Abstract

To solve problems associated with conventional 2D fingerprint acquisition processes including skin deformations and print smearing, we developed a noncontact 3D fingerprint scanner employing structured light illumination that, in order to be backwards compatible with existing 2D fingerprint recognition systems, requires a method of unwrapping the 3D scans into 2D equivalent prints. For the latter purpose of virtually flattening a 3D print, this paper introduces a fit-sphere unwrapping algorithm. Taking advantage of detailed 3D information, the proposed method defuses the unwrapping distortion by controlling the distances between neighboring points. Experimental results will demonstrate the high quality and recognition performance of the 3D unwrapped prints versus traditionally collected 2D prints. Furthermore, by classifying the 3D database into high- and low-quality data sets, we demonstrate that the relationship between quality and recognition performance holding for conventional 2D prints is achieved for 3D unwrapped fingerprints.

© 2010 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. K. Jain, A. Ross, and S. Pankanti, “Biometrics: a tool for information security,” IEEE Trans. Inf. Forensics Secur. 1, 125-143 (2006).
    [CrossRef]
  2. S. Pankanti, S. Prabhakar, and A. K. Jain, “On the individuality of fingerprints,” IEEE Trans. Pattern Anal. Mach. Intell. 24, 1010-1025 (2002).
    [CrossRef]
  3. R. Cappelli, D. Maio, D. Maltoni, J. L. Wayman, and A. K. Jain, “Performance evaluation of fingerprint verification systems,” IEEE Trans. Pattern Anal. Mach. Intell. 28, 3-18 (2006).
    [CrossRef] [PubMed]
  4. A. Ross and A. K. Jain, “Information fusion in biometrics,” Pattern Recogn. Lett. 24, 2115-2125 (2003).
    [CrossRef]
  5. K. G. Larkin and P. A. Fletcher, “A coherent framework for fingerprint analysis: are fingerprints holograms?” Opt. Express 15 (2007).
    [CrossRef] [PubMed]
  6. J. C. Wu and C. L. Wilson, “Nonparametric analysis of fingerprint data,” NISTIR 7226 (National Institute of Standards and Technology, 2005).
  7. K. Tai, M. Kurita, and I. Fujieda, “Recognition of living fingers with a sensor based on scattered-light detection,” Appl. Opt. 45, 419-424 (2006).
    [CrossRef] [PubMed]
  8. S. Lin, K. M. Yemelyanov, J. E. N. Pugh, and N. Engheta, “Polarization-based and specular-reflection-based noncontact latent fingerprint imaging and lifting,” J. Opt. Soc. Am. A 23, 2137-2153 (2006).
    [CrossRef]
  9. J. C. Wu and M D. Garris, “Nonparametric statistical data analysis of fingerprint minutiae exchange with two-finger fusion,” NISTIR 7376 (National Institute of Standards and Technology, 2006).
  10. A. Bal, A. M. El-saba, and M. S. Alam, “Improved fingerprint identification with supervised filtering enhancement,” Appl. Opt. 44, 647-654 (2005).
    [CrossRef] [PubMed]
  11. S. M. Rao, “Method for producing correct fingerprints,” Appl. Opt. 47, 25-29 (2008).
    [CrossRef]
  12. R. Shogenji, Y. Kitamura, K. Yamada, S. Miyatake, and J. Tanida, “Bimodal fingerprint capturing system based on compound-eye imaging module,” Appl. Opt. 43, 1355-1359 (2004).
    [CrossRef] [PubMed]
  13. R. Hashido, A. Suzuki, A. Iwata, T. Okmoto, Y. Satoh, and M. Inoue, “A capacitive fingerprint sensor chip using low-temperature poly-si TFTs on a glass substrate and a novel and unique sensing method,” IEEE J. Solid-State Circuits 38, 274-280 (2003).
    [CrossRef]
  14. S. Malassiotis, N. Aifanti, and M. G. Strinzis, “Personal authentication using 3-D finger geometry,” IEEE Trans. Inf. Forensics Secur. 1, 12-21 (2006).
    [CrossRef]
  15. N. Ratha and R. Bolle, Automatic Fingerprint Recognition Systems (Springer-Verlag2004).
    [CrossRef]
  16. A. K. Jain and A. Ross, “Fingerprint mosaicking,” in ICASSP, IEEE International Conference on Acoustics, Speech, and Signal Processing-Proceedings (IEEE, 2002), Vol. 4, pp. 4064-4067 (2002).
  17. A. Ross, S. C. Dass, and A. K. Jain, “Estimating fingerprint deformation,” in Biometric Authentication (Springer, 2004), pp. 249-255.
    [CrossRef]
  18. R. Rowe, S. Corcoran, K. Nixon, and R. Ostrom, “Multispectral imaging for biometrics,” Proc. SPIE 5694,90-99 (2005).
    [CrossRef]
  19. G. Parziale, E. Diaz-Santana, and R. Hauke, “The Surround Imagertrade: a multi-camera touchless device to acquire 3D rolled-equivalent fingerprints,” in Advances in Biometrics, Vol. 3832 of Lecture Notes in Computer Science (Springer, 2005), 244-250.
  20. Y. Cheng and K. V. Larin, “In vivo two- and three-dimensional imaging of artificial and real fingerprints with optical coherence tomography,” IEEE Photon. Technol. Lett. 19, 1634-1636 (2007).
    [CrossRef]
  21. M. C. Potcoava and M. K. Kim, “Fingerprint biometry applications of digital holography and low-coherence interferography,” Appl. Opt. 48 (2009).
    [CrossRef] [PubMed]
  22. Y. Chen, G. Parsiale, E. Diaz-Santana, and A. K. Jain, “3D touchless fingerprints: compatibility with legacy rolled images,” in 2006 Biometrics Symposium: Special Session on Research at the Biometric Consortium Conference (IEEE, 2006), pp. 1-6.
    [CrossRef]
  23. A. Fatehpuria, D. L. Lau, V. Yalla, and L. G. Hassebrook, “Performance analysis of three-dimensional ridge acquisition from live finger and palm surface scans,” Proc. SPIE 6539, 653904 (2007).
    [CrossRef]
  24. A. Fatehpuria, D. L. Lau, and L. G. Hassebrook, “Acquiring a 2-D rolled equivalent fingerprint image from a non-contact 3-D finger scan,” Proc. SPIE 6202, 62020C (2006).
  25. S. Zhang and S. Yau, “Generic nonsinusoidal phase error correction for three-dimensional shape measurement using a digital video projector,” Appl. Opt. 46, 36-43 (2007).
    [CrossRef]
  26. J. Li, L. G. Hassebrook, and C. Guan, “Optimized two-frequency phase measuring profilometry light-sensor temporal-noise sensitivity,” J. Opt. Soc. Am. A 20, 106-115(2003).
    [CrossRef]
  27. Y. Wang, K. Liu, D. L. Lau, and L. G. Hassebrook, “Multicamera phase measuring profilometry for accurate depth measurement,” Proc. SPIE 6555, 655509 (2007).
  28. S. Zhang and S. Yau, “Absolute phase-assisted three-dimensional data registration for a dual-camera structured light system,” Appl. Opt. 47, 3134-3142 (2008).
    [CrossRef] [PubMed]
  29. V. Yalla and L. G. Hassebrook, “Very-high resolution 3D surface scanning using multi-frequency phase measuring profilometry,” Proc. SPIE 5798, 44-53 (2005).
  30. S. Zhang, X. Li, and S. Yau, “Multilevel quality-guided phase unwrapping algorithm for real-time three-dimensional shape reconstruction,” Appl. Opt. 46, 50-57 (2007).
    [CrossRef]
  31. J. Wolberg, Data Analysis Using the Method of Least Squares: Extracting the Most Information from Experiments (Springer2005).
    [PubMed]
  32. E. Tabassi, C. L. Wilson, and C. I. Watson, “Fingerprint image quality,” NISTIR 7151 (National Institute of Standards and Technology, 2004).
  33. B. Kumar, M. Savvides, C. Xie, K. Venkataramani, J. Thomton, and A. Mahalanobis, “Biometric verification with correlation filters,” Appl. Opt. 43, 391-402 (2004).
    [CrossRef]
  34. Y. Cheng and K. V. Larin, “Artifical fingerprint recognition by using optical coherence tomography with autocorreclation analysis,” Appl. Opt. 45, 9238-9245 (2006).
    [CrossRef] [PubMed]
  35. A. Ross and R. Nadgir, “A calibration model for fingerprint sensor interoperability,” Proc. SPIE 6202, 62020B (2006).
    [CrossRef]
  36. S. D. Walter, “The partial area under the summary ROC curve,” Stat. Med. 24, 2025-2040 (2005).
    [CrossRef] [PubMed]
  37. J. C. Wu, “Studies of operational measurement of ROC curve on large fingerprint data sets using two-sample bootstrap,” NISTIR 7449 (National Institute of Standards and Technology, 2007).

