Abstract

We propose a theoretical design for a compact photonic crystal (PC) polarization beam splitter (PBS) based on the multimode interference (MMI) effect. The size of a conventional MMI device designed by the self-imaging principle is not compact enough; therefore, we design a compact PC PBS based on the difference of the interference effect between TE and TM modes. Within the MMI coupler, the dependence of interference of modes on propagation distance is weak for a TE wave and strong for a TM wave; as a result, the length of the MMI section can be only seven lattice constants. Simulation results show that the insertion losses are 0.32 and 0.89dB, and the extinction ratios are 14.4 and 17.5dB for Port 1 (TE mode) and Port 2 (TM mode), respectively.

© 2010 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. E. Yablonovitch, “Inhibited spontaneous emission in solid-state physics and electronics,” Phys. Rev. Lett. 58, 2059-2062(1987).
    [CrossRef] [PubMed]
  2. S. John, “Strong localization of photons in certain disordered dielectric superlattices,” Phys. Rev. Lett. 58, 2486-2489(1987).
    [CrossRef] [PubMed]
  3. T. Liu, A. R. Zakharian, M. Fallahi, J. V. Moloney, and M. Mansuripur, “Multimode interference-based photonic crystal waveguide power splitter,” J. Lightwave Technol. 22, 2842-2846 (2004).
    [CrossRef]
  4. L. B. Soldano and E. C. M. Pennings, “Optical multi-mode interference devices based on self-imaging: principles and applications,” J. Lightwave Technol. 13, 615-627 (1995).
    [CrossRef]
  5. M. R. Paiam, C. F. Janz, R. I. MacDonald, and J. N. Broughton, “Compact planar 980/1550 nm wavelength multi/demultiplexer based on multimode interference,” IEEE Photon. Technol. Lett. 7, 1180-1182 (1995).
    [CrossRef]
  6. Z. Li, Z. Chen, and B. Li, “Optical pulse controlled all-optical logic gates in SiGe/Si multimode interference,” Opt. Express 13, 1033-1038 (2005).
    [CrossRef] [PubMed]
  7. T. Y. Tsai, Z. C. Lee, J. R. Chen, C. C. Chen, Y. C. Fang, and M. H. Cha, “A novel ultra compact two-mode-interference wavelength division multiplexer for 1.5 μm operation,” IEEE J. Quantum Electron. 41, 741-746 (2005).
    [CrossRef]
  8. X. Jia, S. Luo, and X. Cheng, “Design and optimization of novel ultra-compact SOI multimode interference optical switch,” Opt. Commun. 281, 1003-1007 (2008).
    [CrossRef]
  9. H. J. Kim, I. Park, B. H. O, S. G. Park, E. H. Lee, and S. G. Lee, “Self-imaging phenomena in multi-mode photonic crystal line-defect waveguides: application to wavelength de-multiplexing,” Opt. Express 12, 5625-5633 (2004).
    [CrossRef] [PubMed]
  10. Y. Zhang, Z. Li, and B. Li, “Multimode interference effect and self-imaging principle in two-dimensional silicon photonic crystal waveguides for terahertz waves,” Opt. Express 14, 2679-2689 (2006).
    [CrossRef] [PubMed]
  11. Z. Li, Y. Zhang, and B. Li, “Terahertz photonic crystal switch in silicon based on self-imaging principle,” Opt. Express 14, 3887-3892 (2006).
    [CrossRef] [PubMed]
  12. C. C. Chiang, C. W. Tsai, and S. L. Tsao, “Design and simulation of a novel 32×32 photonic bandgap power switch based on SOI waveguide,” Opt. Commun. 278, 42-47 (2007).
    [CrossRef]
  13. M. F. Lu and Y. T. Huang, “Design of a photonic crystal taper coupler with different section lengths based on the multimode interference and the mode matching,” Jpn. J. Appl. Phys. 47, 1822-1827 (2008).
    [CrossRef]
  14. P. K. Wei and W. S. Wang, “A TE-TM mode splitter on lithium niobate using Ti, Ni, and MgO diffusions,” IEEE Photon. Technol. Lett. 6, 245-248 (1994).
    [CrossRef]
  15. Y. Ohtera, T. Sato, T. Kawashima, T. Tamamura, and S. Kawakami, “Photonic crystal polarization splitters,” Electron. Lett. 35, 1271-1272 (1999).
    [CrossRef]
  16. Y. Y. Li, M. Y. Li, P. F. Gu, Z. R. Zheng, and X. Liu, “Graded wavelike two-dimensional photonic crystal made of thin films,” Appl. Opt. 47, C70-C74 (2008).
    [CrossRef] [PubMed]
  17. D. Taillaert, H. Chong, P. I. Borel, L. H. Frandsen, R. M. De La Rue, and R. Baets, “A compact two-dimensional grating coupler used as a polarization splitter,” IEEE Photon. Technol. Lett. 15, 1249-1251 (2003).
    [CrossRef]
  18. D. R. Solli, C. F. McCormick, R. Y. Chiao, and J. M. Hickmann, “Photonic crystal polarizers and polarizing beam splitters,” J. Appl. Phys. 93, 9429-9431 (2003).
    [CrossRef]
  19. T. Liu, A. R. Zakharian, M. Fallahi, J. V. Moloney, and M. Mansuripur, “Design of a compact photonic-crystal-based polarizing beam splitter,” IEEE Photon. Technol. Lett. 17, 1435-1437 (2005).
    [CrossRef]
  20. C. Y. Guan, J. H. Shi, and L. B. Yuan, “Photonic crystal polarizing and non-polarizing beam splitters,” Chin. Phys. Lett. 25, 556-558 (2008).
    [CrossRef]
  21. Y. Morita, Y. Tsuji, and K. Hirayama, “Proposal for a compact resonant-coupling-type polarization splitter based on photonic crystal waveguide with absolute photonic bandgap,” IEEE Photon. Technol. Lett. 20, 93-95 (2008).
    [CrossRef]
  22. V. Zabelin, L. A. Dunbar, N. Le Thomas, R. Houdre, M. V. Kotlyar, L. O'Faolain, and T. F. Krauss, “Self-collimating photonic crystal polarization beam splitter,” Opt. Lett. 32, 530-532(2007).
    [CrossRef] [PubMed]
  23. E. Schonbrun, Q. Wu, W. Park, T. Yamashita, and C. J. Summers, “Polarization beam splitter based on a photonic crystal heterostructure,” Opt. Lett. 31, 3104-3106 (2006).
    [CrossRef] [PubMed]
  24. V. Mocella, P. Dardano, L. Moretti, and I. Rendina, “A polarizing beam splitter using negative refraction of photonic crystals,” Opt. Express 13, 7699-7707 (2005).
    [CrossRef] [PubMed]
  25. R. Ulrich, “Light-propagation and imaging in planar optical waveguides,” Nouv. Rev. Optique 6, 253-262 (1975).
    [CrossRef]
  26. R. Ulrich and G. Ankele, “Self-imaging in homogeneous planar optical waveguides,” Appl. Phys. Lett. 27, 337-339 (1975).
    [CrossRef]
  27. D. C. Chang and E. F. Kuester, “A hybrid method for paraxial beam propagation in multimode optical waveguides,” Trans. Microwave Theory Tech. 29, 923-933 (1981).
    [CrossRef]
  28. N. Zhu, D. Dai, and S. He, “A hybrid modeling for the theoretical analysis of reflections in a multimode-interference coupler based on silicon-on-insulator nanowires,” Opt. Commun. 281, 3099-3104 (2008).
    [CrossRef]
  29. S. M. Liao, “Design and analysis of multimode interference-based photonic crystal polarizing beam splitter,” thesis (National Chiao Tung University, 2008).

