsu, Y. Yazawa, Y. Miyamura, S. Muramatsu, H. Ohtsuka, K. Tsutsiu, and T. Warabisako, “Static concentrator photovoltaic module with prism array,” Sol. Energy Mat. Sol. Cells 67, 415-423 (2001).
[CrossRef]

Oseen, C.

C. Oseen, “The theory of liquid crystals,” Trans. Faraday Soc. 29, 883-899 (1933).
[CrossRef]

Pachón, D.

I. Antón, D. Pachón, and G. Sala, “Characterization of optical collectors for concentration photovoltaic applications,” Prog. Photovolt. 11, 387-405 (2003).
[CrossRef]

Pelosi, C.

M. Bosi and C. Pelosi, “The potential of III-V semiconductors as terrestrial photovoltaic devices,” Prog. Photovolt. 15, 51-68 (2007).
[CrossRef]

Peters, M.

J. C. Goldschmidt, M. Peters, A. Bösch, H. Helmers, F. Dimroth, S. W. Glunz, and G. P. Willeke, “Increasing the efficiency of fluorescent concentrator systems,” Sol. Energy Mat. Sol. Cells 93, 176-182 (2009).
[CrossRef]

J. C. Goldschmidt, M. Peters, L. Prönneke, L. Steidl, R. Zentel, B. Bläsi, A. Gombert, S. W. Glunz, G. P. Willeke, and U. Rau, “Theoretical and experimental analysis of photonic structures for fluorescent concentrators with increased efficiencies,” Phys. Status Solidi A 205, 2811-2821 (2008).
[CrossRef]

Prönneke, L.

J. C. Goldschmidt, M. Peters, L. Prönneke, L. Steidl, R. Zentel, B. Bläsi, A. Gombert, S. W. Glunz, G. P. Willeke, and U. Rau, “Theoretical and experimental analysis of photonic structures for fluorescent concentrators with increased efficiencies,” Phys. Status Solidi A 205, 2811-2821 (2008).
[CrossRef]

Prost, J.

J. Prost, P. G. de Gennes, The Physics of Liquid Crystals (Oxford U. Press, 1994).

Rau, U.

J. C. Goldschmidt, M. Peters, L. Prönneke, L. Steidl, R. Zentel, B. Bläsi, A. Gombert, S. W. Glunz, G. P. Willeke, and U. Rau, “Theoretical and experimental analysis of photonic structures for fluorescent concentrators with increased efficiencies,” Phys. Status Solidi A 205, 2811-2821 (2008).
[CrossRef]

Richards, B. S.

M. G. Debije, P. P. C. Verbunt, B. C. Rowan, B. S. Richards, and T. Hoeks, “Measured surface loss from luminescent solar concentrator waveguides,” Appl. Opt. 47, 6763-6768(2008).
[CrossRef] [PubMed]

B. S. Richards, A. Shalav, and R. P. Corkish, “A low escape-cone-loss luminescent solar concentrator,” in Proceedings of the 19th European Photovoltaic Solar Energy Conference (WIP Renewable Energies, 2004).

Roncali, J.

Rosenberg, G. A.

G. A. Rosenberg, “Device for concentrating optical radiation,” U.S. patent 5,877,874 (2 March 1999).

Rowan, B. C.

Sala, G.

I. Antón, D. Pachón, and G. Sala, “Characterization of optical collectors for concentration photovoltaic applications,” Prog. Photovolt. 11, 387-405 (2003).
[CrossRef]

Shalav, A.

B. S. Richards, A. Shalav, and R. P. Corkish, “A low escape-cone-loss luminescent solar concentrator,” in Proceedings of the 19th European Photovoltaic Solar Energy Conference (WIP Renewable Energies, 2004).

Slooff, L. H.

A. R. Burgers, L. H. Slooff, and M. G. Debije, “Reduction of escape cone losses in luminescent concentrators with cholesteric mirrors,” Proc. SPIE 7043, 704306 (2008).
[CrossRef]

Steidl, L.