2009 (1)

M. C. Potcoava and M. K. Kim, “Fingerprint biometry applications of digital holography and low-coherence interferography,” Appl. Opt. 48 (2009).
[CrossRef] [PubMed]

2008 (2)

2007 (6)

Y. Cheng and K. V. Larin, “In vivo two- and three-dimensional imaging of artificial and real fingerprints with optical coherence tomography,” IEEE Photon. Technol. Lett. 19, 1634-1636 (2007).
[CrossRef]

Y. Wang, K. Liu, D. L. Lau, and L. G. Hassebrook, “Multicamera phase measuring profilometry for accurate depth measurement,” Proc. SPIE 6555, 655509 (2007).

S. Zhang, X. Li, and S. Yau, “Multilevel quality-guided phase unwrapping algorithm for real-time three-dimensional shape reconstruction,” Appl. Opt. 46, 50-57 (2007).
[CrossRef]

A. Fatehpuria, D. L. Lau, V. Yalla, and L. G. Hassebrook, “Performance analysis of three-dimensional ridge acquisition from live finger and palm surface scans,” Proc. SPIE 6539, 653904 (2007).
[CrossRef]

S. Zhang and S. Yau, “Generic nonsinusoidal phase error correction for three-dimensional shape measurement using a digital video projector,” Appl. Opt. 46, 36-43 (2007).
[CrossRef]

K. G. Larkin and P. A. Fletcher, “A coherent framework for fingerprint analysis: are fingerprints holograms?” Opt. Express 15 (2007).
[CrossRef] [PubMed]

2006 (8)

K. Tai, M. Kurita, and I. Fujieda, “Recognition of living fingers with a sensor based on scattered-light detection,” Appl. Opt. 45, 419-424 (2006).
[CrossRef] [PubMed]

S. Lin, K. M. Yemelyanov, J. E. N. Pugh, and N. Engheta, “Polarization-based and specular-reflection-based noncontact latent fingerprint imaging and lifting,” J. Opt. Soc. Am. A 23, 2137-2153 (2006).
[CrossRef]