2008 (6)

X. Jia, S. Luo, and X. Cheng, “Design and optimization of novel ultra-compact SOI multimode interference optical switch,” Opt. Commun. 281, 1003-1007 (2008).
[CrossRef]

M. F. Lu and Y. T. Huang, “Design of a photonic crystal taper coupler with different section lengths based on the multimode interference and the mode matching,” Jpn. J. Appl. Phys. 47, 1822-1827 (2008).
[CrossRef]

C. Y. Guan, J. H. Shi, and L. B. Yuan, “Photonic crystal polarizing and non-polarizing beam splitters,” Chin. Phys. Lett. 25, 556-558 (2008).
[CrossRef]

Y. Morita, Y. Tsuji, and K. Hirayama, “Proposal for a compact resonant-coupling-type polarization splitter based on photonic crystal waveguide with absolute photonic bandgap,” IEEE Photon. Technol. Lett. 20, 93-95 (2008).
[CrossRef]

N. Zhu, D. Dai, and S. He, “A hybrid modeling for the theoretical analysis of reflections in a multimode-interference coupler based on silicon-on-insulator nanowires,” Opt. Commun. 281, 3099-3104 (2008).
[CrossRef]

Y. Y. Li, M. Y. Li, P. F. Gu, Z. R. Zheng, and X. Liu, “Graded wavelike two-dimensional photonic crystal made of thin films,” Appl. Opt. 47, C70-C74 (2008).
[CrossRef] [PubMed]

2007 (2)

V. Zabelin, L. A. Dunbar, N. Le Thomas, R. Houdre, M. V. Kotlyar, L. O'Faolain, and T. F. Krauss, “Self-collimating photonic crystal polarization beam splitter,” Opt. Lett. 32, 530-532(2007).
[CrossRef] [PubMed]

C. C. Chiang, C. W. Tsai, and S. L. Tsao, “Design and simulation of a novel 32×32 photonic bandgap power switch based on SOI waveguide,” Opt. Commun. 278, 42-47 (2007).
[CrossRef]

2006 (3)

2005 (4)

Z. Li, Z. Chen, and B. Li, “Optical pulse controlled all-optical logic gates in SiGe/Si multimode interference,” Opt. Express 13, 1033-1038 (2005).
[CrossRef] [PubMed]

