Abstract

We evaluate numerically the effect of shrinkage of photopolymer on the bit error rate or signal-to-noise ratio in a reflection-type holographic data storage system with angular multiplexing. In the evaluation, we use a simple model where the material is divided into layered structures and then the shrinkage rate is proportional to the intensity in each layer. We present the effectiveness of the proposed model from the experimental results in the recording of the plane waves both in a transmission-type hologram and a reflection-type one. Several kinds of shrinkage rates are used to evaluate the characteristics of angular multiplexing in the reflection-type holographic memory.

© 2010 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Numerical estimation of storage capacity in reflection-type holographic disk memory with three-dimensional speckle-shift multiplexing

Masato Miura, Kouichi Nitta, and Osamu Matoba
J. Opt. Soc. Am. A 26(10) 2269-2274 (2009)

Numerical investigation of nonlinear shrinkage effects in volume holographic gratings

Shuhei Yoshida and Shuma Horiuchi
Appl. Opt. 56(20) 5607-5613 (2017)

Blue laser-sensitized photopolymer for a holographic high density data storage system

Yong-Cheol Jeong, Bokyung Jung, Dowon Ahn, and Jung-Ki Park
Opt. Express 18(24) 25008-25015 (2010)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (12)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Tables (1)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (5)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription