Abstract

This article reports the design and implementation of a lateral resolution-enhancement technique in confocal microscopy that can work, in principle, either in the reflection mode or in the fluorescence mode. Taking the difference between two images corresponding to two different vectorially (involving amplitude, phase, and polarization of light) engineered illumination pupils or apertures of a confocal microscope, high spatial frequency contents in the resultant image can be significantly enhanced. This can be realized by incorporating an extra vectorial beam-forming element into the illumination beam path of a conventional confocal microscope. The method of the proposed technique has been explained by giving it an analytical treatment supported by numerical simulation results. The technique has been implemented in a reflection mode confocal microscope and results obtained are presented.

© 2010 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. A. A. Neil, R. Juskaitis, and T. Wilson, “Method of obtaining optical sectioning by using structured light in a conventional microscope,” Opt. Lett. 22, 1905-1907 (1997).
    [CrossRef]
  2. M. Gustafsson, “Surpassing the lateral resolution limit by a factor of two using structured illumination microscopy,” J. Microsc. 198, 82-87 (2000).
    [CrossRef] [PubMed]
  3. R. Heintzmann, T. Jovin, and C. Cremer, “Saturated patterned excitation microscopy--a concept for optical resolution improvement,” J. Opt. Soc. Am. A 19, 1599-1609 (2002).
    [CrossRef]
  4. M. Rust, M. Bates, and X. Zhuang, “Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM),” Nat. Meth. 3, 793-796 (2006).
    [CrossRef]
  5. E. Betzig, G. Patterson, R. Sougrat, O. Lindwasser, S. Olenych, J. Bonifacino, M. Davidson, J. Lippincott-Schwartz, and H. Hess, “Imaging intracellular fluorescent proteins at nanometer resolution,” Science 313, 1642-1645 (2006).
    [CrossRef] [PubMed]
  6. T. Wilson, ed., Confocal Microscopy (Academic, 1990).
  7. J. E. Pawley, ed., Handbook of Biological Confocal Microscopy (Springer, 2006).
    [CrossRef]
  8. S. W. Hell and J. Wichmann, “Breaking the diffraction resolution limit by stimulated emission: stimulated-emission-depletion fluorescence microscopy,” Opt. Lett. 19, 780-782 (1994).
    [CrossRef] [PubMed]
  9. S. W. Hell, “Far-field optical nanoscopy,” Science 316, 1153-1158 (2007).
    [CrossRef] [PubMed]
  10. M. Dyba and S. W. Hell, “Focal spots of size λ/23 open up far-field fluorescence microscopy at 33 nm axial resolution,” Phys. Rev. Lett. 88, 163901 (2002).
    [CrossRef] [PubMed]
  11. J. Baumgartl, R. P. A. Dullens, M. Dijkstra, R. Roth, and C. Bechinger, “Experimental observation of structural crossover in binary mixtures of colloidal hard spheres,” Phys. Rev. Lett. 98, 198303 (2007).
    [CrossRef] [PubMed]
  12. O. Tikhomirov, H. Jiang, and J. Levy, “Local ferroelectricity in SrTiO3 thin films,” Phys. Rev. Lett. 89, 147601 (2002).
    [CrossRef] [PubMed]
  13. K. Velikov, W. Vos, A. Moroz, and A. van Blaaderen, “Reflectivity of metallodielectric photonic glasses,” Phys. Rev. B 69, 075108 (2004).
    [CrossRef]
  14. A. Toriumi, S. Kawata, and M. Gu, “Reflection confocal microscope readout system for three-dimensional photochromic optical data storage,” Opt. Lett. 23, 1924-1926 (1998).
    [CrossRef]
  15. S. Nori, F. Rius-Díaz, J. Cuevas, M. Goldgeier, P. Jaen, A. Torres, and S. González, “Sensitivity and specificity of reflectance-mode confocal microscopy for in vivo diagnosis of basal cell carcinoma: a multicenter study,” J. Am. Acad. Dermatol. 51, 923-930 (2004).
    [CrossRef] [PubMed]
  16. G. Pellacani, P. Guitera, C. Longo, M. Avramidis, S. Seidenari, and S. Menzies, “The impact of in vivo reflectance confocal microscopy for the diagnostic accuracy of melanoma and equivocal melanocytic lesions,” J. Invest. Dermatol. 127, 2759-2765 (2007).
    [CrossRef] [PubMed]
  17. M. A. A. Neil, R. Juskaitis, T. Wilson, Z. J. Laczik, and V. Sarafis, “Optimized pupil-plane filters for confocal microscope point-spread function engineering,” Opt. Lett. 25, 245-247(2000).
    [CrossRef]
  18. L. R. Qiu, X. Ding, and J. Liu, “Confocal measurement approach for enhancing lateral resolution using a phase-only pupil,” J. Phys. Conf. Ser. 13, 422-425 (2005).
    [CrossRef]
  19. M. Martinez-Corral, P. Andres, C. J. Zapata-Rodriguez, and M. Kowalczyk, “Three-dimensional superresolution by annular binary filters,” Opt. Commun. 165, 267-278 (1999).
    [CrossRef]
  20. T. Wilson and C. Sheppard, Theory and Practice of Scanning Optical Microscopy (Academic, 1984).
  21. G. Boyer and V. Sarafis, “Two pinhole superresolution using spatial filters,” Optik (Jena) 112, 177-179 (2001).
    [CrossRef]
  22. M. Martinez-Corral, M. Caballero, C. Ibáñez-López, and V. Sarafis, “Optical sectioning by two-pinhole confocal fluorescence microscopy,” Micron 34, 313-318 (2003).
    [CrossRef] [PubMed]
  23. H. Wang, L. Shi, B. Lukyanchuk, C. Sheppard, and C. Chong, “Creation of a needle of longitudinally polarized light in vacuum using binary optics,” Nat. Photon. 2, 501-505(2008).
    [CrossRef]
  24. P. Mondal and A. Diaspro, “Lateral resolution improvement in two-photon excitation microscopy by aperture engineering,” Opt. Commun. 281, 1855-1859 (2008).
    [CrossRef]
  25. O. Haeberlé and B. Simon, “Improving the lateral resolution in confocal fluorescence microscopy using laterally interfering excitation beams,” Opt. Commun. 259, 400-408 (2006).
    [CrossRef]
  26. J. Goodman, Introduction To Fourier Optics (Roberts, 2004).
  27. B. Richards and E. Wolf, “Electromagnetic diffraction in optical systems. ii. Structure of the image field in an aplanatic system,” Proc. R. Soc. London 253, 358-379 (1959).
    [CrossRef]
  28. B. R. Boruah and M. A. A. Neil, “Focal field computation of an arbitrarily polarized beam using fast Fourier transforms,” Opt. Commun. 282, 4660-4667 (2009).
    [CrossRef]
  29. M. A. A. Neil, T. Wilson, and R. Juskaitis, “A wavefront generator for complex pupil function synthesis and point spread function engineering,” J. Microsc. 197, 219-223 (2000).
    [CrossRef] [PubMed]
  30. B. R. Boruah, “Dynamic manipulation of a laser beam using a liquid crystal spatial light modulator,” Am. J. Phys. 77, 331-336 (2009).
    [CrossRef]
  31. B. R. Boruah and M. A. A. Neil, “Laser scanning confocal microscope with programmable amplitude, phase and polarisation of the illumination beam,” Rev. Sci. Instrum. 80, 013705 (2009).
    [CrossRef] [PubMed]
  32. E. Auksorius, B. R. Boruah, C. Dunsby, P. M. P. Lanigan, G. Kennedy, M. A. A. Neil, and P. M. W. French, “Stimulated emission depletion microscopy with a supercontinuum source and fluorescence lifetime imaging,” Opt. Lett. 33, 113-115(2008).
    [CrossRef] [PubMed]

2009 (3)

B. R. Boruah and M. A. A. Neil, “Focal field computation of an arbitrarily polarized beam using fast Fourier transforms,” Opt. Commun. 282, 4660-4667 (2009).
[CrossRef]

B. R. Boruah, “Dynamic manipulation of a laser beam using a liquid crystal spatial light modulator,” Am. J. Phys. 77, 331-336 (2009).
[CrossRef]

B. R. Boruah and M. A. A. Neil, “Laser scanning confocal microscope with programmable amplitude, phase and polarisation of the illumination beam,” Rev. Sci. Instrum. 80, 013705 (2009).
[CrossRef] [PubMed]

2008 (3)

E. Auksorius, B. R. Boruah, C. Dunsby, P. M. P. Lanigan, G. Kennedy, M. A. A. Neil, and P. M. W. French, “Stimulated emission depletion microscopy with a supercontinuum source and fluorescence lifetime imaging,” Opt. Lett. 33, 113-115(2008).
[CrossRef] [PubMed]

H. Wang, L. Shi, B. Lukyanchuk, C. Sheppard, and C. Chong, “Creation of a needle of longitudinally polarized light in vacuum using binary optics,” Nat. Photon. 2, 501-505(2008).
[CrossRef]

P. Mondal and A. Diaspro, “Lateral resolution improvement in two-photon excitation microscopy by aperture engineering,” Opt. Commun. 281, 1855-1859 (2008).
[CrossRef]

2007 (3)

S. W. Hell, “Far-field optical nanoscopy,” Science 316, 1153-1158 (2007).
[CrossRef] [PubMed]

J. Baumgartl, R. P. A. Dullens, M. Dijkstra, R. Roth, and C. Bechinger, “Experimental observation of structural crossover in binary mixtures of colloidal hard spheres,” Phys. Rev. Lett. 98, 198303 (2007).
[CrossRef] [PubMed]

G. Pellacani, P. Guitera, C. Longo, M. Avramidis, S. Seidenari, and S. Menzies, “The impact of in vivo reflectance confocal microscopy for the diagnostic accuracy of melanoma and equivocal melanocytic lesions,” J. Invest. Dermatol. 127, 2759-2765 (2007).
[CrossRef] [PubMed]

2006 (3)

M. Rust, M. Bates, and X. Zhuang, “Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM),” Nat. Meth. 3, 793-796 (2006).
[CrossRef]

E. Betzig, G. Patterson, R. Sougrat, O. Lindwasser, S. Olenych, J. Bonifacino, M. Davidson, J. Lippincott-Schwartz, and H. Hess, “Imaging intracellular fluorescent proteins at nanometer resolution,” Science 313, 1642-1645 (2006).
[CrossRef] [PubMed]

O. Haeberlé and B. Simon, “Improving the lateral resolution in confocal fluorescence microscopy using laterally interfering excitation beams,” Opt. Commun. 259, 400-408 (2006).
[CrossRef]

2005 (1)

L. R. Qiu, X. Ding, and J. Liu, “Confocal measurement approach for enhancing lateral resolution using a phase-only pupil,” J. Phys. Conf. Ser. 13, 422-425 (2005).
[CrossRef]

2004 (2)

K. Velikov, W. Vos, A. Moroz, and A. van Blaaderen, “Reflectivity of metallodielectric photonic glasses,” Phys. Rev. B 69, 075108 (2004).
[CrossRef]

S. Nori, F. Rius-Díaz, J. Cuevas, M. Goldgeier, P. Jaen, A. Torres, and S. González, “Sensitivity and specificity of reflectance-mode confocal microscopy for in vivo diagnosis of basal cell carcinoma: a multicenter study,” J. Am. Acad. Dermatol. 51, 923-930 (2004).
[CrossRef] [PubMed]

2003 (1)

M. Martinez-Corral, M. Caballero, C. Ibáñez-López, and V. Sarafis, “Optical sectioning by two-pinhole confocal fluorescence microscopy,” Micron 34, 313-318 (2003).
[CrossRef] [PubMed]