V. Mocella, P. Dardano, L. Moretti, and I. Rendina, “A polarizing beam splitter using negative refraction of photonic crystals,” Opt. Express 13, 7699-7707 (2005).
[CrossRef] [PubMed]

T. Liu, A. R. Zakharian, M. Fallahi, J. V. Moloney, and M. Mansuripur, “Design of a compact photonic-crystal-based polarizing beam splitter,” IEEE Photon. Technol. Lett. 17, 1435-1437 (2005).
[CrossRef]

T. Y. Tsai, Z. C. Lee, J. R. Chen, C. C. Chen, Y. C. Fang, and M. H. Cha, “A novel ultra compact two-mode-interference wavelength division multiplexer for 1.5 μm operation,” IEEE J. Quantum Electron. 41, 741-746 (2005).
[CrossRef]

2004 (2)

2003 (2)

D. Taillaert, H. Chong, P. I. Borel, L. H. Frandsen, R. M. De La Rue, and R. Baets, “A compact two-dimensional grating coupler used as a polarization splitter,” IEEE Photon. Technol. Lett. 15, 1249-1251 (2003).
[CrossRef]

D. R. Solli, C. F. McCormick, R. Y. Chiao, and J. M. Hickmann, “Photonic crystal polarizers and polarizing beam splitters,” J. Appl. Phys. 93, 9429-9431 (2003).
[CrossRef]

1999 (1)

Y. Ohtera, T. Sato, T. Kawashima, T. Tamamura, and S. Kawakami, “Photonic crystal polarization splitters,” Electron. Lett. 35, 1271-1272 (1999).
[CrossRef]

1995 (2)

L. B. Soldano and E. C. M. Pennings, “Optical multi-mode interference devices based on self-imaging: principles and applications,” J. Lightwave Technol. 13, 615-627 (1995).
[CrossRef]

M. R. Paiam, C. F. Janz, R. I. MacDonald, and J. N. Broughton, “Compact planar 980/1550 nm wavelength multi/demultiplexer based on multimode interference,” IEEE Photon. Technol. Lett. 7, 1180-1182 (1995).
[CrossRef]

1994 (1)

P. K. Wei and W. S. Wang, “A TE-TM mode splitter on lithium niobate using Ti, Ni, and MgO diffusions,” IEEE Photon. Technol. Lett. 6, 245-248 (1994).
[CrossRef]

1987 (2)

E. Yablonovitch, “Inhibited spontaneous emission in solid-state physics and electronics,” Phys. Rev. Lett. 58, 2059-2062(1987).
[CrossRef] [PubMed]

S. John, “Strong localization of photons in certain disordered dielectric superlattices,” Phys. Rev. Lett. 58, 2486-2489(1987).
[CrossRef] [PubMed]

1981 (1)

D. C. Chang and E. F. Kuester, “A hybrid method for paraxial beam propagation in multimode optical waveguides,” Trans. Microwave Theory Tech. 29, 923-933 (1981).
[CrossRef]

1975 (2)

R. Ulrich, “Light-propagation and imaging in planar optical waveguides,” Nouv. Rev. Optique 6, 253-262 (1975).
[CrossRef]

R. Ulrich and G. Ankele, “Self-imaging in homogeneous planar optical waveguides,” Appl. Phys. Lett. 27, 337-339 (1975).
[CrossRef]

Ankele, G.

R. Ulrich and G. Ankele, “Self-imaging in homogeneous planar optical waveguides,” Appl. Phys. Lett. 27, 337-339 (1975).
[CrossRef]

Baets, R.

D. Taillaert, H. Chong, P. I. Borel, L. H. Frandsen, R. M. De La Rue, and R. Baets, “A compact two-dimensional grating coupler used as a polarization splitter,” IEEE Photon. Technol. Lett. 15, 1249-1251 (2003).
[CrossRef]

Borel, P. I.

D. Taillaert, H. Chong, P. I. Borel, L. H. Frandsen, R. M. De La Rue, and R. Baets, “A compact two-dimensional grating coupler used as a polarization splitter,” IEEE Photon. Technol. Lett. 15, 1249-1251 (2003).
[CrossRef]

Broughton, J. N.

M. R. Paiam, C. F. Janz, R. I. MacDonald, and J. N. Broughton, “Compact planar 980/1550 nm wavelength multi/demultiplexer based on multimode interference,” IEEE Photon. Technol. Lett. 7, 1180-1182 (1995).
[CrossRef]

Cha, M. H.

T. Y. Tsai, Z. C. Lee, J. R. Chen, C. C. Chen, Y. C. Fang, and M. H. Cha, “A novel ultra compact two-mode-interference wavelength division multiplexer for 1.5 μm operation,” IEEE J. Quantum Electron. 41, 741-746 (2005).
[CrossRef]

Chang, D. C.

D. C. Chang and E. F. Kuester, “A hybrid method for paraxial beam propagation in multimode optical waveguides,” Trans. Microwave Theory Tech. 29, 923-933 (1981).
[CrossRef]

Chen, C. C.