J. C. Goldschmidt, M. Peters, L. Prönneke, L. Steidl, R. Zentel, B. Bläsi, A. Gombert, S. W. Glunz, G. P. Willeke, and U. Rau, “Theoretical and experimental analysis of photonic structures for fluorescent concentrators with increased efficiencies,” Phys. Status Solidi A 205, 2811-2821 (2008).
[CrossRef]

Swanson, R. M.

R. M. Swanson, “The promise of concentrators,” Prog. Photovolt. 8, 93-111 (2000).
[CrossRef]

Swartz, B. A.

Teunissen, J.-P.

M. G. Debije, J.-P. Teunissen, M. J. Kastelijn, P. P. C. Verbunt, and C. W. M. Bastiaansen, “The effect of a scattering layer on the edge output of a luminescent solar concentrator,” Sol. Energy Mat. Sol. Cells 93, 1345-1350 (2009).
[CrossRef]

Tremblay, R.

R. Tremblay, “Electromagnetic wave concentrator,” U.S. patent 4,505,264 (19 March 1985).

Tsutsiu, K.

T. Uematsu, Y. Yazawa, Y. Miyamura, S. Muramatsu, H. Ohtsuka, K. Tsutsiu, and T. Warabisako, “Static concentrator photovoltaic module with prism array,” Sol. Energy Mat. Sol. Cells 67, 415-423 (2001).
[CrossRef]

Uematsu, T.

T. Uematsu, Y. Yazawa, Y. Miyamura, S. Muramatsu, H. Ohtsuka, K. Tsutsiu, and T. Warabisako, “Static concentrator photovoltaic module with prism array,” Sol. Energy Mat. Sol. Cells 67, 415-423 (2001).
[CrossRef]

Unamuno, S.

van Haaren, J. A. M. M.

D. J. Broer, G. N. Mol, J. A. M. M. van Haaren, and J. Lub, “Photo-induced diffusion in polymerizing chiral-nematic media,” Adv. Mater. 11, 573-578 (1999).
[CrossRef]

Verbunt, P. P. C.

M. G. Debije, J.-P. Teunissen, M. J. Kastelijn, P. P. C. Verbunt, and C. W. M. Bastiaansen, “The effect of a scattering layer on the edge output of a luminescent solar concentrator,” Sol. Energy Mat. Sol. Cells 93, 1345-1350 (2009).
[CrossRef]

M. G. Debije, P. P. C. Verbunt, B. C. Rowan, B. S. Richards, and T. Hoeks, “Measured surface loss from luminescent solar concentrator waveguides,” Appl. Opt. 47, 6763-6768(2008).
[CrossRef] [PubMed]

Voskobojnik, M.

I. Baumberg, O. Berezin, A. Drabkin, B. Gorelik, L. Kogan, M. Voskobojnik, and M. Zaidman, “Effect of polymer matrix on photo-stability of photo-luminescent dyes in multi-layer polymeric structures,” Polym. Degred. Stabil. 73, 403-410(2001).
[CrossRef]

Warabisako, T.

T. Uematsu, Y. Yazawa, Y. Miyamura, S. Muramatsu, H. Ohtsuka, K. Tsutsiu, and T. Warabisako, “Static concentrator photovoltaic module with prism array,” Sol. Energy Mat. Sol. Cells 67, 415-423 (2001).
[CrossRef]

Weber, W. H.

Willeke, G. P.

J. C. Goldschmidt, M. Peters, A. Bösch, H. Helmers, F. Dimroth, S. W. Glunz, and G. P. Willeke, “Increasing the efficiency of fluorescent concentrator systems,” Sol. Energy Mat. Sol. Cells 93, 176-182 (2009).
[CrossRef]

J. C. Goldschmidt, M. Peters, L. Prönneke, L. Steidl, R. Zentel, B. Bläsi, A. Gombert, S. W. Glunz, G. P. Willeke, and U. Rau, “Theoretical and experimental analysis of photonic structures for fluorescent concentrators with increased efficiencies,” Phys. Status Solidi A 205, 2811-2821 (2008).
[CrossRef]

Yazawa, Y.