2002 (3)

O. Tikhomirov, H. Jiang, and J. Levy, “Local ferroelectricity in SrTiO3 thin films,” Phys. Rev. Lett. 89, 147601 (2002).
[CrossRef] [PubMed]

M. Dyba and S. W. Hell, “Focal spots of size λ/23 open up far-field fluorescence microscopy at 33 nm axial resolution,” Phys. Rev. Lett. 88, 163901 (2002).
[CrossRef] [PubMed]

R. Heintzmann, T. Jovin, and C. Cremer, “Saturated patterned excitation microscopy--a concept for optical resolution improvement,” J. Opt. Soc. Am. A 19, 1599-1609 (2002).
[CrossRef]

2001 (1)

G. Boyer and V. Sarafis, “Two pinhole superresolution using spatial filters,” Optik (Jena) 112, 177-179 (2001).
[CrossRef]

2000 (3)

M. Gustafsson, “Surpassing the lateral resolution limit by a factor of two using structured illumination microscopy,” J. Microsc. 198, 82-87 (2000).
[CrossRef] [PubMed]

M. A. A. Neil, T. Wilson, and R. Juskaitis, “A wavefront generator for complex pupil function synthesis and point spread function engineering,” J. Microsc. 197, 219-223 (2000).
[CrossRef] [PubMed]

M. A. A. Neil, R. Juskaitis, T. Wilson, Z. J. Laczik, and V. Sarafis, “Optimized pupil-plane filters for confocal microscope point-spread function engineering,” Opt. Lett. 25, 245-247(2000).
[CrossRef]

1999 (1)

M. Martinez-Corral, P. Andres, C. J. Zapata-Rodriguez, and M. Kowalczyk, “Three-dimensional superresolution by annular binary filters,” Opt. Commun. 165, 267-278 (1999).
[CrossRef]

1998 (1)

1997 (1)

1994 (1)

1959 (1)

B. Richards and E. Wolf, “Electromagnetic diffraction in optical systems. ii. Structure of the image field in an aplanatic system,” Proc. R. Soc. London 253, 358-379 (1959).
[CrossRef]

Andres, P.

M. Martinez-Corral, P. Andres, C. J. Zapata-Rodriguez, and M. Kowalczyk, “Three-dimensional superresolution by annular binary filters,” Opt. Commun. 165, 267-278 (1999).
[CrossRef]

Auksorius, E.

Avramidis, M.

G. Pellacani, P. Guitera, C. Longo, M. Avramidis, S. Seidenari, and S. Menzies, “The impact of in vivo reflectance confocal microscopy for the diagnostic accuracy of melanoma and equivocal melanocytic lesions,” J. Invest. Dermatol. 127, 2759-2765 (2007).
[CrossRef] [PubMed]

Bates, M.

M. Rust, M. Bates, and X. Zhuang, “Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM),” Nat. Meth. 3, 793-796 (2006).
[CrossRef]

Baumgartl, J.

J. Baumgartl, R. P. A. Dullens, M. Dijkstra, R. Roth, and C. Bechinger, “Experimental observation of structural crossover in binary mixtures of colloidal hard spheres,” Phys. Rev. Lett. 98, 198303 (2007).
[CrossRef] [PubMed]

Bechinger, C.

J. Baumgartl, R. P. A. Dullens, M. Dijkstra, R. Roth, and C. Bechinger, “Experimental observation of structural crossover in binary mixtures of colloidal hard spheres,” Phys. Rev. Lett. 98, 198303 (2007).
[CrossRef] [PubMed]

Betzig, E.

E. Betzig, G. Patterson, R. Sougrat, O. Lindwasser, S. Olenych, J. Bonifacino, M. Davidson, J. Lippincott-Schwartz, and H. Hess, “Imaging intracellular fluorescent proteins at nanometer resolution,” Science 313, 1642-1645 (2006).
[CrossRef] [PubMed]

Bonifacino, J.

E. Betzig, G. Patterson, R. Sougrat, O. Lindwasser, S. Olenych, J. Bonifacino, M. Davidson, J. Lippincott-Schwartz, and H. Hess, “Imaging intracellular fluorescent proteins at nanometer resolution,” Science 313, 1642-1645 (2006).
[CrossRef] [PubMed]

Boruah, B. R.

B. R. Boruah and M. A. A. Neil, “Laser scanning confocal microscope with programmable amplitude, phase and polarisation of the illumination beam,” Rev. Sci. Instrum. 80, 013705 (2009).
[CrossRef] [PubMed]

B. R. Boruah, “Dynamic manipulation of a laser beam using a liquid crystal spatial light modulator,” Am. J. Phys. 77, 331-336 (2009).
[CrossRef]

B. R. Boruah and M. A. A. Neil, “Focal field computation of an arbitrarily polarized beam using fast Fourier transforms,” Opt. Commun. 282, 4660-4667 (2009).
[CrossRef]

E. Auksorius, B. R. Boruah, C. Dunsby, P. M. P. Lanigan, G. Kennedy, M. A. A. Neil, and P. M. W. French, “Stimulated emission depletion microscopy with a supercontinuum source and fluorescence lifetime imaging,” Opt. Lett. 33, 113-115(2008).
[CrossRef] [PubMed]

Boyer, G.

G. Boyer and V. Sarafis, “Two pinhole superresolution using spatial filters,” Optik (Jena) 112, 177-179 (2001).
[CrossRef]

Caballero, M.

M. Martinez-Corral, M. Caballero, C. Ibáñez-López, and V. Sarafis, “Optical sectioning by two-pinhole confocal fluorescence microscopy,” Micron 34, 313-318 (2003).
[CrossRef] [PubMed]

Chong, C.

H. Wang, L. Shi, B. Lukyanchuk, C. Sheppard, and C. Chong, “Creation of a needle of longitudinally polarized light in vacuum using binary optics,” Nat. Photon. 2, 501-505(2008).
[CrossRef]

Cremer, C.

Cuevas, J.