A. K. Jain, A. Ross, and S. Pankanti, “Biometrics: a tool for information security,” IEEE Trans. Inf. Forensics Secur. 1, 125-143 (2006).
[CrossRef]

R. Cappelli, D. Maio, D. Maltoni, J. L. Wayman, and A. K. Jain, “Performance evaluation of fingerprint verification systems,” IEEE Trans. Pattern Anal. Mach. Intell. 28, 3-18 (2006).
[CrossRef] [PubMed]

A. Fatehpuria, D. L. Lau, and L. G. Hassebrook, “Acquiring a 2-D rolled equivalent fingerprint image from a non-contact 3-D finger scan,” Proc. SPIE 6202, 62020C (2006).

S. Malassiotis, N. Aifanti, and M. G. Strinzis, “Personal authentication using 3-D finger geometry,” IEEE Trans. Inf. Forensics Secur. 1, 12-21 (2006).
[CrossRef]

Y. Cheng and K. V. Larin, “Artifical fingerprint recognition by using optical coherence tomography with autocorreclation analysis,” Appl. Opt. 45, 9238-9245 (2006).
[CrossRef] [PubMed]

A. Ross and R. Nadgir, “A calibration model for fingerprint sensor interoperability,” Proc. SPIE 6202, 62020B (2006).
[CrossRef]

2005 (4)

S. D. Walter, “The partial area under the summary ROC curve,” Stat. Med. 24, 2025-2040 (2005).
[CrossRef] [PubMed]

V. Yalla and L. G. Hassebrook, “Very-high resolution 3D surface scanning using multi-frequency phase measuring profilometry,” Proc. SPIE 5798, 44-53 (2005).

R. Rowe, S. Corcoran, K. Nixon, and R. Ostrom, “Multispectral imaging for biometrics,” Proc. SPIE 5694,90-99 (2005).
[CrossRef]

A. Bal, A. M. El-saba, and M. S. Alam, “Improved fingerprint identification with supervised filtering enhancement,” Appl. Opt. 44, 647-654 (2005).
[CrossRef] [PubMed]

2004 (2)

2003 (3)

R. Hashido, A. Suzuki, A. Iwata, T. Okmoto, Y. Satoh, and M. Inoue, “A capacitive fingerprint sensor chip using low-temperature poly-si TFTs on a glass substrate and a novel and unique sensing method,” IEEE J. Solid-State Circuits 38, 274-280 (2003).
[CrossRef]

J. Li, L. G. Hassebrook, and C. Guan, “Optimized two-frequency phase measuring profilometry light-sensor temporal-noise sensitivity,” J. Opt. Soc. Am. A 20, 106-115(2003).
[CrossRef]

A. Ross and A. K. Jain, “Information fusion in biometrics,” Pattern Recogn. Lett. 24, 2115-2125 (2003).
[CrossRef]

2002 (1)

S. Pankanti, S. Prabhakar, and A. K. Jain, “On the individuality of fingerprints,” IEEE Trans. Pattern Anal. Mach. Intell. 24, 1010-1025 (2002).
[CrossRef]

Aifanti, N.

S. Malassiotis, N. Aifanti, and M. G. Strinzis, “Personal authentication using 3-D finger geometry,” IEEE Trans. Inf. Forensics Secur. 1, 12-21 (2006).
[CrossRef]

Alam, M. S.

Bal, A.

Bolle, R.

N. Ratha and R. Bolle, Automatic Fingerprint Recognition Systems (Springer-Verlag2004).
[CrossRef]

Cappelli, R.

R. Cappelli, D. Maio, D. Maltoni, J. L. Wayman, and A. K. Jain, “Performance evaluation of fingerprint verification systems,” IEEE Trans. Pattern Anal. Mach. Intell. 28, 3-18 (2006).
[CrossRef] [PubMed]

Chen, Y.

Y. Chen, G. Parsiale, E. Diaz-Santana, and A. K. Jain, “3D touchless fingerprints: compatibility with legacy rolled images,” in 2006 Biometrics Symposium: Special Session on Research at the Biometric Consortium Conference (IEEE, 2006), pp. 1-6.
[CrossRef]

Cheng, Y.

Y. Cheng and K. V. Larin, “In vivo two- and three-dimensional imaging of artificial and real fingerprints with optical coherence tomography,” IEEE Photon. Technol. Lett. 19, 1634-1636 (2007).
[CrossRef]

Y. Cheng and K. V. Larin, “Artifical fingerprint recognition by using optical coherence tomography with autocorreclation analysis,” Appl. Opt. 45, 9238-9245 (2006).
[CrossRef] [PubMed]

Corcoran, S.

R. Rowe, S. Corcoran, K. Nixon, and R. Ostrom, “Multispectral imaging for biometrics,” Proc. SPIE 5694,90-99 (2005).
[CrossRef]

Dass, S. C.

A. Ross, S. C. Dass, and A. K. Jain, “Estimating fingerprint deformation,” in Biometric Authentication (Springer, 2004), pp. 249-255.
[CrossRef]

Diaz-Santana, E.

G. Parziale, E. Diaz-Santana, and R. Hauke, “The Surround Imagertrade: a multi-camera touchless device to acquire 3D rolled-equivalent fingerprints,” in Advances in Biometrics, Vol. 3832 of Lecture Notes in Computer Science (Springer, 2005), 244-250.

