Abstract

Spatial acquisition is essential for the establishment of atmospheric optical links. The detection probability in the acquisition process can be degraded by atmospheric-turbulence-induced scintillation. We present an aperture-array acquisition scheme to suppress this scintillation noise. The aperture array is composed of N receiving elements, each containing an aperture to receive the optical signal, an optical filter to reject the background radiation, and a charge-coupled device (CCD) to detect the optical signal. The mathematical model of the long-term average detection probability (LTADP) for the aperture-array acquisition is derived based on the lognormal distribution in turbulent atmosphere, when the CCD sample time is shorter than scintillation characteristic time. In this case, the average signal count and the detection probability in the CCD sample time are both random variables; therefore, the probability density of the average signal count needs to be considered and the LTADP can be calculated based on this probability density. The simulation results show that this aperture-array acquisition scheme can suppress scintillation effectively and enhance the LTADP when the one-aperture signal-to-noise ratio is fixed.

© 2010 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. M. Gagliardi and S. Karp, Optical Communications, 2nd ed. (Wiley, 1995).
  2. O. Wilfert, H. Henniger, and Z. Kolka, “Optical communication in free space,” Proc. SPIE 7141, 714102 (2008).
    [CrossRef]
  3. K. Wakamori, K. Kazaura, and M. Matsumoto, “Research and development of a next-generation free-space optical communication system,” Proc. SPIE 7234, 723404 (2009).
    [CrossRef]
  4. R. Luna, D. K. Borah, R. Jonnalagadda, and D. G. Voelz, “Experimental demonstration of a hybrid link for mitigating atmospheric turbulence effects in free-space optical communication,” IEEE Photon. Technol. Lett. 21, 1196-1199 (2009).
    [CrossRef]
  5. M. Reyes, S. Chueca, A. Alonso, T. Viera, and Z. Sodnik, “Analysis of the preliminary optical links between ARTEMIS and the optical ground station,” Proc. SPIE 4821, 33-43 (2002).
    [CrossRef]
  6. L. C. Andrews, R. L. Phillips, and C. Y. Hopen, Laser Beam Scintillation with Applications (SPIE2001)
    [CrossRef]
  7. R. L. Fante, “Electromagnetic beam propagation in turbulent media,” Proc. IEEE 63, 1669-1692 (1975).
    [CrossRef]
  8. L. C. Andrews, R. L. Phillips, C. Y. Hopen, and M. A. Al-Habash, “Theory of optical scintillation,” J. Opt. Soc. Am. A 16, 1417-1429 ( 1999).
    [CrossRef]
  9. J. H. Churnside and R. J. Hill, “Probability density irradiance scintillations for strong path-integrated refractive turbulence,” J. Opt. Soc. Am. A 4, 727-733 (1987).
    [CrossRef]
  10. R. J. Hill and R. G. Frehlich, “Probability distribution of irradiance for the onset of strong scintillation,” J. Opt. Soc. Am. A 14, 1530-1540 (1997).
    [CrossRef]
  11. T. Kamalakis, T. Sphicopoulos, S. Sheikh Muhammad, and E. Leitgeb, “Estimation of the power scintillation probability density function in free-space optical links by use of multicanonical Monte Carlo sampling,” Opt. Lett. 31, 3077-3079 (2006).
    [CrossRef] [PubMed]
  12. F. S. Vetelino, C. Young, L. Andrews, and J. Recolons, “Aperture averaging effects on the probability density of irradiance fluctuations in moderate-to-strong turbulence,” Appl. Opt. 46, 2099-2108 (2007).
    [CrossRef] [PubMed]

2009 (2)

K. Wakamori, K. Kazaura, and M. Matsumoto, “Research and development of a next-generation free-space optical communication system,” Proc. SPIE 7234, 723404 (2009).
[CrossRef]

R. Luna, D. K. Borah, R. Jonnalagadda, and D. G. Voelz, “Experimental demonstration of a hybrid link for mitigating atmospheric turbulence effects in free-space optical communication,” IEEE Photon. Technol. Lett. 21, 1196-1199 (2009).
[CrossRef]

2008 (1)

O. Wilfert, H. Henniger, and Z. Kolka, “Optical communication in free space,” Proc. SPIE 7141, 714102 (2008).
[CrossRef]

2007 (1)

2006 (1)

2002 (1)

M. Reyes, S. Chueca, A. Alonso, T. Viera, and Z. Sodnik, “Analysis of the preliminary optical links between ARTEMIS and the optical ground station,” Proc. SPIE 4821, 33-43 (2002).
[CrossRef]

1997 (1)

1987 (1)

1975 (1)

R. L. Fante, “Electromagnetic beam propagation in turbulent media,” Proc. IEEE 63, 1669-1692 (1975).
[CrossRef]

Al-Habash, M. A.