T. Y. Tsai, Z. C. Lee, J. R. Chen, C. C. Chen, Y. C. Fang, and M. H. Cha, “A novel ultra compact two-mode-interference wavelength division multiplexer for 1.5 μm operation,” IEEE J. Quantum Electron. 41, 741-746 (2005).
[CrossRef]

Chen, J. R.

T. Y. Tsai, Z. C. Lee, J. R. Chen, C. C. Chen, Y. C. Fang, and M. H. Cha, “A novel ultra compact two-mode-interference wavelength division multiplexer for 1.5 μm operation,” IEEE J. Quantum Electron. 41, 741-746 (2005).
[CrossRef]

Chen, Z.

Cheng, X.

X. Jia, S. Luo, and X. Cheng, “Design and optimization of novel ultra-compact SOI multimode interference optical switch,” Opt. Commun. 281, 1003-1007 (2008).
[CrossRef]

Chiang, C. C.

C. C. Chiang, C. W. Tsai, and S. L. Tsao, “Design and simulation of a novel 32×32 photonic bandgap power switch based on SOI waveguide,” Opt. Commun. 278, 42-47 (2007).
[CrossRef]

Chiao, R. Y.

D. R. Solli, C. F. McCormick, R. Y. Chiao, and J. M. Hickmann, “Photonic crystal polarizers and polarizing beam splitters,” J. Appl. Phys. 93, 9429-9431 (2003).
[CrossRef]

Chong, H.

D. Taillaert, H. Chong, P. I. Borel, L. H. Frandsen, R. M. De La Rue, and R. Baets, “A compact two-dimensional grating coupler used as a polarization splitter,” IEEE Photon. Technol. Lett. 15, 1249-1251 (2003).
[CrossRef]

Dai, D.

N. Zhu, D. Dai, and S. He, “A hybrid modeling for the theoretical analysis of reflections in a multimode-interference coupler based on silicon-on-insulator nanowires,” Opt. Commun. 281, 3099-3104 (2008).
[CrossRef]

Dardano, P.

De La Rue, R. M.

D. Taillaert, H. Chong, P. I. Borel, L. H. Frandsen, R. M. De La Rue, and R. Baets, “A compact two-dimensional grating coupler used as a polarization splitter,” IEEE Photon. Technol. Lett. 15, 1249-1251 (2003).
[CrossRef]

Dunbar, L. A.

Fallahi, M.

T. Liu, A. R. Zakharian, M. Fallahi, J. V. Moloney, and M. Mansuripur, “Design of a compact photonic-crystal-based polarizing beam splitter,” IEEE Photon. Technol. Lett. 17, 1435-1437 (2005).
[CrossRef]

T. Liu, A. R. Zakharian, M. Fallahi, J. V. Moloney, and M. Mansuripur, “Multimode interference-based photonic crystal waveguide power splitter,” J. Lightwave Technol. 22, 2842-2846 (2004).
[CrossRef]

Fang, Y. C.

T. Y. Tsai, Z. C. Lee, J. R. Chen, C. C. Chen, Y. C. Fang, and M. H. Cha, “A novel ultra compact two-mode-interference wavelength division multiplexer for 1.5 μm operation,” IEEE J. Quantum Electron. 41, 741-746 (2005).
[CrossRef]

Frandsen, L. H.

D. Taillaert, H. Chong, P. I. Borel, L. H. Frandsen, R. M. De La Rue, and R. Baets, “A compact two-dimensional grating coupler used as a polarization splitter,” IEEE Photon. Technol. Lett. 15, 1249-1251 (2003).
[CrossRef]

Gu, P. F.

Guan, C. Y.

C. Y. Guan, J. H. Shi, and L. B. Yuan, “Photonic crystal polarizing and non-polarizing beam splitters,” Chin. Phys. Lett. 25, 556-558 (2008).
[CrossRef]

He, S.

N. Zhu, D. Dai, and S. He, “A hybrid modeling for the theoretical analysis of reflections in a multimode-interference coupler based on silicon-on-insulator nanowires,” Opt. Commun. 281, 3099-3104 (2008).
[CrossRef]

Hickmann, J. M.

D. R. Solli, C. F. McCormick, R. Y. Chiao, and J. M. Hickmann, “Photonic crystal polarizers and polarizing beam splitters,” J. Appl. Phys. 93, 9429-9431 (2003).
[CrossRef]

Hirayama, K.

Y. Morita, Y. Tsuji, and K. Hirayama, “Proposal for a compact resonant-coupling-type polarization splitter based on photonic crystal waveguide with absolute photonic bandgap,” IEEE Photon. Technol. Lett. 20, 93-95 (2008).
[CrossRef]

Houdre, R.

Huang, Y. T.

M. F. Lu and Y. T. Huang, “Design of a photonic crystal taper coupler with different section lengths based on the multimode interference and the mode matching,” Jpn. J. Appl. Phys. 47, 1822-1827 (2008).
[CrossRef]

Janz, C. F.

M. R. Paiam, C. F. Janz, R. I. MacDonald, and J. N. Broughton, “Compact planar 980/1550 nm wavelength multi/demultiplexer based on multimode interference,” IEEE Photon. Technol. Lett. 7, 1180-1182 (1995).
[CrossRef]

Jia, X.