Y. Chen, G. Parsiale, E. Diaz-Santana, and A. K. Jain, “3D touchless fingerprints: compatibility with legacy rolled images,” in 2006 Biometrics Symposium: Special Session on Research at the Biometric Consortium Conference (IEEE, 2006), pp. 1-6.
[CrossRef]

El-saba, A. M.

Engheta, N.

Fatehpuria, A.

A. Fatehpuria, D. L. Lau, V. Yalla, and L. G. Hassebrook, “Performance analysis of three-dimensional ridge acquisition from live finger and palm surface scans,” Proc. SPIE 6539, 653904 (2007).
[CrossRef]

A. Fatehpuria, D. L. Lau, and L. G. Hassebrook, “Acquiring a 2-D rolled equivalent fingerprint image from a non-contact 3-D finger scan,” Proc. SPIE 6202, 62020C (2006).

Fletcher, P. A.

K. G. Larkin and P. A. Fletcher, “A coherent framework for fingerprint analysis: are fingerprints holograms?” Opt. Express 15 (2007).
[CrossRef] [PubMed]

Fujieda, I.

Garris, M D.

J. C. Wu and M D. Garris, “Nonparametric statistical data analysis of fingerprint minutiae exchange with two-finger fusion,” NISTIR 7376 (National Institute of Standards and Technology, 2006).

Guan, C.

Hashido, R.

R. Hashido, A. Suzuki, A. Iwata, T. Okmoto, Y. Satoh, and M. Inoue, “A capacitive fingerprint sensor chip using low-temperature poly-si TFTs on a glass substrate and a novel and unique sensing method,” IEEE J. Solid-State Circuits 38, 274-280 (2003).
[CrossRef]

Hassebrook, L. G.

A. Fatehpuria, D. L. Lau, V. Yalla, and L. G. Hassebrook, “Performance analysis of three-dimensional ridge acquisition from live finger and palm surface scans,” Proc. SPIE 6539, 653904 (2007).
[CrossRef]

Y. Wang, K. Liu, D. L. Lau, and L. G. Hassebrook, “Multicamera phase measuring profilometry for accurate depth measurement,” Proc. SPIE 6555, 655509 (2007).

A. Fatehpuria, D. L. Lau, and L. G. Hassebrook, “Acquiring a 2-D rolled equivalent fingerprint image from a non-contact 3-D finger scan,” Proc. SPIE 6202, 62020C (2006).

V. Yalla and L. G. Hassebrook, “Very-high resolution 3D surface scanning using multi-frequency phase measuring profilometry,” Proc. SPIE 5798, 44-53 (2005).

J. Li, L. G. Hassebrook, and C. Guan, “Optimized two-frequency phase measuring profilometry light-sensor temporal-noise sensitivity,” J. Opt. Soc. Am. A 20, 106-115(2003).
[CrossRef]

Hauke, R.

G. Parziale, E. Diaz-Santana, and R. Hauke, “The Surround Imagertrade: a multi-camera touchless device to acquire 3D rolled-equivalent fingerprints,” in Advances in Biometrics, Vol. 3832 of Lecture Notes in Computer Science (Springer, 2005), 244-250.

Inoue, M.

R. Hashido, A. Suzuki, A. Iwata, T. Okmoto, Y. Satoh, and M. Inoue, “A capacitive fingerprint sensor chip using low-temperature poly-si TFTs on a glass substrate and a novel and unique sensing method,” IEEE J. Solid-State Circuits 38, 274-280 (2003).
[CrossRef]

Iwata, A.

R. Hashido, A. Suzuki, A. Iwata, T. Okmoto, Y. Satoh, and M. Inoue, “A capacitive fingerprint sensor chip using low-temperature poly-si TFTs on a glass substrate and a novel and unique sensing method,” IEEE J. Solid-State Circuits 38, 274-280 (2003).
[CrossRef]

Jain, A. K.

R. Cappelli, D. Maio, D. Maltoni, J. L. Wayman, and A. K. Jain, “Performance evaluation of fingerprint verification systems,” IEEE Trans. Pattern Anal. Mach. Intell. 28, 3-18 (2006).
[CrossRef] [PubMed]

A. K. Jain, A. Ross, and S. Pankanti, “Biometrics: a tool for information security,” IEEE Trans. Inf. Forensics Secur. 1, 125-143 (2006).
[CrossRef]

A. Ross and A. K. Jain, “Information fusion in biometrics,” Pattern Recogn. Lett. 24, 2115-2125 (2003).
[CrossRef]

S. Pankanti, S. Prabhakar, and A. K. Jain, “On the individuality of fingerprints,” IEEE Trans. Pattern Anal. Mach. Intell. 24, 1010-1025 (2002).
[CrossRef]

A. K. Jain and A. Ross, “Fingerprint mosaicking,” in ICASSP, IEEE International Conference on Acoustics, Speech, and Signal Processing-Proceedings (IEEE, 2002), Vol. 4, pp. 4064-4067 (2002).

A. Ross, S. C. Dass, and A. K. Jain, “Estimating fingerprint deformation,” in Biometric Authentication (Springer, 2004), pp. 249-255.
[CrossRef]

Y. Chen, G. Parsiale, E. Diaz-Santana, and A. K. Jain, “3D touchless fingerprints: compatibility with legacy rolled images,” in 2006 Biometrics Symposium: Special Session on Research at the Biometric Consortium Conference (IEEE, 2006), pp. 1-6.
[CrossRef]

Kim, M. K.