S. Nori, F. Rius-Díaz, J. Cuevas, M. Goldgeier, P. Jaen, A. Torres, and S. González, “Sensitivity and specificity of reflectance-mode confocal microscopy for in vivo diagnosis of basal cell carcinoma: a multicenter study,” J. Am. Acad. Dermatol. 51, 923-930 (2004).
[CrossRef] [PubMed]

Davidson, M.

E. Betzig, G. Patterson, R. Sougrat, O. Lindwasser, S. Olenych, J. Bonifacino, M. Davidson, J. Lippincott-Schwartz, and H. Hess, “Imaging intracellular fluorescent proteins at nanometer resolution,” Science 313, 1642-1645 (2006).
[CrossRef] [PubMed]

Diaspro, A.

P. Mondal and A. Diaspro, “Lateral resolution improvement in two-photon excitation microscopy by aperture engineering,” Opt. Commun. 281, 1855-1859 (2008).
[CrossRef]

Dijkstra, M.

J. Baumgartl, R. P. A. Dullens, M. Dijkstra, R. Roth, and C. Bechinger, “Experimental observation of structural crossover in binary mixtures of colloidal hard spheres,” Phys. Rev. Lett. 98, 198303 (2007).
[CrossRef] [PubMed]

Ding, X.

L. R. Qiu, X. Ding, and J. Liu, “Confocal measurement approach for enhancing lateral resolution using a phase-only pupil,” J. Phys. Conf. Ser. 13, 422-425 (2005).
[CrossRef]

Dullens, R. P. A.

J. Baumgartl, R. P. A. Dullens, M. Dijkstra, R. Roth, and C. Bechinger, “Experimental observation of structural crossover in binary mixtures of colloidal hard spheres,” Phys. Rev. Lett. 98, 198303 (2007).
[CrossRef] [PubMed]

Dunsby, C.

Dyba, M.

M. Dyba and S. W. Hell, “Focal spots of size λ/23 open up far-field fluorescence microscopy at 33 nm axial resolution,” Phys. Rev. Lett. 88, 163901 (2002).
[CrossRef] [PubMed]

French, P. M. W.

Goldgeier, M.

S. Nori, F. Rius-Díaz, J. Cuevas, M. Goldgeier, P. Jaen, A. Torres, and S. González, “Sensitivity and specificity of reflectance-mode confocal microscopy for in vivo diagnosis of basal cell carcinoma: a multicenter study,” J. Am. Acad. Dermatol. 51, 923-930 (2004).
[CrossRef] [PubMed]

González, S.

S. Nori, F. Rius-Díaz, J. Cuevas, M. Goldgeier, P. Jaen, A. Torres, and S. González, “Sensitivity and specificity of reflectance-mode confocal microscopy for in vivo diagnosis of basal cell carcinoma: a multicenter study,” J. Am. Acad. Dermatol. 51, 923-930 (2004).
[CrossRef] [PubMed]

Goodman, J.

J. Goodman, Introduction To Fourier Optics (Roberts, 2004).

Gu, M.

Guitera, P.

G. Pellacani, P. Guitera, C. Longo, M. Avramidis, S. Seidenari, and S. Menzies, “The impact of in vivo reflectance confocal microscopy for the diagnostic accuracy of melanoma and equivocal melanocytic lesions,” J. Invest. Dermatol. 127, 2759-2765 (2007).
[CrossRef] [PubMed]

Gustafsson, M.

M. Gustafsson, “Surpassing the lateral resolution limit by a factor of two using structured illumination microscopy,” J. Microsc. 198, 82-87 (2000).
[CrossRef] [PubMed]

Haeberlé, O.

O. Haeberlé and B. Simon, “Improving the lateral resolution in confocal fluorescence microscopy using laterally interfering excitation beams,” Opt. Commun. 259, 400-408 (2006).
[CrossRef]

Heintzmann, R.

Hell, S. W.

S. W. Hell, “Far-field optical nanoscopy,” Science 316, 1153-1158 (2007).
[CrossRef] [PubMed]

M. Dyba and S. W. Hell, “Focal spots of size λ/23 open up far-field fluorescence microscopy at 33 nm axial resolution,” Phys. Rev. Lett. 88, 163901 (2002).
[CrossRef] [PubMed]

S. W. Hell and J. Wichmann, “Breaking the diffraction resolution limit by stimulated emission: stimulated-emission-depletion fluorescence microscopy,” Opt. Lett. 19, 780-782 (1994).
[CrossRef] [PubMed]

Hess, H.

E. Betzig, G. Patterson, R. Sougrat, O. Lindwasser, S. Olenych, J. Bonifacino, M. Davidson, J. Lippincott-Schwartz, and H. Hess, “Imaging intracellular fluorescent proteins at nanometer resolution,” Science 313, 1642-1645 (2006).
[CrossRef] [PubMed]

Ibáñez-López, C.

M. Martinez-Corral, M. Caballero, C. Ibáñez-López, and V. Sarafis, “Optical sectioning by two-pinhole confocal fluorescence microscopy,” Micron 34, 313-318 (2003).
[CrossRef] [PubMed]

Jaen, P.

S. Nori, F. Rius-Díaz, J. Cuevas, M. Goldgeier, P. Jaen, A. Torres, and S. González, “Sensitivity and specificity of reflectance-mode confocal microscopy for in vivo diagnosis of basal cell carcinoma: a multicenter study,” J. Am. Acad. Dermatol. 51, 923-930 (2004).
[CrossRef] [PubMed]

Jiang, H.

O. Tikhomirov, H. Jiang, and J. Levy, “Local ferroelectricity in SrTiO3 thin films,” Phys. Rev. Lett. 89, 147601 (2002).
[CrossRef] [PubMed]

Jovin, T.

Juskaitis, R.

Kawata, S.

Kennedy, G.

Kowalczyk, M.

