Abstract

We evaluate numerically the effect of shrinkage of photopolymer on the bit error rate or signal-to-noise ratio in a reflection-type holographic data storage system with angular multiplexing. In the evaluation, we use a simple model where the material is divided into layered structures and then the shrinkage rate is proportional to the intensity in each layer. We present the effectiveness of the proposed model from the experimental results in the recording of the plane waves both in a transmission-type hologram and a reflection-type one. Several kinds of shrinkage rates are used to evaluate the characteristics of angular multiplexing in the reflection-type holographic memory.

© 2010 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. J. Coufal, D. Psaltis, and G. Sincerbox, Holographic Data Storage (Springer, 2000).
  2. L. Hesselink, S. S. Orlov, and M. C. Bashaw, “Holographic data storage systems,” Proc. IEEE 92, 1231-1280 (2004).
    [Crossref]
  3. H. Horimai and X. Tan, “Collinear technology for a holographic versatile disk,” Appl. Opt. 45, 910-914 (2006).
    [Crossref] [PubMed]
  4. D. Psaltis, M. Levene, A. Pu, G. Barbastathis, and K. Curtis, “Holographic storage using shift multiplexing,” Opt. Lett. 20, 782-784 (1995).
    [Crossref] [PubMed]
  5. G. Barbastathis, M. Levene, and D. Psaltis, “Shift multiplexing with spherical reference waves,” Appl. Opt. 35, 2403-2417 (1996).
    [Crossref] [PubMed]
  6. O. Matoba, Y. Yokohama, M. Miura, K. Nitta, and T. Yoshimura, “Reflection-type holographic disk memory with random phase shift multiplexing,” Appl. Opt. 45, 3270-3274 (2006).
    [Crossref] [PubMed]
  7. M. Miura, O. Matoba, K. Nitta, and T. Yoshimura, “Three-dimensional shift selectivity in reflection-type holographic disk memory with speckle shift recording,” Appl. Opt. 46, 1460-1466 (2007).
    [Crossref] [PubMed]
  8. M. Miura, O. Matoba, K. Nitta, and T. Yoshimura, “Image-based numerical evaluation techniques in volume holographic memory systems,” J. Opt. Soc. Am. B 24, 792-798 (2007).
    [Crossref]
  9. M. Miura, O. Matoba, K. Nitta, and T. Yoshimura, “Speckle shift multiplexing along axial direction in reflection-type holographic memory,” Jpn. J. Appl. Phys. 46, 3832-3836(2007).
    [Crossref]
  10. M. Toishi, T. Takeda, K. Tanaka, T. Tanaka, A. Fukumoto, and K. Watanabe, “Two-dimensional simulation of holographic data storage medium for multiplexed recording,” Opt. Express 16, 2829-2839 (2008).
    [Crossref] [PubMed]
  11. Y. Sumi, J. Tottori, R. Fujimura, T. Shimura, and K. Kuroda, “Study of media shrinkage in collinear holographic storage system: the effect of random phase mask,” in Digest of International Workshop on Holographic Memories 2008 (IWHM 2008) (Japan Society for the Promotion of Science, 2008), Vol. 21P-1, pp. 24-25.
  12. M. R. Glesson, S. Liu, and J. T. Sheridan, “Improvement of photopolymer materials for holographic data storage,” J. Mater. Sci. 44, 6090-6099 (2009).
    [Crossref]
  13. S. Liu, M. R. Glesson, and J. T. Sheridan, “Analysis of the photoabsorptive behavior of two different photosensitizers in a photopolymer material,” J. Opt. Soc. Am. B 26, 528-536(2009).
    [Crossref]
  14. Y. Usami, T. Sasaki, M. Kamo, S. Yamada, H. Suzuki, and M. Yumoto, “Low angular distortion due to shrinkage after fixing in new holographic recording material,” Proc. SPIE 6620, 66201H (2007).
    [Crossref]

2009 (2)

M. R. Glesson, S. Liu, and J. T. Sheridan, “Improvement of photopolymer materials for holographic data storage,” J. Mater. Sci. 44, 6090-6099 (2009).
[Crossref]

S. Liu, M. R. Glesson, and J. T. Sheridan, “Analysis of the photoabsorptive behavior of two different photosensitizers in a photopolymer material,” J. Opt. Soc. Am. B 26, 528-536(2009).
[Crossref]

2008 (1)

2007 (4)

M. Miura, O. Matoba, K. Nitta, and T. Yoshimura, “Three-dimensional shift selectivity in reflection-type holographic disk memory with speckle shift recording,” Appl. Opt. 46, 1460-1466 (2007).
[Crossref] [PubMed]

M. Miura, O. Matoba, K. Nitta, and T. Yoshimura, “Image-based numerical evaluation techniques in volume holographic memory systems,” J. Opt. Soc. Am. B 24, 792-798 (2007).
[Crossref]

M. Miura, O. Matoba, K. Nitta, and T. Yoshimura, “Speckle shift multiplexing along axial direction in reflection-type holographic memory,” Jpn. J. Appl. Phys. 46, 3832-3836(2007).
[Crossref]

Y. Usami, T. Sasaki, M. Kamo, S. Yamada, H. Suzuki, and M. Yumoto, “Low angular distortion due to shrinkage after fixing in new holographic recording material,” Proc. SPIE 6620, 66201H (2007).
[Crossref]

2006 (2)

2004 (1)

L. Hesselink, S. S. Orlov, and M. C. Bashaw, “Holographic data storage systems,” Proc. IEEE 92, 1231-1280 (2004).
[Crossref]

1996 (1)

1995 (1)

Barbastathis, G.

Bashaw, M. C.

L. Hesselink, S. S. Orlov, and M. C. Bashaw, “Holographic data storage systems,” Proc. IEEE 92, 1231-1280 (2004).
[Crossref]

Coufal, H. J.

H. J. Coufal, D. Psaltis, and G. Sincerbox, Holographic Data Storage (Springer, 2000).

Curtis, K.

Fujimura, R.

Y. Sumi, J. Tottori, R. Fujimura, T. Shimura, and K. Kuroda, “Study of media shrinkage in collinear holographic storage system: the effect of random phase mask,” in Digest of International Workshop on Holographic Memories 2008 (IWHM 2008) (Japan Society for the Promotion of Science, 2008), Vol. 21P-1, pp. 24-25.

Fukumoto, A.

Glesson, M. R.

M. R. Glesson, S. Liu, and J. T. Sheridan, “Improvement of photopolymer materials for holographic data storage,” J. Mater. Sci. 44, 6090-6099 (2009).
[Crossref]

S. Liu, M. R. Glesson, and J. T. Sheridan, “Analysis of the photoabsorptive behavior of two different photosensitizers in a photopolymer material,” J. Opt. Soc. Am. B 26, 528-536(2009).
[Crossref]

Hesselink, L.

L. Hesselink, S. S. Orlov, and M. C. Bashaw, “Holographic data storage systems,” Proc. IEEE 92, 1231-1280 (2004).
[Crossref]

Horimai, H.

Kamo, M.

Y. Usami, T. Sasaki, M. Kamo, S. Yamada, H. Suzuki, and M. Yumoto, “Low angular distortion due to shrinkage after fixing in new holographic recording material,” Proc. SPIE 6620, 66201H (2007).
[Crossref]

Kuroda, K.

Y. Sumi, J. Tottori, R. Fujimura, T. Shimura, and K. Kuroda, “Study of media shrinkage in collinear holographic storage system: the effect of random phase mask,” in Digest of International Workshop on Holographic Memories 2008 (IWHM 2008) (Japan Society for the Promotion of Science, 2008), Vol. 21P-1, pp. 24-25.

Levene, M.

Liu, S.

M. R. Glesson, S. Liu, and J. T. Sheridan, “Improvement of photopolymer materials for holographic data storage,” J. Mater. Sci. 44, 6090-6099 (2009).
[Crossref]

S. Liu, M. R. Glesson, and J. T. Sheridan, “Analysis of the photoabsorptive behavior of two different photosensitizers in a photopolymer material,” J. Opt. Soc. Am. B 26, 528-536(2009).
[Crossref]

Matoba, O.

Miura, M.

Nitta, K.

Orlov, S. S.

L. Hesselink, S. S. Orlov, and M. C. Bashaw, “Holographic data storage systems,” Proc. IEEE 92, 1231-1280 (2004).
[Crossref]

Psaltis, D.

Pu, A.

Sasaki, T.

Y. Usami, T. Sasaki, M. Kamo, S. Yamada, H. Suzuki, and M. Yumoto, “Low angular distortion due to shrinkage after fixing in new holographic recording material,” Proc. SPIE 6620, 66201H (2007).
[Crossref]

Sheridan, J. T.

M. R. Glesson, S. Liu, and J. T. Sheridan, “Improvement of photopolymer materials for holographic data storage,” J. Mater. Sci. 44, 6090-6099 (2009).
[Crossref]

S. Liu, M. R. Glesson, and J. T. Sheridan, “Analysis of the photoabsorptive behavior of two different photosensitizers in a photopolymer material,” J. Opt. Soc. Am. B 26, 528-536(2009).
[Crossref]

Shimura, T.

Y. Sumi, J. Tottori, R. Fujimura, T. Shimura, and K. Kuroda, “Study of media shrinkage in collinear holographic storage system: the effect of random phase mask,” in Digest of International Workshop on Holographic Memories 2008 (IWHM 2008) (Japan Society for the Promotion of Science, 2008), Vol. 21P-1, pp. 24-25.

Sincerbox, G.

H. J. Coufal, D. Psaltis, and G. Sincerbox, Holographic Data Storage (Springer, 2000).

Sumi, Y.

Y. Sumi, J. Tottori, R. Fujimura, T. Shimura, and K. Kuroda, “Study of media shrinkage in collinear holographic storage system: the effect of random phase mask,” in Digest of International Workshop on Holographic Memories 2008 (IWHM 2008) (Japan Society for the Promotion of Science, 2008), Vol. 21P-1, pp. 24-25.

Suzuki, H.

Y. Usami, T. Sasaki, M. Kamo, S. Yamada, H. Suzuki, and M. Yumoto, “Low angular distortion due to shrinkage after fixing in new holographic recording material,” Proc. SPIE 6620, 66201H (2007).
[Crossref]

Takeda, T.

Tan, X.

Tanaka, K.

Tanaka, T.

Toishi, M.

Tottori, J.

Y. Sumi, J. Tottori, R. Fujimura, T. Shimura, and K. Kuroda, “Study of media shrinkage in collinear holographic storage system: the effect of random phase mask,” in Digest of International Workshop on Holographic Memories 2008 (IWHM 2008) (Japan Society for the Promotion of Science, 2008), Vol. 21P-1, pp. 24-25.

Usami, Y.

Y. Usami, T. Sasaki, M. Kamo, S. Yamada, H. Suzuki, and M. Yumoto, “Low angular distortion due to shrinkage after fixing in new holographic recording material,” Proc. SPIE 6620, 66201H (2007).
[Crossref]

Watanabe, K.

Yamada, S.

Y. Usami, T. Sasaki, M. Kamo, S. Yamada, H. Suzuki, and M. Yumoto, “Low angular distortion due to shrinkage after fixing in new holographic recording material,” Proc. SPIE 6620, 66201H (2007).
[Crossref]

Yokohama, Y.

Yoshimura, T.

Yumoto, M.

Y. Usami, T. Sasaki, M. Kamo, S. Yamada, H. Suzuki, and M. Yumoto, “Low angular distortion due to shrinkage after fixing in new holographic recording material,” Proc. SPIE 6620, 66201H (2007).
[Crossref]

Appl. Opt. (4)

J. Mater. Sci. (1)

M. R. Glesson, S. Liu, and J. T. Sheridan, “Improvement of photopolymer materials for holographic data storage,” J. Mater. Sci. 44, 6090-6099 (2009).
[Crossref]

J. Opt. Soc. Am. B (2)

Jpn. J. Appl. Phys. (1)

M. Miura, O. Matoba, K. Nitta, and T. Yoshimura, “Speckle shift multiplexing along axial direction in reflection-type holographic memory,” Jpn. J. Appl. Phys. 46, 3832-3836(2007).
[Crossref]

Opt. Express (1)

Opt. Lett. (1)

Proc. IEEE (1)

L. Hesselink, S. S. Orlov, and M. C. Bashaw, “Holographic data storage systems,” Proc. IEEE 92, 1231-1280 (2004).
[Crossref]

Proc. SPIE (1)

Y. Usami, T. Sasaki, M. Kamo, S. Yamada, H. Suzuki, and M. Yumoto, “Low angular distortion due to shrinkage after fixing in new holographic recording material,” Proc. SPIE 6620, 66201H (2007).
[Crossref]

Other (2)

H. J. Coufal, D. Psaltis, and G. Sincerbox, Holographic Data Storage (Springer, 2000).

Y. Sumi, J. Tottori, R. Fujimura, T. Shimura, and K. Kuroda, “Study of media shrinkage in collinear holographic storage system: the effect of random phase mask,” in Digest of International Workshop on Holographic Memories 2008 (IWHM 2008) (Japan Society for the Promotion of Science, 2008), Vol. 21P-1, pp. 24-25.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1
Fig. 1

Layered model of shrinkage in a photopolymer.

Fig. 2
Fig. 2

Optical setup for the evaluation of the transmission-type and the reflection-type holograms.

Fig. 3
Fig. 3

Model of optical setup of the transmission-type and the reflection-type holographic memories.

Fig. 4
Fig. 4

Angular selectivity in (a) the transmission-type and (b) the reflection-type holograms.

Fig. 5
Fig. 5

Comparison between the experimental and numerical results in angular selectivity in (a) the transmission-type and (b) the reflection-type holograms.

Fig. 6
Fig. 6

An example of input binary data pages.

Fig. 7
Fig. 7

Reconstructed images when the recording medium shrinks by (a) 0% and (b) 0.2%.

Fig. 8
Fig. 8

Angular selectivity in the reflection-type holograms with shrinkage.

Fig. 9
Fig. 9

Maps of bit error in the reconstructed images with shrinkage rates of (a) 0% and (b) 0.2%.

Fig. 10
Fig. 10

Signal to noise ratio as a function of number of angular multiplexing in several shrinkage rates.

Fig. 11
Fig. 11

Symbol bit error rate as a function of number of angular multiplexing in several shrinkage rates.

Fig. 12
Fig. 12

Bit error rate as a function of number of angular multiplexing when 1 4 coding is used.

Tables (1)

Tables Icon

Table 1 Parameters Used in the Simulation

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

δ t s ( m ) = ( 1 s ) I ( m ) I max δ t ,
I m ( x , y ) = | S m + R m | 2 = | S m | 2 + | R m | 2 + S m * R m + S m R m * .
n m ( x , y ) = n 0 + n 1 I m ( x , y ) I max .
S m = R m exp ( i k n m δ t s ( m ) ) = R m exp ( i k n 0 δ t s ( m ) ) exp ( i k n 1 I m I max δ t s ( m ) ) R m exp ( i k n 0 δ t s ( m ) ) { 1 + i k n 1 I m I max δ t s ( m ) } .
S m i k n 1 I m I max δ t s ( m ) R m exp ( i k n 0 δ t s ( m ) ) i k n 1 δ t s ( m ) I max exp ( i k n 0 δ t s ( m ) ) R m * R m S m .

Metrics