M. C. Potcoava and M. K. Kim, “Fingerprint biometry applications of digital holography and low-coherence interferography,” Appl. Opt. 48 (2009).
[CrossRef] [PubMed]

Kitamura, Y.

Kumar, B.

Kurita, M.

Larin, K. V.

Y. Cheng and K. V. Larin, “In vivo two- and three-dimensional imaging of artificial and real fingerprints with optical coherence tomography,” IEEE Photon. Technol. Lett. 19, 1634-1636 (2007).
[CrossRef]

Y. Cheng and K. V. Larin, “Artifical fingerprint recognition by using optical coherence tomography with autocorreclation analysis,” Appl. Opt. 45, 9238-9245 (2006).
[CrossRef] [PubMed]

Larkin, K. G.

K. G. Larkin and P. A. Fletcher, “A coherent framework for fingerprint analysis: are fingerprints holograms?” Opt. Express 15 (2007).
[CrossRef] [PubMed]

Lau, D. L.

A. Fatehpuria, D. L. Lau, V. Yalla, and L. G. Hassebrook, “Performance analysis of three-dimensional ridge acquisition from live finger and palm surface scans,” Proc. SPIE 6539, 653904 (2007).
[CrossRef]

Y. Wang, K. Liu, D. L. Lau, and L. G. Hassebrook, “Multicamera phase measuring profilometry for accurate depth measurement,” Proc. SPIE 6555, 655509 (2007).

A. Fatehpuria, D. L. Lau, and L. G. Hassebrook, “Acquiring a 2-D rolled equivalent fingerprint image from a non-contact 3-D finger scan,” Proc. SPIE 6202, 62020C (2006).

Li, J.

Li, X.

Lin, S.

Liu, K.

Y. Wang, K. Liu, D. L. Lau, and L. G. Hassebrook, “Multicamera phase measuring profilometry for accurate depth measurement,” Proc. SPIE 6555, 655509 (2007).

Mahalanobis, A.

Maio, D.

R. Cappelli, D. Maio, D. Maltoni, J. L. Wayman, and A. K. Jain, “Performance evaluation of fingerprint verification systems,” IEEE Trans. Pattern Anal. Mach. Intell. 28, 3-18 (2006).
[CrossRef] [PubMed]

Malassiotis, S.

S. Malassiotis, N. Aifanti, and M. G. Strinzis, “Personal authentication using 3-D finger geometry,” IEEE Trans. Inf. Forensics Secur. 1, 12-21 (2006).
[CrossRef]

Maltoni, D.

R. Cappelli, D. Maio, D. Maltoni, J. L. Wayman, and A. K. Jain, “Performance evaluation of fingerprint verification systems,” IEEE Trans. Pattern Anal. Mach. Intell. 28, 3-18 (2006).
[CrossRef] [PubMed]

Miyatake, S.

Nadgir, R.

A. Ross and R. Nadgir, “A calibration model for fingerprint sensor interoperability,” Proc. SPIE 6202, 62020B (2006).
[CrossRef]

Nixon, K.

R. Rowe, S. Corcoran, K. Nixon, and R. Ostrom, “Multispectral imaging for biometrics,” Proc. SPIE 5694,90-99 (2005).
[CrossRef]

Okmoto, T.

R. Hashido, A. Suzuki, A. Iwata, T. Okmoto, Y. Satoh, and M. Inoue, “A capacitive fingerprint sensor chip using low-temperature poly-si TFTs on a glass substrate and a novel and unique sensing method,” IEEE J. Solid-State Circuits 38, 274-280 (2003).
[CrossRef]

Ostrom, R.

R. Rowe, S. Corcoran, K. Nixon, and R. Ostrom, “Multispectral imaging for biometrics,” Proc. SPIE 5694,90-99 (2005).
[CrossRef]

Pankanti, S.

A. K. Jain, A. Ross, and S. Pankanti, “Biometrics: a tool for information security,” IEEE Trans. Inf. Forensics Secur. 1, 125-143 (2006).
[CrossRef]

S. Pankanti, S. Prabhakar, and A. K. Jain, “On the individuality of fingerprints,” IEEE Trans. Pattern Anal. Mach. Intell. 24, 1010-1025 (2002).
[CrossRef]

Parsiale, G.

Y. Chen, G. Parsiale, E. Diaz-Santana, and A. K. Jain, “3D touchless fingerprints: compatibility with legacy rolled images,” in 2006 Biometrics Symposium: Special Session on Research at the Biometric Consortium Conference (IEEE, 2006), pp. 1-6.
[CrossRef]

Parziale, G.

G. Parziale, E. Diaz-Santana, and R. Hauke, “The Surround Imagertrade: a multi-camera touchless device to acquire 3D rolled-equivalent fingerprints,” in Advances in Biometrics, Vol. 3832 of Lecture Notes in Computer Science (Springer, 2005), 244-250.

Potcoava, M. C.

M. C. Potcoava and M. K. Kim, “Fingerprint biometry applications of digital holography and low-coherence interferography,” Appl. Opt. 48 (2009).
[CrossRef] [PubMed]

Prabhakar, S.

S. Pankanti, S. Prabhakar, and A. K. Jain, “On the individuality of fingerprints,” IEEE Trans. Pattern Anal. Mach. Intell. 24, 1010-1025 (2002).
[CrossRef]

Pugh, J. E. N.

Rao, S. M.

Ratha, N.

N. Ratha and R. Bolle, Automatic Fingerprint Recognition Systems (Springer-Verlag2004).
[CrossRef]

Ross, A.

A. K. Jain, A. Ross, and S. Pankanti, “Biometrics: a tool for information security,” IEEE Trans. Inf. Forensics Secur. 1, 125-143 (2006).
[CrossRef]

A. Ross and R. Nadgir, “A calibration model for fingerprint sensor interoperability,” Proc. SPIE 6202, 62020B (2006).
[CrossRef]

A. Ross and A. K. Jain, “Information fusion in biometrics,” Pattern Recogn. Lett. 24, 2115-2125 (2003).
[CrossRef]

A. K. Jain and A. Ross, “Fingerprint mosaicking,” in ICASSP, IEEE International Conference on Acoustics, Speech, and Signal Processing-Proceedings (IEEE, 2002), Vol. 4, pp. 4064-4067 (2002).

A. Ross, S. C. Dass, and A. K. Jain, “Estimating fingerprint deformation,” in Biometric Authentication (Springer, 2004), pp. 249-255.
[CrossRef]

Rowe, R.

R. Rowe, S. Corcoran, K. Nixon, and R. Ostrom, “Multispectral imaging for biometrics,” Proc. SPIE 5694,90-99 (2005).
[CrossRef]

Satoh, Y.

R. Hashido, A. Suzuki, A. Iwata, T. Okmoto, Y. Satoh, and M. Inoue, “A capacitive fingerprint sensor chip using low-temperature poly-si TFTs on a glass substrate and a novel and unique sensing method,” IEEE J. Solid-State Circuits 38, 274-280 (2003).
[CrossRef]

Savvides, M.

Shogenji, R.

Strinzis, M. G.

S. Malassiotis, N. Aifanti, and M. G. Strinzis, “Personal authentication using 3-D finger geometry,” IEEE Trans. Inf. Forensics Secur. 1, 12-21 (2006).
[CrossRef]

Suzuki, A.

R. Hashido, A. Suzuki, A. Iwata, T. Okmoto, Y. Satoh, and M. Inoue, “A capacitive fingerprint sensor chip using low-temperature poly-si TFTs on a glass substrate and a novel and unique sensing method,” IEEE J. Solid-State Circuits 38, 274-280 (2003).
[CrossRef]

Tabassi, E.

E. Tabassi, C. L. Wilson, and C. I. Watson, “Fingerprint image quality,” NISTIR 7151 (National Institute of Standards and Technology, 2004).

Tai, K.

Tanida, J.

Thomton, J.

Venkataramani, K.

Walter, S. D.

S. D. Walter, “The partial area under the summary ROC curve,” Stat. Med. 24, 2025-2040 (2005).
[CrossRef] [PubMed]

Wang, Y.

Y. Wang, K. Liu, D. L. Lau, and L. G. Hassebrook, “Multicamera phase measuring profilometry for accurate depth measurement,” Proc. SPIE 6555, 655509 (2007).

Watson, C. I.

E. Tabassi, C. L. Wilson, and C. I. Watson, “Fingerprint image quality,” NISTIR 7151 (National Institute of Standards and Technology, 2004).

Wayman, J. L.

R. Cappelli, D. Maio, D. Maltoni, J. L. Wayman, and A. K. Jain, “Performance evaluation of fingerprint verification systems,” IEEE Trans. Pattern Anal. Mach. Intell. 28, 3-18 (2006).
[CrossRef] [PubMed]

Wilson, C. L.

J. C. Wu and C. L. Wilson, “Nonparametric analysis of fingerprint data,” NISTIR 7226 (National Institute of Standards and Technology, 2005).

E. Tabassi, C. L. Wilson, and C. I. Watson, “Fingerprint image quality,” NISTIR 7151 (National Institute of Standards and Technology, 2004).

Wolberg, J.

J. Wolberg, Data Analysis Using the Method of Least Squares: Extracting the Most Information from Experiments (Springer2005).
[PubMed]

Wu, J. C.

J. C. Wu, “Studies of operational measurement of ROC curve on large fingerprint data sets using two-sample bootstrap,” NISTIR 7449 (National Institute of Standards and Technology, 2007).

J. C. Wu and C. L. Wilson, “Nonparametric analysis of fingerprint data,” NISTIR 7226 (National Institute of Standards and Technology, 2005).

J. C. Wu and M D. Garris, “Nonparametric statistical data analysis of fingerprint minutiae exchange with two-finger fusion,” NISTIR 7376 (National Institute of Standards and Technology, 2006).

Xie, C.

Yalla, V.

A. Fatehpuria, D. L. Lau, V. Yalla, and L. G. Hassebrook, “Performance analysis of three-dimensional ridge acquisition from live finger and palm surface scans,” Proc. SPIE 6539, 653904 (2007).
[CrossRef]

V. Yalla and L. G. Hassebrook, “Very-high resolution 3D surface scanning using multi-frequency phase measuring profilometry,” Proc. SPIE 5798, 44-53 (2005).

Yamada, K.

Yau, S.

Yemelyanov, K. M.

Zhang, S.