M. Martinez-Corral, P. Andres, C. J. Zapata-Rodriguez, and M. Kowalczyk, “Three-dimensional superresolution by annular binary filters,” Opt. Commun. 165, 267-278 (1999).
[CrossRef]

Laczik, Z. J.

Lanigan, P. M. P.

Levy, J.

O. Tikhomirov, H. Jiang, and J. Levy, “Local ferroelectricity in SrTiO3 thin films,” Phys. Rev. Lett. 89, 147601 (2002).
[CrossRef] [PubMed]

Lindwasser, O.

E. Betzig, G. Patterson, R. Sougrat, O. Lindwasser, S. Olenych, J. Bonifacino, M. Davidson, J. Lippincott-Schwartz, and H. Hess, “Imaging intracellular fluorescent proteins at nanometer resolution,” Science 313, 1642-1645 (2006).
[CrossRef] [PubMed]

Lippincott-Schwartz, J.

E. Betzig, G. Patterson, R. Sougrat, O. Lindwasser, S. Olenych, J. Bonifacino, M. Davidson, J. Lippincott-Schwartz, and H. Hess, “Imaging intracellular fluorescent proteins at nanometer resolution,” Science 313, 1642-1645 (2006).
[CrossRef] [PubMed]

Liu, J.

L. R. Qiu, X. Ding, and J. Liu, “Confocal measurement approach for enhancing lateral resolution using a phase-only pupil,” J. Phys. Conf. Ser. 13, 422-425 (2005).
[CrossRef]

Longo, C.

G. Pellacani, P. Guitera, C. Longo, M. Avramidis, S. Seidenari, and S. Menzies, “The impact of in vivo reflectance confocal microscopy for the diagnostic accuracy of melanoma and equivocal melanocytic lesions,” J. Invest. Dermatol. 127, 2759-2765 (2007).
[CrossRef] [PubMed]

Lukyanchuk, B.

H. Wang, L. Shi, B. Lukyanchuk, C. Sheppard, and C. Chong, “Creation of a needle of longitudinally polarized light in vacuum using binary optics,” Nat. Photon. 2, 501-505(2008).
[CrossRef]

Martinez-Corral, M.

M. Martinez-Corral, M. Caballero, C. Ibáñez-López, and V. Sarafis, “Optical sectioning by two-pinhole confocal fluorescence microscopy,” Micron 34, 313-318 (2003).
[CrossRef] [PubMed]

M. Martinez-Corral, P. Andres, C. J. Zapata-Rodriguez, and M. Kowalczyk, “Three-dimensional superresolution by annular binary filters,” Opt. Commun. 165, 267-278 (1999).
[CrossRef]

Menzies, S.

G. Pellacani, P. Guitera, C. Longo, M. Avramidis, S. Seidenari, and S. Menzies, “The impact of in vivo reflectance confocal microscopy for the diagnostic accuracy of melanoma and equivocal melanocytic lesions,” J. Invest. Dermatol. 127, 2759-2765 (2007).
[CrossRef] [PubMed]

Mondal, P.

P. Mondal and A. Diaspro, “Lateral resolution improvement in two-photon excitation microscopy by aperture engineering,” Opt. Commun. 281, 1855-1859 (2008).
[CrossRef]

Moroz, A.

K. Velikov, W. Vos, A. Moroz, and A. van Blaaderen, “Reflectivity of metallodielectric photonic glasses,” Phys. Rev. B 69, 075108 (2004).
[CrossRef]

Neil, M. A. A.

B. R. Boruah and M. A. A. Neil, “Focal field computation of an arbitrarily polarized beam using fast Fourier transforms,” Opt. Commun. 282, 4660-4667 (2009).
[CrossRef]

B. R. Boruah and M. A. A. Neil, “Laser scanning confocal microscope with programmable amplitude, phase and polarisation of the illumination beam,” Rev. Sci. Instrum. 80, 013705 (2009).
[CrossRef] [PubMed]

E. Auksorius, B. R. Boruah, C. Dunsby, P. M. P. Lanigan, G. Kennedy, M. A. A. Neil, and P. M. W. French, “Stimulated emission depletion microscopy with a supercontinuum source and fluorescence lifetime imaging,” Opt. Lett. 33, 113-115(2008).
[CrossRef] [PubMed]

M. A. A. Neil, R. Juskaitis, T. Wilson, Z. J. Laczik, and V. Sarafis, “Optimized pupil-plane filters for confocal microscope point-spread function engineering,” Opt. Lett. 25, 245-247(2000).
[CrossRef]

M. A. A. Neil, T. Wilson, and R. Juskaitis, “A wavefront generator for complex pupil function synthesis and point spread function engineering,” J. Microsc. 197, 219-223 (2000).
[CrossRef] [PubMed]

M. A. A. Neil, R. Juskaitis, and T. Wilson, “Method of obtaining optical sectioning by using structured light in a conventional microscope,” Opt. Lett. 22, 1905-1907 (1997).
[CrossRef]

Nori, S.

S. Nori, F. Rius-Díaz, J. Cuevas, M. Goldgeier, P. Jaen, A. Torres, and S. González, “Sensitivity and specificity of reflectance-mode confocal microscopy for in vivo diagnosis of basal cell carcinoma: a multicenter study,” J. Am. Acad. Dermatol. 51, 923-930 (2004).
[CrossRef] [PubMed]

Olenych, S.

E. Betzig, G. Patterson, R. Sougrat, O. Lindwasser, S. Olenych, J. Bonifacino, M. Davidson, J. Lippincott-Schwartz, and H. Hess, “Imaging intracellular fluorescent proteins at nanometer resolution,” Science 313, 1642-1645 (2006).
[CrossRef] [PubMed]

Patterson, G.

E. Betzig, G. Patterson, R. Sougrat, O. Lindwasser, S. Olenych, J. Bonifacino, M. Davidson, J. Lippincott-Schwartz, and H. Hess, “Imaging intracellular fluorescent proteins at nanometer resolution,” Science 313, 1642-1645 (2006).
[CrossRef] [PubMed]

Pellacani, G.