Alonso, A.

M. Reyes, S. Chueca, A. Alonso, T. Viera, and Z. Sodnik, “Analysis of the preliminary optical links between ARTEMIS and the optical ground station,” Proc. SPIE 4821, 33-43 (2002).
[CrossRef]

Andrews, L.

Andrews, L. C.

Borah, D. K.

R. Luna, D. K. Borah, R. Jonnalagadda, and D. G. Voelz, “Experimental demonstration of a hybrid link for mitigating atmospheric turbulence effects in free-space optical communication,” IEEE Photon. Technol. Lett. 21, 1196-1199 (2009).
[CrossRef]

Chueca, S.

M. Reyes, S. Chueca, A. Alonso, T. Viera, and Z. Sodnik, “Analysis of the preliminary optical links between ARTEMIS and the optical ground station,” Proc. SPIE 4821, 33-43 (2002).
[CrossRef]

Churnside, J. H.

Fante, R. L.

R. L. Fante, “Electromagnetic beam propagation in turbulent media,” Proc. IEEE 63, 1669-1692 (1975).
[CrossRef]

Frehlich, R. G.

Gagliardi, R. M.

R. M. Gagliardi and S. Karp, Optical Communications, 2nd ed. (Wiley, 1995).

Henniger, H.

O. Wilfert, H. Henniger, and Z. Kolka, “Optical communication in free space,” Proc. SPIE 7141, 714102 (2008).
[CrossRef]

Hill, R. J.

Hopen, C. Y.

Jonnalagadda, R.

R. Luna, D. K. Borah, R. Jonnalagadda, and D. G. Voelz, “Experimental demonstration of a hybrid link for mitigating atmospheric turbulence effects in free-space optical communication,” IEEE Photon. Technol. Lett. 21, 1196-1199 (2009).
[CrossRef]

Kamalakis, T.

Karp, S.

R. M. Gagliardi and S. Karp, Optical Communications, 2nd ed. (Wiley, 1995).

Kazaura, K.

K. Wakamori, K. Kazaura, and M. Matsumoto, “Research and development of a next-generation free-space optical communication system,” Proc. SPIE 7234, 723404 (2009).
[CrossRef]

Kolka, Z.

O. Wilfert, H. Henniger, and Z. Kolka, “Optical communication in free space,” Proc. SPIE 7141, 714102 (2008).
[CrossRef]

Leitgeb, E.

Luna, R.

R. Luna, D. K. Borah, R. Jonnalagadda, and D. G. Voelz, “Experimental demonstration of a hybrid link for mitigating atmospheric turbulence effects in free-space optical communication,” IEEE Photon. Technol. Lett. 21, 1196-1199 (2009).
[CrossRef]

Matsumoto, M.

K. Wakamori, K. Kazaura, and M. Matsumoto, “Research and development of a next-generation free-space optical communication system,” Proc. SPIE 7234, 723404 (2009).
[CrossRef]

Phillips, R. L.

Recolons, J.

Reyes, M.

M. Reyes, S. Chueca, A. Alonso, T. Viera, and Z. Sodnik, “Analysis of the preliminary optical links between ARTEMIS and the optical ground station,” Proc. SPIE 4821, 33-43 (2002).
[CrossRef]

Sheikh Muhammad, S.

Sodnik, Z.

M. Reyes, S. Chueca, A. Alonso, T. Viera, and Z. Sodnik, “Analysis of the preliminary optical links between ARTEMIS and the optical ground station,” Proc. SPIE 4821, 33-43 (2002).
[CrossRef]

Sphicopoulos, T.

Vetelino, F. S.

Viera, T.

M. Reyes, S. Chueca, A. Alonso, T. Viera, and Z. Sodnik, “Analysis of the preliminary optical links between ARTEMIS and the optical ground station,” Proc. SPIE 4821, 33-43 (2002).
[CrossRef]

Voelz, D. G.

R. Luna, D. K. Borah, R. Jonnalagadda, and D. G. Voelz, “Experimental demonstration of a hybrid link for mitigating atmospheric turbulence effects in free-space optical communication,” IEEE Photon. Technol. Lett. 21, 1196-1199 (2009).
[CrossRef]

Wakamori, K.

K. Wakamori, K. Kazaura, and M. Matsumoto, “Research and development of a next-generation free-space optical communication system,” Proc. SPIE 7234, 723404 (2009).
[CrossRef]

Wilfert, O.

O. Wilfert, H. Henniger, and Z. Kolka, “Optical communication in free space,” Proc. SPIE 7141, 714102 (2008).
[CrossRef]

Young, C.

Appl. Opt. (1)

IEEE Photon. Technol. Lett. (1)

R. Luna, D. K. Borah, R. Jonnalagadda, and D. G. Voelz, “Experimental demonstration of a hybrid link for mitigating atmospheric turbulence effects in free-space optical communication,” IEEE Photon. Technol. Lett. 21, 1196-1199 (2009).
[CrossRef]

J. Opt. Soc. Am. A (3)

Opt. Lett. (1)

Proc. IEEE (1)

R. L. Fante, “Electromagnetic beam propagation in turbulent media,” Proc. IEEE 63, 1669-1692 (1975).
[CrossRef]

Proc. SPIE (3)

M. Reyes, S. Chueca, A. Alonso, T. Viera, and Z. Sodnik, “Analysis of the preliminary optical links between ARTEMIS and the optical ground station,” Proc. SPIE 4821, 33-43 (2002).
[CrossRef]

O. Wilfert, H. Henniger, and Z. Kolka, “Optical communication in free space,” Proc. SPIE 7141, 714102 (2008).
[CrossRef]

K. Wakamori, K. Kazaura, and M. Matsumoto, “Research and development of a next-generation free-space optical communication system,” Proc. SPIE 7234, 723404 (2009).
[CrossRef]

Other (2)

L. C. Andrews, R. L. Phillips, and C. Y. Hopen, Laser Beam Scintillation with Applications (SPIE2001)
[CrossRef]

R. M. Gagliardi and S. Karp, Optical Communications, 2nd ed. (Wiley, 1995).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Configuration of the aperture-array acquisition scheme.

Fig. 2
Fig. 2

LTADP versus one-aperture SNR at different element numbers of N = 1 (one-aperture case), N = 2 , and N = 3 for the aperture-array acquisition. The relevant parameters are set as σ ln 2 = 0.3 and TBNR = 5 .

Fig. 3
Fig. 3

Required one-aperture SNR for achieving a certain LTADP (95%, 97%, and 99%) versus the scintillation parameter σ ln 2 for the case of (a)  N = 1 (one-aperture case), (b)  N = 2 , and (c)  N = 3 . The normalized TBNR = 5 .

Fig. 4
Fig. 4

Required one-aperture SNR for achieving a certain LTADP (95%, 97%, and 99%) versus the normalized TBNR for the cases of (a)  N = 1 (one-aperture case), (b)  N = 2 , and (c)  N = 3 . The scintillation parameter is set as σ ln 2 = 0.3 .

Fig. 5
Fig. 5

The false-alarm probability P f versus the normalized TBNR.

Equations (11)

Equations on this page are rendered with MathJax. Learn more.

K = i = 1 N K i = i = 1 N ( K s i + K b i ) = i = 1 N K s i + i = 1 N K b i = K s + K b ,
f K ( K ) = 1 2 π σ exp [ ( K m s m b ) 2 2 σ 2 ] ,
m s = i = 1 N m s i , m b = i = 1 N m b i , σ 2 = i = 1 N σ i 2 ,
σ i 2 = σ CCD 2 + σ s 2 + σ b 2 .
P d ( m s ) = K t h 1 2 π σ exp [ ( K m s m b ) 2 2 σ 2 ] d K = 1 2 [ 1 + erf ( m s + m b K t h 2 σ ) ] ,
P d = 0 P d ( m s ) f m s ( m s ) d m s ,
f m s ( m s ) = 1 2 π σ ln 2 m s exp { [ ln ( m s / m s ) + σ ln 2 / 2 ] 2 2 σ ln 2 } ,
SNR 1 = m s 1 / σ 1 ,
SNR N = m s / σ = N m s 1 / ( N σ 1 ) = N SNR 1 .
TBNR = ( K t h m b ) / σ .
P f ( TBNR ) = K t h 1 2 π σ exp [ ( K m b ) 2 2 σ 2 ] d K = 1 2 [ 1 erf ( TBNR / 2 ) ] .

Metrics