X. Jia, S. Luo, and X. Cheng, “Design and optimization of novel ultra-compact SOI multimode interference optical switch,” Opt. Commun. 281, 1003-1007 (2008).
[CrossRef]

John, S.

S. John, “Strong localization of photons in certain disordered dielectric superlattices,” Phys. Rev. Lett. 58, 2486-2489(1987).
[CrossRef] [PubMed]

Kawakami, S.

Y. Ohtera, T. Sato, T. Kawashima, T. Tamamura, and S. Kawakami, “Photonic crystal polarization splitters,” Electron. Lett. 35, 1271-1272 (1999).
[CrossRef]

Kawashima, T.

Y. Ohtera, T. Sato, T. Kawashima, T. Tamamura, and S. Kawakami, “Photonic crystal polarization splitters,” Electron. Lett. 35, 1271-1272 (1999).
[CrossRef]

Kim, H. J.

Kotlyar, M. V.

Krauss, T. F.

Kuester, E. F.

D. C. Chang and E. F. Kuester, “A hybrid method for paraxial beam propagation in multimode optical waveguides,” Trans. Microwave Theory Tech. 29, 923-933 (1981).
[CrossRef]

Le Thomas, N.

Lee, E. H.

Lee, S. G.

Lee, Z. C.

T. Y. Tsai, Z. C. Lee, J. R. Chen, C. C. Chen, Y. C. Fang, and M. H. Cha, “A novel ultra compact two-mode-interference wavelength division multiplexer for 1.5 μm operation,” IEEE J. Quantum Electron. 41, 741-746 (2005).
[CrossRef]

Li, B.

Li, M. Y.

Li, Y. Y.

Li, Z.

Liao, S. M.

S. M. Liao, “Design and analysis of multimode interference-based photonic crystal polarizing beam splitter,” thesis (National Chiao Tung University, 2008).

Liu, T.

T. Liu, A. R. Zakharian, M. Fallahi, J. V. Moloney, and M. Mansuripur, “Design of a compact photonic-crystal-based polarizing beam splitter,” IEEE Photon. Technol. Lett. 17, 1435-1437 (2005).
[CrossRef]

T. Liu, A. R. Zakharian, M. Fallahi, J. V. Moloney, and M. Mansuripur, “Multimode interference-based photonic crystal waveguide power splitter,” J. Lightwave Technol. 22, 2842-2846 (2004).
[CrossRef]

Liu, X.

Lu, M. F.

M. F. Lu and Y. T. Huang, “Design of a photonic crystal taper coupler with different section lengths based on the multimode interference and the mode matching,” Jpn. J. Appl. Phys. 47, 1822-1827 (2008).
[CrossRef]

Luo, S.

X. Jia, S. Luo, and X. Cheng, “Design and optimization of novel ultra-compact SOI multimode interference optical switch,” Opt. Commun. 281, 1003-1007 (2008).
[CrossRef]

MacDonald, R. I.

M. R. Paiam, C. F. Janz, R. I. MacDonald, and J. N. Broughton, “Compact planar 980/1550 nm wavelength multi/demultiplexer based on multimode interference,” IEEE Photon. Technol. Lett. 7, 1180-1182 (1995).
[CrossRef]

Mansuripur, M.

T. Liu, A. R. Zakharian, M. Fallahi, J. V. Moloney, and M. Mansuripur, “Design of a compact photonic-crystal-based polarizing beam splitter,” IEEE Photon. Technol. Lett. 17, 1435-1437 (2005).
[CrossRef]

T. Liu, A. R. Zakharian, M. Fallahi, J. V. Moloney, and M. Mansuripur, “Multimode interference-based photonic crystal waveguide power splitter,” J. Lightwave Technol. 22, 2842-2846 (2004).
[CrossRef]

McCormick, C. F.

D. R. Solli, C. F. McCormick, R. Y. Chiao, and J. M. Hickmann, “Photonic crystal polarizers and polarizing beam splitters,” J. Appl. Phys. 93, 9429-9431 (2003).
[CrossRef]

Mocella, V.

Moloney, J. V.

T. Liu, A. R. Zakharian, M. Fallahi, J. V. Moloney, and M. Mansuripur, “Design of a compact photonic-crystal-based polarizing beam splitter,” IEEE Photon. Technol. Lett. 17, 1435-1437 (2005).
[CrossRef]

T. Liu, A. R. Zakharian, M. Fallahi, J. V. Moloney, and M. Mansuripur, “Multimode interference-based photonic crystal waveguide power splitter,” J. Lightwave Technol. 22, 2842-2846 (2004).
[CrossRef]

Moretti, L.

Morita, Y.

Y. Morita, Y. Tsuji, and K. Hirayama, “Proposal for a compact resonant-coupling-type polarization splitter based on photonic crystal waveguide with absolute photonic bandgap,” IEEE Photon. Technol. Lett. 20, 93-95 (2008).
[CrossRef]

O, B. H.

O'Faolain, L.

Ohtera, Y.

Y. Ohtera, T. Sato, T. Kawashima, T. Tamamura, and S. Kawakami, “Photonic crystal polarization splitters,” Electron. Lett. 35, 1271-1272 (1999).
[CrossRef]

Paiam, M. R.

M. R. Paiam, C. F. Janz, R. I. MacDonald, and J. N. Broughton, “Compact planar 980/1550 nm wavelength multi/demultiplexer based on multimode interference,” IEEE Photon. Technol. Lett. 7, 1180-1182 (1995).
[CrossRef]

Park, I.

Park, S. G.

Park, W.

Pennings, E. C. M.

L. B. Soldano and E. C. M. Pennings, “Optical multi-mode interference devices based on self-imaging: principles and applications,” J. Lightwave Technol. 13, 615-627 (1995).
[CrossRef]

Rendina, I.

Sato, T.

Y. Ohtera, T. Sato, T. Kawashima, T. Tamamura, and S. Kawakami, “Photonic crystal polarization splitters,” Electron. Lett. 35, 1271-1272 (1999).
[CrossRef]

Schonbrun, E.

Shi, J. H.

C. Y. Guan, J. H. Shi, and L. B. Yuan, “Photonic crystal polarizing and non-polarizing beam splitters,” Chin. Phys. Lett. 25, 556-558 (2008).
[CrossRef]

Soldano, L. B.

L. B. Soldano and E. C. M. Pennings, “Optical multi-mode interference devices based on self-imaging: principles and applications,” J. Lightwave Technol. 13, 615-627 (1995).
[CrossRef]

Solli, D. R.

D. R. Solli, C. F. McCormick, R. Y. Chiao, and J. M. Hickmann, “Photonic crystal polarizers and polarizing beam splitters,” J. Appl. Phys. 93, 9429-9431 (2003).
[CrossRef]

Summers, C. J.

Taillaert, D.

D. Taillaert, H. Chong, P. I. Borel, L. H. Frandsen, R. M. De La Rue, and R. Baets, “A compact two-dimensional grating coupler used as a polarization splitter,” IEEE Photon. Technol. Lett. 15, 1249-1251 (2003).
[CrossRef]

Tamamura, T.

Y. Ohtera, T. Sato, T. Kawashima, T. Tamamura, and S. Kawakami, “Photonic crystal polarization splitters,” Electron. Lett. 35, 1271-1272 (1999).
[CrossRef]

Tsai, C. W.

C. C. Chiang, C. W. Tsai, and S. L. Tsao, “Design and simulation of a novel 32×32 photonic bandgap power switch based on SOI waveguide,” Opt. Commun. 278, 42-47 (2007).
[CrossRef]

Tsai, T. Y.

T. Y. Tsai, Z. C. Lee, J. R. Chen, C. C. Chen, Y. C. Fang, and M. H. Cha, “A novel ultra compact two-mode-interference wavelength division multiplexer for 1.5 μm operation,” IEEE J. Quantum Electron. 41, 741-746 (2005).
[CrossRef]

Tsao, S. L.

C. C. Chiang, C. W. Tsai, and S. L. Tsao, “Design and simulation of a novel 32×32 photonic bandgap power switch based on SOI waveguide,” Opt. Commun. 278, 42-47 (2007).
[CrossRef]

Tsuji, Y.

Y. Morita, Y. Tsuji, and K. Hirayama, “Proposal for a compact resonant-coupling-type polarization splitter based on photonic crystal waveguide with absolute photonic bandgap,” IEEE Photon. Technol. Lett. 20, 93-95 (2008).
[CrossRef]

Ulrich, R.

R. Ulrich, “Light-propagation and imaging in planar optical waveguides,” Nouv. Rev. Optique 6, 253-262 (1975).
[CrossRef]

R. Ulrich and G. Ankele, “Self-imaging in homogeneous planar optical waveguides,” Appl. Phys. Lett. 27, 337-339 (1975).
[CrossRef]

Wang, W. S.

P. K. Wei and W. S. Wang, “A TE-TM mode splitter on lithium niobate using Ti, Ni, and MgO diffusions,” IEEE Photon. Technol. Lett. 6, 245-248 (1994).
[CrossRef]

Wei, P. K.

P. K. Wei and W. S. Wang, “A TE-TM mode splitter on lithium niobate using Ti, Ni, and MgO diffusions,” IEEE Photon. Technol. Lett. 6, 245-248 (1994).
[CrossRef]

Wu, Q.

Yablonovitch, E.

E. Yablonovitch, “Inhibited spontaneous emission in solid-state physics and electronics,” Phys. Rev. Lett. 58, 2059-2062(1987).
[CrossRef] [PubMed]

Yamashita, T.

Yuan, L. B.

C. Y. Guan, J. H. Shi, and L. B. Yuan, “Photonic crystal polarizing and non-polarizing beam splitters,” Chin. Phys. Lett. 25, 556-558 (2008).
[CrossRef]

Zabelin, V.

Zakharian, A. R.