T. Uematsu, Y. Yazawa, Y. Miyamura, S. Muramatsu, H. Ohtsuka, K. Tsutsiu, and T. Warabisako, “Static concentrator photovoltaic module with prism array,” Sol. Energy Mat. Sol. Cells 67, 415-423 (2001).
[CrossRef]

Zaidman, M.

I. Baumberg, O. Berezin, A. Drabkin, B. Gorelik, L. Kogan, M. Voskobojnik, and M. Zaidman, “Effect of polymer matrix on photo-stability of photo-luminescent dyes in multi-layer polymeric structures,” Polym. Degred. Stabil. 73, 403-410(2001).
[CrossRef]

Zentel, R.

J. C. Goldschmidt, M. Peters, L. Prönneke, L. Steidl, R. Zentel, B. Bläsi, A. Gombert, S. W. Glunz, G. P. Willeke, and U. Rau, “Theoretical and experimental analysis of photonic structures for fluorescent concentrators with increased efficiencies,” Phys. Status Solidi A 205, 2811-2821 (2008).
[CrossRef]

Zewail, A. H.

Adv. Mater. (1)

D. J. Broer, G. N. Mol, J. A. M. M. van Haaren, and J. Lub, “Photo-induced diffusion in polymerizing chiral-nematic media,” Adv. Mater. 11, 573-578 (1999).
[CrossRef]

Appl. Opt. (8)

Appl. Phys. (1)

A. Goetzberger and W. Greubel, “Solar energy conversion with fluorescent collector,” Appl. Phys. 14, 123-129 (1977).
[CrossRef]

Opt. Lett. (1)

Phys. Status Solidi A (1)

J. C. Goldschmidt, M. Peters, L. Prönneke, L. Steidl, R. Zentel, B. Bläsi, A. Gombert, S. W. Glunz, G. P. Willeke, and U. Rau, “Theoretical and experimental analysis of photonic structures for fluorescent concentrators with increased efficiencies,” Phys. Status Solidi A 205, 2811-2821 (2008).
[CrossRef]

Polym. Degred. Stabil. (1)

I. Baumberg, O. Berezin, A. Drabkin, B. Gorelik, L. Kogan, M. Voskobojnik, and M. Zaidman, “Effect of polymer matrix on photo-stability of photo-luminescent dyes in multi-layer polymeric structures,” Polym. Degred. Stabil. 73, 403-410(2001).
[CrossRef]

Proc. SPIE (1)

A. R. Burgers, L. H. Slooff, and M. G. Debije, “Reduction of escape cone losses in luminescent concentrators with cholesteric mirrors,” Proc. SPIE 7043, 704306 (2008).
[CrossRef]

Prog. Photovolt. (4)

I. B. Hagemann, “Examples of successful architectural integration of PV: Germany,” Prog. Photovolt. 12, 461-470 (2004).
[CrossRef]

R. M. Swanson, “The promise of concentrators,” Prog. Photovolt. 8, 93-111 (2000).
[CrossRef]

I. Antón, D. Pachón, and G. Sala, “Characterization of optical collectors for concentration photovoltaic applications,” Prog. Photovolt. 11, 387-405 (2003).
[CrossRef]

M. Bosi and C. Pelosi, “The potential of III-V semiconductors as terrestrial photovoltaic devices,” Prog. Photovolt. 15, 51-68 (2007).
[CrossRef]

Sol. Energy Mat. Sol. Cells (3)

T. Uematsu, Y. Yazawa, Y. Miyamura, S. Muramatsu, H. Ohtsuka, K. Tsutsiu, and T. Warabisako, “Static concentrator photovoltaic module with prism array,” Sol. Energy Mat. Sol. Cells 67, 415-423 (2001).
[CrossRef]

J. C. Goldschmidt, M. Peters, A. Bösch, H. Helmers, F. Dimroth, S. W. Glunz, and G. P. Willeke, “Increasing the efficiency of fluorescent concentrator systems,” Sol. Energy Mat. Sol. Cells 93, 176-182 (2009).
[CrossRef]

