Abstract

We present a new superheterodyne technique for long-distance measurements by two-wavelength interferometry (TWI). While conventional systems use two acousto-optic modulators to generate two different heterodyne frequencies, here the two frequencies result from synchronized sweeps of optical and radio frequencies. A distributed feedback laser source is injected in an intensity modulator that is driven at the half-wave voltage mode. A radio-frequency signal is applied to this intensity modulator to generate two optical sidebands around the optical carrier. This applied radio frequency consists of a digital ramp between 13 and 15GHz, with 1ms duration and with an accuracy of better than 1ppm. Simultaneously, the laser source is frequency modulated by a current modulation that is synchronized on the radio- frequency ramp as well as on a triangle waveform. These two frequency-swept optical signals at the output of the modulator illuminate a Michelson interferometer and create two distinct distance-dependent heterodyne frequencies on the photodetector. The superheterodyne signal is then detected and bandpass filtered to retrieve the absolute distance measurement. Experiments between 1 and 15m confirm the validity of this new concept, leading to a distance accuracy of ±50μm for a 1ms acquisition time.

© 2010 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. Dändliker, R. Thalmann, and D. Prongué, “Two-wavelength laser interferometry using superheterodyne detection,” Proc. SPIE 813, 9-10 (1987).
  2. R. Dändliker, R. Thalmann, and D. Prongué, “Two-wavelength laser interferometry using superheterodyne detection,” Opt. Lett. 13, 339-341 (1988).
    [CrossRef]
  3. Y. Salvadé, N. Schuler, S. Lévêque, and S. Le Floch, “High-accuracy absolute distance measurements using frequency comb referenced multi-wavelength source,” Appl. Opt. 47, 2715-2720 (2008).
    [CrossRef]
  4. E. Gelmini, U. Minoni, and F. Docchio, “Tunable, double-wavelength heterodyne detection interferometer for absolute distance measurement,” J. Opt. 29, 179-182 (1998).
    [CrossRef]
  5. S. Le Floch and Y. Salvadé, “Radio-frequency controlled synthetic wavelength sweep for absolute distance measurement by optical interferometry,” Appl. Opt. 47, 3027-3031 (2008).
    [CrossRef]
  6. Z. Sodnik, E. Fischer, T. Ittner, and H. Tiziani, “Two-wavelength double heterodyne interferometry using a matched grating technique,” Appl. Opt. 30, 3139-3144 (1991).
    [CrossRef]
  7. P. de Groot and J. McGarvey, “Method and apparatus for use in measuring frequency difference between light signals,” U.S. patent 5,493,394 (1996).
  8. A. Hilt, “Microwave harmonic generation in fiber-optical links,” J. Telecomm. Inf. Technol. 1, 22-28 (2002).
  9. O. P. Lay, S. Dubovitski, R. D. Peters, and J. P. Burger, “MSTAR: a submicrometer absolute metrology system,” Opt. Lett. 28, 890-892 (2003).
    [CrossRef]
  10. H. Shalom, A. Zadok, M. Tur, P. Legg, W. D. Cornwell, and I. Andonovic, “On the various time constants of wavelength changes of a DFB laser under direct modulation,” IEEE J. Quantum Electron. 34, 1816-1822 (1998).
    [CrossRef]
  11. J. Ye, “Absolute measurement of a long, arbitrary distance to less than an optical fringe,” Opt. Lett. 29, 1153 (2004).
    [CrossRef]
  12. M. Cui, S. A. van der Berg, J. J. M. Braat, and N. Bhattacharya, “Absolute distance measurement using a frequency comb,” European Optical Society Annual Meeting 2006, M. N. Armenise, ed. (European Optical Society, 2006), pp. 70-71.
  13. K. P. Birch and M. J. Downs, “Correction to the updated Edlen equation for the refractive index of air,” Metrologia 31, 315-316 (1994).
    [CrossRef]
  14. R. Dändliker and Y. Salvadé, “Multiple wavelength interferometry for absolute distance measurement,” in International Trends in Optics and Photonics-ICO IV, T. Asakura, ed., Vol. 74 of Springer Series in Optical Sciences (Springer, 1999), pp. 294-317.

2008 (2)

2004 (1)

2003 (1)

2002 (1)

A. Hilt, “Microwave harmonic generation in fiber-optical links,” J. Telecomm. Inf. Technol. 1, 22-28 (2002).

1998 (2)

H. Shalom, A. Zadok, M. Tur, P. Legg, W. D. Cornwell, and I. Andonovic, “On the various time constants of wavelength changes of a DFB laser under direct modulation,” IEEE J. Quantum Electron. 34, 1816-1822 (1998).
[CrossRef]

E. Gelmini, U. Minoni, and F. Docchio, “Tunable, double-wavelength heterodyne detection interferometer for absolute distance measurement,” J. Opt. 29, 179-182 (1998).
[CrossRef]

1994 (1)

K. P. Birch and M. J. Downs, “Correction to the updated Edlen equation for the refractive index of air,” Metrologia 31, 315-316 (1994).
[CrossRef]

1991 (1)

1988 (1)

1987 (1)

R. Dändliker, R. Thalmann, and D. Prongué, “Two-wavelength laser interferometry using superheterodyne detection,” Proc. SPIE 813, 9-10 (1987).

Andonovic, I.

H. Shalom, A. Zadok, M. Tur, P. Legg, W. D. Cornwell, and I. Andonovic, “On the various time constants of wavelength changes of a DFB laser under direct modulation,” IEEE J. Quantum Electron. 34, 1816-1822 (1998).
[CrossRef]

Bhattacharya, N.

M. Cui, S. A. van der Berg, J. J. M. Braat, and N. Bhattacharya, “Absolute distance measurement using a frequency comb,” European Optical Society Annual Meeting 2006, M. N. Armenise, ed. (European Optical Society, 2006), pp. 70-71.

Birch, K. P.

K. P. Birch and M. J. Downs, “Correction to the updated Edlen equation for the refractive index of air,” Metrologia 31, 315-316 (1994).
[CrossRef]

Braat, J. J. M.

M. Cui, S. A. van der Berg, J. J. M. Braat, and N. Bhattacharya, “Absolute distance measurement using a frequency comb,” European Optical Society Annual Meeting 2006, M. N. Armenise, ed. (European Optical Society, 2006), pp. 70-71.

Burger, J. P.

Cornwell, W. D.

H. Shalom, A. Zadok, M. Tur, P. Legg, W. D. Cornwell, and I. Andonovic, “On the various time constants of wavelength changes of a DFB laser under direct modulation,” IEEE J. Quantum Electron. 34, 1816-1822 (1998).
[CrossRef]

Cui, M.

M. Cui, S. A. van der Berg, J. J. M. Braat, and N. Bhattacharya, “Absolute distance measurement using a frequency comb,” European Optical Society Annual Meeting 2006, M. N. Armenise, ed. (European Optical Society, 2006), pp. 70-71.

Dändliker, R.

R. Dändliker, R. Thalmann, and D. Prongué, “Two-wavelength laser interferometry using superheterodyne detection,” Opt. Lett. 13, 339-341 (1988).
[CrossRef]

R. Dändliker, R. Thalmann, and D. Prongué, “Two-wavelength laser interferometry using superheterodyne detection,” Proc. SPIE 813, 9-10 (1987).

R. Dändliker and Y. Salvadé, “Multiple wavelength interferometry for absolute distance measurement,” in International Trends in Optics and Photonics-ICO IV, T. Asakura, ed., Vol. 74 of Springer Series in Optical Sciences (Springer, 1999), pp. 294-317.

de Groot, P.

P. de Groot and J. McGarvey, “Method and apparatus for use in measuring frequency difference between light signals,” U.S. patent 5,493,394 (1996).

Docchio, F.

E. Gelmini, U. Minoni, and F. Docchio, “Tunable, double-wavelength heterodyne detection interferometer for absolute distance measurement,” J. Opt. 29, 179-182 (1998).
[CrossRef]

Downs, M. J.

K. P. Birch and M. J. Downs, “Correction to the updated Edlen equation for the refractive index of air,” Metrologia 31, 315-316 (1994).
[CrossRef]

Dubovitski, S.

Fischer, E.

Gelmini, E.

E. Gelmini, U. Minoni, and F. Docchio, “Tunable, double-wavelength heterodyne detection interferometer for absolute distance measurement,” J. Opt. 29, 179-182 (1998).
[CrossRef]

Hilt, A.

A. Hilt, “Microwave harmonic generation in fiber-optical links,” J. Telecomm. Inf. Technol. 1, 22-28 (2002).

Ittner, T.

Lay, O. P.

Le Floch, S.

Legg, P.

H. Shalom, A. Zadok, M. Tur, P. Legg, W. D. Cornwell, and I. Andonovic, “On the various time constants of wavelength changes of a DFB laser under direct modulation,” IEEE J. Quantum Electron. 34, 1816-1822 (1998).
[CrossRef]

Lévêque, S.

McGarvey, J.

P. de Groot and J. McGarvey, “Method and apparatus for use in measuring frequency difference between light signals,” U.S. patent 5,493,394 (1996).

Minoni, U.

E. Gelmini, U. Minoni, and F. Docchio, “Tunable, double-wavelength heterodyne detection interferometer for absolute distance measurement,” J. Opt. 29, 179-182 (1998).
[CrossRef]

Peters, R. D.

Prongué, D.

R. Dändliker, R. Thalmann, and D. Prongué, “Two-wavelength laser interferometry using superheterodyne detection,” Opt. Lett. 13, 339-341 (1988).
[CrossRef]

R. Dändliker, R. Thalmann, and D. Prongué, “Two-wavelength laser interferometry using superheterodyne detection,” Proc. SPIE 813, 9-10 (1987).

Salvadé, Y.

Schuler, N.

Shalom, H.

H. Shalom, A. Zadok, M. Tur, P. Legg, W. D. Cornwell, and I. Andonovic, “On the various time constants of wavelength changes of a DFB laser under direct modulation,” IEEE J. Quantum Electron. 34, 1816-1822 (1998).
[CrossRef]

Sodnik, Z.

Thalmann, R.