T. Liu, A. R. Zakharian, M. Fallahi, J. V. Moloney, and M. Mansuripur, “Design of a compact photonic-crystal-based polarizing beam splitter,” IEEE Photon. Technol. Lett. 17, 1435-1437 (2005).
[CrossRef]

T. Liu, A. R. Zakharian, M. Fallahi, J. V. Moloney, and M. Mansuripur, “Multimode interference-based photonic crystal waveguide power splitter,” J. Lightwave Technol. 22, 2842-2846 (2004).
[CrossRef]

Zhang, Y.

Zheng, Z. R.

Zhu, N.

N. Zhu, D. Dai, and S. He, “A hybrid modeling for the theoretical analysis of reflections in a multimode-interference coupler based on silicon-on-insulator nanowires,” Opt. Commun. 281, 3099-3104 (2008).
[CrossRef]

Appl. Opt. (1)

Appl. Phys. Lett. (1)

R. Ulrich and G. Ankele, “Self-imaging in homogeneous planar optical waveguides,” Appl. Phys. Lett. 27, 337-339 (1975).
[CrossRef]

Chin. Phys. Lett. (1)

C. Y. Guan, J. H. Shi, and L. B. Yuan, “Photonic crystal polarizing and non-polarizing beam splitters,” Chin. Phys. Lett. 25, 556-558 (2008).
[CrossRef]

Electron. Lett. (1)

Y. Ohtera, T. Sato, T. Kawashima, T. Tamamura, and S. Kawakami, “Photonic crystal polarization splitters,” Electron. Lett. 35, 1271-1272 (1999).
[CrossRef]

IEEE J. Quantum Electron. (1)

T. Y. Tsai, Z. C. Lee, J. R. Chen, C. C. Chen, Y. C. Fang, and M. H. Cha, “A novel ultra compact two-mode-interference wavelength division multiplexer for 1.5 μm operation,” IEEE J. Quantum Electron. 41, 741-746 (2005).
[CrossRef]

IEEE Photon. Technol. Lett. (5)

P. K. Wei and W. S. Wang, “A TE-TM mode splitter on lithium niobate using Ti, Ni, and MgO diffusions,” IEEE Photon. Technol. Lett. 6, 245-248 (1994).
[CrossRef]

M. R. Paiam, C. F. Janz, R. I. MacDonald, and J. N. Broughton, “Compact planar 980/1550 nm wavelength multi/demultiplexer based on multimode interference,” IEEE Photon. Technol. Lett. 7, 1180-1182 (1995).
[CrossRef]

D. Taillaert, H. Chong, P. I. Borel, L. H. Frandsen, R. M. De La Rue, and R. Baets, “A compact two-dimensional grating coupler used as a polarization splitter,” IEEE Photon. Technol. Lett. 15, 1249-1251 (2003).
[CrossRef]

Y. Morita, Y. Tsuji, and K. Hirayama, “Proposal for a compact resonant-coupling-type polarization splitter based on photonic crystal waveguide with absolute photonic bandgap,” IEEE Photon. Technol. Lett. 20, 93-95 (2008).
[CrossRef]

T. Liu, A. R. Zakharian, M. Fallahi, J. V. Moloney, and M. Mansuripur, “Design of a compact photonic-crystal-based polarizing beam splitter,” IEEE Photon. Technol. Lett. 17, 1435-1437 (2005).
[CrossRef]

J. Appl. Phys. (1)

D. R. Solli, C. F. McCormick, R. Y. Chiao, and J. M. Hickmann, “Photonic crystal polarizers and polarizing beam splitters,” J. Appl. Phys. 93, 9429-9431 (2003).
[CrossRef]

J. Lightwave Technol. (2)

L. B. Soldano and E. C. M. Pennings, “Optical multi-mode interference devices based on self-imaging: principles and applications,” J. Lightwave Technol. 13, 615-627 (1995).
[CrossRef]

T. Liu, A. R. Zakharian, M. Fallahi, J. V. Moloney, and M. Mansuripur, “Multimode interference-based photonic crystal waveguide power splitter,” J. Lightwave Technol. 22, 2842-2846 (2004).
[CrossRef]

Jpn. J. Appl. Phys. (1)

M. F. Lu and Y. T. Huang, “Design of a photonic crystal taper coupler with different section lengths based on the multimode interference and the mode matching,” Jpn. J. Appl. Phys. 47, 1822-1827 (2008).
[CrossRef]

Nouv. Rev. Optique (1)

R. Ulrich, “Light-propagation and imaging in planar optical waveguides,” Nouv. Rev. Optique 6, 253-262 (1975).
[CrossRef]

Opt. Commun. (3)

N. Zhu, D. Dai, and S. He, “A hybrid modeling for the theoretical analysis of reflections in a multimode-interference coupler based on silicon-on-insulator nanowires,” Opt. Commun. 281, 3099-3104 (2008).
[CrossRef]

X. Jia, S. Luo, and X. Cheng, “Design and optimization of novel ultra-compact SOI multimode interference optical switch,” Opt. Commun. 281, 1003-1007 (2008).
[CrossRef]

C. C. Chiang, C. W. Tsai, and S. L. Tsao, “Design and simulation of a novel 32×32 photonic bandgap power switch based on SOI waveguide,” Opt. Commun. 278, 42-47 (2007).
[CrossRef]

Opt. Express (5)

Opt. Lett. (2)

Phys. Rev. Lett. (2)

E. Yablonovitch, “Inhibited spontaneous emission in solid-state physics and electronics,” Phys. Rev. Lett. 58, 2059-2062(1987).
[CrossRef] [PubMed]

S. John, “Strong localization of photons in certain disordered dielectric superlattices,” Phys. Rev. Lett. 58, 2486-2489(1987).
[CrossRef] [PubMed]

Trans. Microwave Theory Tech. (1)

D. C. Chang and E. F. Kuester, “A hybrid method for paraxial beam propagation in multimode optical waveguides,” Trans. Microwave Theory Tech. 29, 923-933 (1981).
[CrossRef]

Other (1)

S. M. Liao, “Design and analysis of multimode interference-based photonic crystal polarizing beam splitter,” thesis (National Chiao Tung University, 2008).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1

Schematic structure of a PC PBS based on the MMI effect. The 1 × 2 MMI coupler has one input and two output access ports. W1 PC waveguides act as the access waveguides. A W5 PC waveguide acts as the multimode interference region and its section length is to be designed.

Fig. 2
Fig. 2

(a) TE and (b) TM projected band diagram of the W5 PC waveguide.

Fig. 3
Fig. 3

Steady-state electric field distributions of the PC PBS designed by the self-imaging principle for (a) a TE, and (b) a TM wave.

Fig. 4
Fig. 4

Open-ended W5 PC waveguide to be studied. The optical powers within the upper- (Channel 1) and lower- (Channel 2) half portions of the open-ended W5 PC waveguide are measured by Monitors A and B, respectively.

Fig. 5
Fig. 5

Transmissions of a TE wave measured by Monitor A (solid curve) and Monitor B (dashed curve) under different positions within the W5 PC waveguide. The first peaks of transmission along Channel 2 and Channel 1 happen at about 44 a and 88 a , respectively.

Fig. 6
Fig. 6

Transmissions of TM wave measured by Monitor A (solid curve) and Monitor B (dashed curve) under different positions within the W5 PC waveguide.

Fig. 7
Fig. 7

Normalized field profiles of the (a) W1 and (b) W5 PC waveguides.

Fig. 8
Fig. 8

(a) Power profile of all TM modes within the W5 PC waveguide. (b) Field superposition of all modes along the z axis at y = 2 a . (c) Power profile of a TM wave at z = 6 a .

Fig. 9
Fig. 9

Transmissions of TM wave measured by Monitor B (dashed curve) in Fig. 6 and TE wave measured by Monitor A (solid curve) in Fig. 5 under different positions within the W5 PC waveguide. It can be seen that both transmissions at Channel 1 for TE wave and at Channel 2 for TM wave are high at 6 a .

Fig. 10
Fig. 10

Structure of the ultracompact PC PBS. The length of the MMI region is only 7 a . The TE wave is routed to the upper output port (Port 1) and the TM wave to the lower output port (Port 2).

Fig. 11
Fig. 11

Steady-state electric field distributions of the compact PC PBS for (a) TE and (b) TM waves.

Tables (4)

Tables Icon

Table 1 Parameters Used to Calculate the Locations of Images of the W5 Photonic Crystal Waveguide for a Transverse-Electric Wave at 0.444 ( a / λ )

Tables Icon

Table 2 Parameters Used to Calculate the Locations of Images of the W5 Photonic Crystal Waveguide for a Transverse-Magnetic Wave at 0.444 ( a / λ )

Tables Icon

Table 3 Transmissions, Bending Losses, and Extinction Ratios of the PC PBS

Tables Icon

Table 4 Transmissions, Bending Losses, and Extinction Ratios of the Compact PC PBS

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

Ψ ( y , 0 ) = n = 0 p 1 c n φ n ( y ) ,
c n = Ψ ( y , 0 ) φ n ( y ) d y φ n 2 ( y ) d y .
Ψ ( y , z ) = n = 0 p 1 c n φ n ( y ) exp [ j ( β 0 β n ) z ] .
( β 0 β n ) L d = 2 p n π , with   p n = 1 , 2 , 3 , ,
Ψ ( y , L d ) = Ψ ( y , 0 ) .
( β 0 β n ) L m = 2 q n π for even modes, and ( β 0 β n ) L m = ( 2 q n 1 ) π for odd modes, with     q n = 1 , 2 , 3 , .
Ψ ( y , L m ) = Ψ ( y , 0 ) .
Ψ ( y , z ) = n = 0 3 c n φ n ( y ) exp [ j β n z ] = 0.2452 × φ 0 × exp [ j 2 π × 0.431 z ] 0.4797 × φ 1 × exp [ j 2 π × 0.402 z ] 0.5740 × φ 2 × exp [ j 2 π × 0.341 z ] + 0.6167 × φ 3 × exp [ j 2 π × 0.213 z ] .

Metrics