M. G. Debije, J.-P. Teunissen, M. J. Kastelijn, P. P. C. Verbunt, and C. W. M. Bastiaansen, “The effect of a scattering layer on the edge output of a luminescent solar concentrator,” Sol. Energy Mat. Sol. Cells 93, 1345-1350 (2009).
[CrossRef]

Trans. Faraday Soc. (1)

C. Oseen, “The theory of liquid crystals,” Trans. Faraday Soc. 29, 883-899 (1933).
[CrossRef]

Other (4)

B. S. Richards, A. Shalav, and R. P. Corkish, “A low escape-cone-loss luminescent solar concentrator,” in Proceedings of the 19th European Photovoltaic Solar Energy Conference (WIP Renewable Energies, 2004).

R. Tremblay, “Electromagnetic wave concentrator,” U.S. patent 4,505,264 (19 March 1985).

G. A. Rosenberg, “Device for concentrating optical radiation,” U.S. patent 5,877,874 (2 March 1999).

J. Prost, P. G. de Gennes, The Physics of Liquid Crystals (Oxford U. Press, 1994).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1

Working principle of the LSC using a cholesteric layer described in this paper. Light emitted by the dye molecules in the waveguide directed at steep angles to the top surface is reflected back into the waveguide by the cholesteric layer. When this reflected light encounters the scattering layer at the bottom, its direction changes, and a fraction of these rays is directed toward the exit face where one places an efficient photovoltaic cell.

Fig. 2
Fig. 2

Experimental setup for measurement of the surface losses in the LSC–cholesteric systems.

Fig. 3
Fig. 3

Experimental setup for measuring the edge emission in the LSC–cholesteric systems. Various bottom layers could be placed under the waveguide.

Fig. 4
Fig. 4

Absorbance spectra of Red 305 dye in a polycarbonate waveguide at a dye concentration of 80 ppm (solid curve) and edge emission of the same waveguide on a black background (dotted curve).

Fig. 5
Fig. 5

Transmission spectra for the two-sided cholesterics used in these experiments centered at 670, 700, 730, 770, and 810 nm after exposure to unpolarized light.

Fig. 6
Fig. 6

Comparative surface emission spectra for a Red 305 filled polycarbonate waveguide with a peak absorbance of 0.52 measured 15 ° to the surface normal with a blank half-wave plate on top (black curve), and the same waveguide with a cholesteric reflector centered at 670 nm on the top measured at 15 ° (dark gray curve), 30 ° (medium gray curve), and 45 ° (light gray curve) to the waveguide normal.

Fig. 7
Fig. 7

Resultant spectra of an absorbance 1.07 waveguide (gray curve) and the same waveguide with 810 nm cholesteric separated from the waveguide by an air gap (black curve) after subtraction of the spectrum of a blank waveguide. All the cases used a rear white scattering layer. The region labeled I represents additional absorption of in-scattered light, and region II represents dye emission with scattered light removed.

Fig. 8
Fig. 8

Edge emission relative to the output of a bare waveguide with blank halfwave plate using cholesteric filters centered at 670 nm (stars), 700 nm (circles), 730 nm (triangles), 770 nm (squares), and 810 nm (diamonds) as a function of waveguide absorbance. Resultant emission data integrated from 350 to 750 nm.

Fig. 9
Fig. 9

Explanation of the redshifting of the cholesteric. Light emitted outside the waveguiding cone is bent away from the normal after entering the air gap between the waveguide and the cholesteric. Thus the emission light encounters the cholesteric at increased angles with respect to the surface normal of the cholesteric.

Fig. 10
Fig. 10

Plots of the transmission of a cholesteric layer on a half-wave plate centered just above 600 nm for unpolarized input light normal to the surface and in 20 ° steps from the normal.

Tables (2)

Tables Icon

Table 1 Percentage of Absorbed Light Emitted through the Bottom of the Waveguides as a Function of an Applied Cholesteric Layer

Tables Icon

Table 2 Integrated Output Emission (in Milliwatts) over the Range from 350 to 750 nm from the edge of the Polycarbonate Red 305 Waveguides with Different Backing Materials

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

λ θ = λ 0 cos [ sin 1 ( sin θ / n ) ] ,

Metrics