G. Pellacani, P. Guitera, C. Longo, M. Avramidis, S. Seidenari, and S. Menzies, “The impact of in vivo reflectance confocal microscopy for the diagnostic accuracy of melanoma and equivocal melanocytic lesions,” J. Invest. Dermatol. 127, 2759-2765 (2007).
[CrossRef] [PubMed]

Qiu, L. R.

L. R. Qiu, X. Ding, and J. Liu, “Confocal measurement approach for enhancing lateral resolution using a phase-only pupil,” J. Phys. Conf. Ser. 13, 422-425 (2005).
[CrossRef]

Richards, B.

B. Richards and E. Wolf, “Electromagnetic diffraction in optical systems. ii. Structure of the image field in an aplanatic system,” Proc. R. Soc. London 253, 358-379 (1959).
[CrossRef]

Rius-Díaz, F.

S. Nori, F. Rius-Díaz, J. Cuevas, M. Goldgeier, P. Jaen, A. Torres, and S. González, “Sensitivity and specificity of reflectance-mode confocal microscopy for in vivo diagnosis of basal cell carcinoma: a multicenter study,” J. Am. Acad. Dermatol. 51, 923-930 (2004).
[CrossRef] [PubMed]

Roth, R.

J. Baumgartl, R. P. A. Dullens, M. Dijkstra, R. Roth, and C. Bechinger, “Experimental observation of structural crossover in binary mixtures of colloidal hard spheres,” Phys. Rev. Lett. 98, 198303 (2007).
[CrossRef] [PubMed]

Rust, M.

M. Rust, M. Bates, and X. Zhuang, “Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM),” Nat. Meth. 3, 793-796 (2006).
[CrossRef]

Sarafis, V.

M. Martinez-Corral, M. Caballero, C. Ibáñez-López, and V. Sarafis, “Optical sectioning by two-pinhole confocal fluorescence microscopy,” Micron 34, 313-318 (2003).
[CrossRef] [PubMed]

G. Boyer and V. Sarafis, “Two pinhole superresolution using spatial filters,” Optik (Jena) 112, 177-179 (2001).
[CrossRef]

M. A. A. Neil, R. Juskaitis, T. Wilson, Z. J. Laczik, and V. Sarafis, “Optimized pupil-plane filters for confocal microscope point-spread function engineering,” Opt. Lett. 25, 245-247(2000).
[CrossRef]

Seidenari, S.

G. Pellacani, P. Guitera, C. Longo, M. Avramidis, S. Seidenari, and S. Menzies, “The impact of in vivo reflectance confocal microscopy for the diagnostic accuracy of melanoma and equivocal melanocytic lesions,” J. Invest. Dermatol. 127, 2759-2765 (2007).
[CrossRef] [PubMed]

Sheppard, C.

H. Wang, L. Shi, B. Lukyanchuk, C. Sheppard, and C. Chong, “Creation of a needle of longitudinally polarized light in vacuum using binary optics,” Nat. Photon. 2, 501-505(2008).
[CrossRef]

T. Wilson and C. Sheppard, Theory and Practice of Scanning Optical Microscopy (Academic, 1984).

Shi, L.

H. Wang, L. Shi, B. Lukyanchuk, C. Sheppard, and C. Chong, “Creation of a needle of longitudinally polarized light in vacuum using binary optics,” Nat. Photon. 2, 501-505(2008).
[CrossRef]

Simon, B.

O. Haeberlé and B. Simon, “Improving the lateral resolution in confocal fluorescence microscopy using laterally interfering excitation beams,” Opt. Commun. 259, 400-408 (2006).
[CrossRef]

Sougrat, R.

E. Betzig, G. Patterson, R. Sougrat, O. Lindwasser, S. Olenych, J. Bonifacino, M. Davidson, J. Lippincott-Schwartz, and H. Hess, “Imaging intracellular fluorescent proteins at nanometer resolution,” Science 313, 1642-1645 (2006).
[CrossRef] [PubMed]

Tikhomirov, O.

O. Tikhomirov, H. Jiang, and J. Levy, “Local ferroelectricity in SrTiO3 thin films,” Phys. Rev. Lett. 89, 147601 (2002).
[CrossRef] [PubMed]

Toriumi, A.

Torres, A.

S. Nori, F. Rius-Díaz, J. Cuevas, M. Goldgeier, P. Jaen, A. Torres, and S. González, “Sensitivity and specificity of reflectance-mode confocal microscopy for in vivo diagnosis of basal cell carcinoma: a multicenter study,” J. Am. Acad. Dermatol. 51, 923-930 (2004).
[CrossRef] [PubMed]

van Blaaderen, A.

K. Velikov, W. Vos, A. Moroz, and A. van Blaaderen, “Reflectivity of metallodielectric photonic glasses,” Phys. Rev. B 69, 075108 (2004).
[CrossRef]

Velikov, K.

K. Velikov, W. Vos, A. Moroz, and A. van Blaaderen, “Reflectivity of metallodielectric photonic glasses,” Phys. Rev. B 69, 075108 (2004).
[CrossRef]

Vos, W.

K. Velikov, W. Vos, A. Moroz, and A. van Blaaderen, “Reflectivity of metallodielectric photonic glasses,” Phys. Rev. B 69, 075108 (2004).
[CrossRef]

Wang, H.

H. Wang, L. Shi, B. Lukyanchuk, C. Sheppard, and C. Chong, “Creation of a needle of longitudinally polarized light in vacuum using binary optics,” Nat. Photon. 2, 501-505(2008).
[CrossRef]

Wichmann, J.

Wilson, T.

M. A. A. Neil, T. Wilson, and R. Juskaitis, “A wavefront generator for complex pupil function synthesis and point spread function engineering,” J. Microsc. 197, 219-223 (2000).
[CrossRef] [PubMed]

M. A. A. Neil, R. Juskaitis, T. Wilson, Z. J. Laczik, and V. Sarafis, “Optimized pupil-plane filters for confocal microscope point-spread function engineering,” Opt. Lett. 25, 245-247(2000).
[CrossRef]

M. A. A. Neil, R. Juskaitis, and T. Wilson, “Method of obtaining optical sectioning by using structured light in a conventional microscope,” Opt. Lett. 22, 1905-1907 (1997).
[CrossRef]

T. Wilson and C. Sheppard, Theory and Practice of Scanning Optical Microscopy (Academic, 1984).

Wolf, E.

B. Richards and E. Wolf, “Electromagnetic diffraction in optical systems. ii. Structure of the image field in an aplanatic system,” Proc. R. Soc. London 253, 358-379 (1959).
[CrossRef]

Zapata-Rodriguez, C. J.

M. Martinez-Corral, P. Andres, C. J. Zapata-Rodriguez, and M. Kowalczyk, “Three-dimensional superresolution by annular binary filters,” Opt. Commun. 165, 267-278 (1999).
[CrossRef]

Zhuang, X.

M. Rust, M. Bates, and X. Zhuang, “Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM),” Nat. Meth. 3, 793-796 (2006).
[CrossRef]

Am. J. Phys. (1)

B. R. Boruah, “Dynamic manipulation of a laser beam using a liquid crystal spatial light modulator,” Am. J. Phys. 77, 331-336 (2009).
[CrossRef]

J. Am. Acad. Dermatol. (1)

S. Nori, F. Rius-Díaz, J. Cuevas, M. Goldgeier, P. Jaen, A. Torres, and S. González, “Sensitivity and specificity of reflectance-mode confocal microscopy for in vivo diagnosis of basal cell carcinoma: a multicenter study,” J. Am. Acad. Dermatol. 51, 923-930 (2004).
[CrossRef] [PubMed]

J. Invest. Dermatol. (1)

G. Pellacani, P. Guitera, C. Longo, M. Avramidis, S. Seidenari, and S. Menzies, “The impact of in vivo reflectance confocal microscopy for the diagnostic accuracy of melanoma and equivocal melanocytic lesions,” J. Invest. Dermatol. 127, 2759-2765 (2007).
[CrossRef] [PubMed]

J. Microsc. (2)

M. A. A. Neil, T. Wilson, and R. Juskaitis, “A wavefront generator for complex pupil function synthesis and point spread function engineering,” J. Microsc. 197, 219-223 (2000).
[CrossRef] [PubMed]

M. Gustafsson, “Surpassing the lateral resolution limit by a factor of two using structured illumination microscopy,” J. Microsc. 198, 82-87 (2000).
[CrossRef] [PubMed]

J. Opt. Soc. Am. A (1)

J. Phys. Conf. Ser. (1)

L. R. Qiu, X. Ding, and J. Liu, “Confocal measurement approach for enhancing lateral resolution using a phase-only pupil,” J. Phys. Conf. Ser. 13, 422-425 (2005).
[CrossRef]

Micron (1)

M. Martinez-Corral, M. Caballero, C. Ibáñez-López, and V. Sarafis, “Optical sectioning by two-pinhole confocal fluorescence microscopy,” Micron 34, 313-318 (2003).
[CrossRef] [PubMed]

Nat. Meth. (1)

M. Rust, M. Bates, and X. Zhuang, “Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM),” Nat. Meth. 3, 793-796 (2006).
[CrossRef]

Nat. Photon. (1)

H. Wang, L. Shi, B. Lukyanchuk, C. Sheppard, and C. Chong, “Creation of a needle of longitudinally polarized light in vacuum using binary optics,” Nat. Photon. 2, 501-505(2008).
[CrossRef]

Opt. Commun. (4)

P. Mondal and A. Diaspro, “Lateral resolution improvement in two-photon excitation microscopy by aperture engineering,” Opt. Commun. 281, 1855-1859 (2008).
[CrossRef]

O. Haeberlé and B. Simon, “Improving the lateral resolution in confocal fluorescence microscopy using laterally interfering excitation beams,” Opt. Commun. 259, 400-408 (2006).
[CrossRef]

M. Martinez-Corral, P. Andres, C. J. Zapata-Rodriguez, and M. Kowalczyk, “Three-dimensional superresolution by annular binary filters,” Opt. Commun. 165, 267-278 (1999).
[CrossRef]

B. R. Boruah and M. A. A. Neil, “Focal field computation of an arbitrarily polarized beam using fast Fourier transforms,” Opt. Commun. 282, 4660-4667 (2009).
[CrossRef]

Opt. Lett. (5)

Optik (Jena) (1)

G. Boyer and V. Sarafis, “Two pinhole superresolution using spatial filters,” Optik (Jena) 112, 177-179 (2001).
[CrossRef]

Phys. Rev. B (1)

K. Velikov, W. Vos, A. Moroz, and A. van Blaaderen, “Reflectivity of metallodielectric photonic glasses,” Phys. Rev. B 69, 075108 (2004).
[CrossRef]

Phys. Rev. Lett. (3)

M. Dyba and S. W. Hell, “Focal spots of size λ/23 open up far-field fluorescence microscopy at 33 nm axial resolution,” Phys. Rev. Lett. 88, 163901 (2002).
[CrossRef] [PubMed]

J. Baumgartl, R. P. A. Dullens, M. Dijkstra, R. Roth, and C. Bechinger, “Experimental observation of structural crossover in binary mixtures of colloidal hard spheres,” Phys. Rev. Lett. 98, 198303 (2007).
[CrossRef] [PubMed]

O. Tikhomirov, H. Jiang, and J. Levy, “Local ferroelectricity in SrTiO3 thin films,” Phys. Rev. Lett. 89, 147601 (2002).
[CrossRef] [PubMed]

Proc. R. Soc. London (1)

B. Richards and E. Wolf, “Electromagnetic diffraction in optical systems. ii. Structure of the image field in an aplanatic system,” Proc. R. Soc. London 253, 358-379 (1959).
[CrossRef]