R. Dändliker, R. Thalmann, and D. Prongué, “Two-wavelength laser interferometry using superheterodyne detection,” Opt. Lett. 13, 339-341 (1988).
[CrossRef]

R. Dändliker, R. Thalmann, and D. Prongué, “Two-wavelength laser interferometry using superheterodyne detection,” Proc. SPIE 813, 9-10 (1987).

Tiziani, H.

Tur, M.

H. Shalom, A. Zadok, M. Tur, P. Legg, W. D. Cornwell, and I. Andonovic, “On the various time constants of wavelength changes of a DFB laser under direct modulation,” IEEE J. Quantum Electron. 34, 1816-1822 (1998).
[CrossRef]

van der Berg, S. A.

M. Cui, S. A. van der Berg, J. J. M. Braat, and N. Bhattacharya, “Absolute distance measurement using a frequency comb,” European Optical Society Annual Meeting 2006, M. N. Armenise, ed. (European Optical Society, 2006), pp. 70-71.

Ye, J.

Zadok, A.

H. Shalom, A. Zadok, M. Tur, P. Legg, W. D. Cornwell, and I. Andonovic, “On the various time constants of wavelength changes of a DFB laser under direct modulation,” IEEE J. Quantum Electron. 34, 1816-1822 (1998).
[CrossRef]

Appl. Opt. (3)

IEEE J. Quantum Electron. (1)

H. Shalom, A. Zadok, M. Tur, P. Legg, W. D. Cornwell, and I. Andonovic, “On the various time constants of wavelength changes of a DFB laser under direct modulation,” IEEE J. Quantum Electron. 34, 1816-1822 (1998).
[CrossRef]

J. Opt. (1)

E. Gelmini, U. Minoni, and F. Docchio, “Tunable, double-wavelength heterodyne detection interferometer for absolute distance measurement,” J. Opt. 29, 179-182 (1998).
[CrossRef]

J. Telecomm. Inf. Technol. (1)

A. Hilt, “Microwave harmonic generation in fiber-optical links,” J. Telecomm. Inf. Technol. 1, 22-28 (2002).

Metrologia (1)

K. P. Birch and M. J. Downs, “Correction to the updated Edlen equation for the refractive index of air,” Metrologia 31, 315-316 (1994).
[CrossRef]

Opt. Lett. (3)

Proc. SPIE (1)

R. Dändliker, R. Thalmann, and D. Prongué, “Two-wavelength laser interferometry using superheterodyne detection,” Proc. SPIE 813, 9-10 (1987).

Other (3)

P. de Groot and J. McGarvey, “Method and apparatus for use in measuring frequency difference between light signals,” U.S. patent 5,493,394 (1996).

M. Cui, S. A. van der Berg, J. J. M. Braat, and N. Bhattacharya, “Absolute distance measurement using a frequency comb,” European Optical Society Annual Meeting 2006, M. N. Armenise, ed. (European Optical Society, 2006), pp. 70-71.

R. Dändliker and Y. Salvadé, “Multiple wavelength interferometry for absolute distance measurement,” in International Trends in Optics and Photonics-ICO IV, T. Asakura, ed., Vol. 74 of Springer Series in Optical Sciences (Springer, 1999), pp. 294-317.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Generation of heterodyne frequencies for TWI. DFB, distributed feedback laser source; PC, polarization controller.

Fig. 2
Fig. 2

Schematic representation of the two wavelengths at the output of the intensity modulator as a function of time.

Fig. 3
Fig. 3

Nonpolarized interferometric setup. CC, corner cube; BS, beam splitter; D, dichroic plate.

Fig. 4
Fig. 4

Schematic representation of the distance measurement strategy. HP, high-pass filter; BP, bandpass filter.

Fig. 5
Fig. 5

Absolute distance measurements with the new setup compared to the reference interferometer (1 to 8 m ).

Fig. 6
Fig. 6

Absolute distance measurements with the new setup compared to the reference interferometer (8 to 16 m ).

Tables (2)

Tables Icon

Table 1 Principle of Two-Wavelength Interferometry

Tables Icon

Table 2 Heterodyne Frequencies Versus Geometric Path Difference a

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

I ( t ) = A 1 cos ( 2 π f 1 t + ϕ 1 ) + A 2 cos ( 2 π f 2 t + ϕ 2 ) ,
Δ ϕ = ϕ 2 ϕ 1 = 4 π n L Λ = 4 π n L c Δ ν .
{ ϕ 1 ( t ) = 4 π n L c ν 1 ( t ) = 4 π n L ν 10 c + 4 π n L c T [ Δ ν L δ ν RF ] t ϕ 2 ( t ) = 4 π n L c ν 2 ( t ) = 4 π n L ν 20 c + 4 π n L c T [ Δ ν L + δ ν RF ] t ,
{ f 1 = 1 2 π . ϕ 1 ( t ) t = 2 n L c T [ Δ ν L + δ ν RF ] f 2 = 1 2 π . ϕ 2 ( t ) t = 2 n L c T [ Δ ν L δ ν RF ] ,
f 1 f 2 = 4 n L c T δ ν RF .

Metrics