Rev. Sci. Instrum. (1)

B. R. Boruah and M. A. A. Neil, “Laser scanning confocal microscope with programmable amplitude, phase and polarisation of the illumination beam,” Rev. Sci. Instrum. 80, 013705 (2009).
[CrossRef] [PubMed]

Science (2)

S. W. Hell, “Far-field optical nanoscopy,” Science 316, 1153-1158 (2007).
[CrossRef] [PubMed]

E. Betzig, G. Patterson, R. Sougrat, O. Lindwasser, S. Olenych, J. Bonifacino, M. Davidson, J. Lippincott-Schwartz, and H. Hess, “Imaging intracellular fluorescent proteins at nanometer resolution,” Science 313, 1642-1645 (2006).
[CrossRef] [PubMed]

Other (4)

T. Wilson, ed., Confocal Microscopy (Academic, 1990).

J. E. Pawley, ed., Handbook of Biological Confocal Microscopy (Springer, 2006).
[CrossRef]

T. Wilson and C. Sheppard, Theory and Practice of Scanning Optical Microscopy (Academic, 1984).

J. Goodman, Introduction To Fourier Optics (Roberts, 2004).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

(a) Illumination pupil. Radii of the filled dark circle and the dashed circle are R and β R , respectively (transmittance of dark portion = 0 and transmittance of the white portion = 1 ). (i) Sample plane IPSFs using the illumination pupils (b) C and (c) D and (ii) the corresponding detector plane IPSFs (b)  D C and (c)  D D (using β = 0.6 ). Detector plane IPSFs of the (d)(i) normal confocal system, D N , and (d)(ii) VAE confocal system, D VAE , ( β = 0.6 ). All the IPSF images have the same scaling factor and correspond to a 1.2 NA water immersion lens.

Fig. 2
Fig. 2

Plots of normalized detector plane IPSF versus (a) v (along f x ) and (b) u (along f z ) for the VAE confocal system ( β = 0.6 and 0.7) and normal confocal system (using an X-polarized illumination beam). (c) Plots of normalized MTFs versus ν x ν 0 , for the VAE confocal ( β = 0.6 and 0.7) and normal confocal system (using an X polarized illumination beam). (d) Gray-scale image of the 2D MTF of the VAE confocal system ( β = 0.7 ). Both the normal confocal and VAE confocal systems use a 1.2 NA water immersion lens.

Fig. 3
Fig. 3

(a) Target patterns (separations, in the unit of v 1.2 , between two adjacent lines or dots in the patterns, 1 to 7, respectively, are 3, 3, 2.4, 2, 2.5, 5, and 5). Here v 1.2 is the normalized optical coordinate corresponding to a 1.2 NA water immersion objective lens. The scale bar near pattern 6 has a length equal to 5 v 1.2 . (b)–(d) Simulated confocal images of the target, using a 1.2 NA water immersion objective lens, (b) by the normal confocal system, (c) by the VAE confocal system ( β = 0.6 ), and (d) by the VAE confocal system ( β = 0.7 ). (e)–(f) Simulated confocal images of the target, using a 0.4 NA objective lens in air, (e) by the normal confocal system and (f) by the VAE confocal system ( β = 0.7 ).

Fig. 4
Fig. 4

Schematics of the open frame confocal microscope. VBF, vector beam forming unit; L 1 , 2 and L 4 , 5 , 4 f lens systems; BS, beam splitter; XY scan, galvo-mirror-based XY scan stage; MO, microscope objective; PH1 and PH2, pinholes; L 3 , lens; and PMT, photomultiplier tube.

Fig. 5
Fig. 5

Images ( 1.8 μm × 1.8 μm ) of 80 nm gold bead clusters in the reflected light by (a) the normal confocal system and (b) the VAE confocal system ( β = 0.7 ), using a 1.4 NA (numerical aperture, expressed as n sin α ), × 100 oil immersion objective lens. (c) Curves of normalized intensities versus sample plane distance, of the normal confocal and VAE confocal images, along the lines shown in (a) and (b). The two peaks in the dashed curve in (c) are separated by a distance of about 150 nm .

Equations (14)

Equations on this page are rendered with MathJax. Learn more.

P C ( x , y , β ) = { δ ( x , y ) + δ ( x + , y ) } C 1 β ( x , y ) ,
E C ( f x , f y , β ) = F [ δ ( x , y ) + δ ( x + , y ) ] F [ C 1 β ( x , y ) ] ,
D C ( f x , f y , β ) = cos 2 ( 2 π f x β ) S β ( f x , f y ) ,
S β ( f x , f y ) = | F [ C 1 ( x , y ) ] | 2 | F [ C 1 β ( x , y ) ] | 2 .
D D ( f x , f y , β ) = sin 2 ( 2 π f x β ) S β ( f x , f y ) .
D VAE = D C D D = cos ( 4 π f x β ) S β ( f x , f y ) .
O VAE ( R ν x ν 0 , R ν y ν 0 , β ) = F [ D VAE ( f x , f y , β ) ] ,
O VAE = F [ cos ( 4 π f x β ) ] F [ S β ( f x , f y ) ] .
F [ S β ( f x , f y ) ] = H ( ν , ν 0 ( 1 β ) ) H ( ν , ν 0 ) = O N ( ν , β ) ,
ν = ν x 2 + ν y 2 ,
H ( ν , ν 0 ) = { 2 π [ cos 1 ( ν n ) ν n 1 ν n 2 ] ν n 1 0 otherwise ,
F [ cos ( 4 π f x β ) ] = { δ ( q x , q y ) + δ ( q x + , q y ) } ;
O VAE = [ { δ ( q x , q y ) + δ ( q x + , q y ) } ] O N ( ν , β ) .
O VAE = [ { δ ( q x , q y ) + δ ( q x + , q y ) + δ ( q x , q y ) + δ ( q x , q y + ) } ] O N ( ν , β ) .

Metrics