Appl. Opt. (10)

K. Tai, M. Kurita, and I. Fujieda, “Recognition of living fingers with a sensor based on scattered-light detection,” Appl. Opt. 45, 419-424 (2006).
[CrossRef] [PubMed]

A. Bal, A. M. El-saba, and M. S. Alam, “Improved fingerprint identification with supervised filtering enhancement,” Appl. Opt. 44, 647-654 (2005).
[CrossRef] [PubMed]

S. M. Rao, “Method for producing correct fingerprints,” Appl. Opt. 47, 25-29 (2008).
[CrossRef]

R. Shogenji, Y. Kitamura, K. Yamada, S. Miyatake, and J. Tanida, “Bimodal fingerprint capturing system based on compound-eye imaging module,” Appl. Opt. 43, 1355-1359 (2004).
[CrossRef] [PubMed]

M. C. Potcoava and M. K. Kim, “Fingerprint biometry applications of digital holography and low-coherence interferography,” Appl. Opt. 48 (2009).
[CrossRef] [PubMed]

S. Zhang and S. Yau, “Generic nonsinusoidal phase error correction for three-dimensional shape measurement using a digital video projector,” Appl. Opt. 46, 36-43 (2007).
[CrossRef]

S. Zhang and S. Yau, “Absolute phase-assisted three-dimensional data registration for a dual-camera structured light system,” Appl. Opt. 47, 3134-3142 (2008).
[CrossRef] [PubMed]

S. Zhang, X. Li, and S. Yau, “Multilevel quality-guided phase unwrapping algorithm for real-time three-dimensional shape reconstruction,” Appl. Opt. 46, 50-57 (2007).
[CrossRef]

B. Kumar, M. Savvides, C. Xie, K. Venkataramani, J. Thomton, and A. Mahalanobis, “Biometric verification with correlation filters,” Appl. Opt. 43, 391-402 (2004).
[CrossRef]

Y. Cheng and K. V. Larin, “Artifical fingerprint recognition by using optical coherence tomography with autocorreclation analysis,” Appl. Opt. 45, 9238-9245 (2006).
[CrossRef] [PubMed]

IEEE J. Solid-State Circuits (1)

R. Hashido, A. Suzuki, A. Iwata, T. Okmoto, Y. Satoh, and M. Inoue, “A capacitive fingerprint sensor chip using low-temperature poly-si TFTs on a glass substrate and a novel and unique sensing method,” IEEE J. Solid-State Circuits 38, 274-280 (2003).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

Y. Cheng and K. V. Larin, “In vivo two- and three-dimensional imaging of artificial and real fingerprints with optical coherence tomography,” IEEE Photon. Technol. Lett. 19, 1634-1636 (2007).
[CrossRef]

IEEE Trans. Inf. Forensics Secur. (2)

S. Malassiotis, N. Aifanti, and M. G. Strinzis, “Personal authentication using 3-D finger geometry,” IEEE Trans. Inf. Forensics Secur. 1, 12-21 (2006).
[CrossRef]

A. K. Jain, A. Ross, and S. Pankanti, “Biometrics: a tool for information security,” IEEE Trans. Inf. Forensics Secur. 1, 125-143 (2006).
[CrossRef]

IEEE Trans. Pattern Anal. Mach. Intell. (2)

S. Pankanti, S. Prabhakar, and A. K. Jain, “On the individuality of fingerprints,” IEEE Trans. Pattern Anal. Mach. Intell. 24, 1010-1025 (2002).
[CrossRef]

R. Cappelli, D. Maio, D. Maltoni, J. L. Wayman, and A. K. Jain, “Performance evaluation of fingerprint verification systems,” IEEE Trans. Pattern Anal. Mach. Intell. 28, 3-18 (2006).
[CrossRef] [PubMed]

J. Opt. Soc. Am. A (2)

Opt. Express (1)

K. G. Larkin and P. A. Fletcher, “A coherent framework for fingerprint analysis: are fingerprints holograms?” Opt. Express 15 (2007).
[CrossRef] [PubMed]

Pattern Recogn. Lett. (1)

A. Ross and A. K. Jain, “Information fusion in biometrics,” Pattern Recogn. Lett. 24, 2115-2125 (2003).
[CrossRef]

Proc. SPIE (3)

A. Fatehpuria, D. L. Lau, V. Yalla, and L. G. Hassebrook, “Performance analysis of three-dimensional ridge acquisition from live finger and palm surface scans,” Proc. SPIE 6539, 653904 (2007).
[CrossRef]

R. Rowe, S. Corcoran, K. Nixon, and R. Ostrom, “Multispectral imaging for biometrics,” Proc. SPIE 5694,90-99 (2005).
[CrossRef]

A. Ross and R. Nadgir, “A calibration model for fingerprint sensor interoperability,” Proc. SPIE 6202, 62020B (2006).
[CrossRef]

Stat. Med. (1)

S. D. Walter, “The partial area under the summary ROC curve,” Stat. Med. 24, 2025-2040 (2005).
[CrossRef] [PubMed]

Other (13)

J. C. Wu, “Studies of operational measurement of ROC curve on large fingerprint data sets using two-sample bootstrap,” NISTIR 7449 (National Institute of Standards and Technology, 2007).

J. Wolberg, Data Analysis Using the Method of Least Squares: Extracting the Most Information from Experiments (Springer2005).
[PubMed]

E. Tabassi, C. L. Wilson, and C. I. Watson, “Fingerprint image quality,” NISTIR 7151 (National Institute of Standards and Technology, 2004).

V. Yalla and L. G. Hassebrook, “Very-high resolution 3D surface scanning using multi-frequency phase measuring profilometry,” Proc. SPIE 5798, 44-53 (2005).

G. Parziale, E. Diaz-Santana, and R. Hauke, “The Surround Imagertrade: a multi-camera touchless device to acquire 3D rolled-equivalent fingerprints,” in Advances in Biometrics, Vol. 3832 of Lecture Notes in Computer Science (Springer, 2005), 244-250.

Y. Chen, G. Parsiale, E. Diaz-Santana, and A. K. Jain, “3D touchless fingerprints: compatibility with legacy rolled images,” in 2006 Biometrics Symposium: Special Session on Research at the Biometric Consortium Conference (IEEE, 2006), pp. 1-6.
[CrossRef]

A. Fatehpuria, D. L. Lau, and L. G. Hassebrook, “Acquiring a 2-D rolled equivalent fingerprint image from a non-contact 3-D finger scan,” Proc. SPIE 6202, 62020C (2006).

Y. Wang, K. Liu, D. L. Lau, and L. G. Hassebrook, “Multicamera phase measuring profilometry for accurate depth measurement,” Proc. SPIE 6555, 655509 (2007).

J. C. Wu and C. L. Wilson, “Nonparametric analysis of fingerprint data,” NISTIR 7226 (National Institute of Standards and Technology, 2005).

J. C. Wu and M D. Garris, “Nonparametric statistical data analysis of fingerprint minutiae exchange with two-finger fusion,” NISTIR 7376 (National Institute of Standards and Technology, 2006).

N. Ratha and R. Bolle, Automatic Fingerprint Recognition Systems (Springer-Verlag2004).
[CrossRef]

A. K. Jain and A. Ross, “Fingerprint mosaicking,” in ICASSP, IEEE International Conference on Acoustics, Speech, and Signal Processing-Proceedings (IEEE, 2002), Vol. 4, pp. 4064-4067 (2002).

A. Ross, S. C. Dass, and A. K. Jain, “Estimating fingerprint deformation,” in Biometric Authentication (Springer, 2004), pp. 249-255.
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1
Fig. 1

Noncontact 3D fingerprint acquisition using the PMP technique.

Fig. 2
Fig. 2

(a) Front view of a 3D fingerprint. (b) Side view of the 3D print. (c), (d) Cropped and rotated piece of the 3D print. The 3D data is shown with depth rendering. The full fingerprint area spans approximately 21     mm × 27 mm with point spacing between 20 and 25 μm .

Fig. 3
Fig. 3

(a) Linear θ map. (b) Linear ϕ map. The linear maps’ width (pixels) L 1 = 1200 , and the height (pixels) L 2 = 960 .

Fig. 4
Fig. 4

Distance cross section of the upsampled print along the horizontal (θ) direction; linear unwrapping.

Fig. 5
Fig. 5

(a) Nonlinear θ map. (b) Nonlinear ϕ map. The nonlinear maps’ width (pixels) J 1 = 600 , and the height (pixels) J 2 = 600 .

Fig. 6
Fig. 6

(a) Distance cross section of the downsampled print along the horizontal (θ) direction; nonlinear unwrapping. (b) Distance cross section of the downsampled print along the vertical (ϕ) direction; nonlinear unwrapping.

Fig. 7
Fig. 7

The final 3D unwrapped fingerprint downsampled to 500 ppi . The width of the resulting image is 450 pixels, and the height is 510 pixels.

Fig. 8
Fig. 8

(a) Percentage of blocks in quality zone 4, which is highest local quality zone, with respect to different overall quality numbers. (b) Number of minutiae with quality greater than 0.75, with respect to different overall quality numbers. (c) Classification confidence number, with respect to different overall quality numbers.

Fig. 9
Fig. 9

Distributions of genuine and impostor scores for 3D unwrapped fingerprints.

Fig. 10
Fig. 10

ROC of 3D unwrapped fingerprints, TAR versus FAR.

Fig. 11
Fig. 11

(a) Distributions of genuine scores for the high-, mixed-, and low-quality matchings for 3D unwrapped fingerprints. (b) Distributions of impostor scores for the high-, mixed-, and low -quality matchings for 3D unwrapped fingerprints.

Fig. 12
Fig. 12

ROC of the high-, mixed-, and low-quality matchings for 3D unwrapped fingerprints, TAR versus FAR.

Equations (24)

Equations on this page are rendered with MathJax. Learn more.

I n p ( x p , y p ) = A p + B p cos [ ε ( x p , y p ) + 2 π n N ] ,
ε ( x p , y p ) = 2 π f y p L ,
I n c ( x c , y c ) = A c ( x c , y c ) + B c ( x c , y c ) cos [ ε ( x c , y c ) + 2 π n N ] .
ε ( x c , y c ) = arctan [ U ( x c , y c ) V ( x c , y c ) ] = arctan { sin [ ε ( x p , y p ) ] cos [ ε ( x p , y p ) ] } ,
U ( x c , y c ) = n = 1 N [ I n c ( x c , y c ) sin ( 2 π n N ) ] ,
V ( x c , y c ) = n = 1 N [ I n c ( x c , y c ) cos ( 2 π n N ) ] .
y p ( x c , y c ) = ε ( x c , y c ) L 2 π f .
B c ( x c , y c ) = 2 N [ U 2 ( x c , y c ) + V 2 ( x c , y c ) ] 1 / 2 ,
d = [ ( x k x c ) 2 + ( y k y c ) 2 + ( z k z c ) 2 ] 1 / 2 r ,
x k = x k x c g = 1 g = K ( x g x c ) K ,
y k = y k y c g = 1 g = K ( y g y c ) K ,
z k = z k z c .
θ l 1 linear = ( l 1 1 ) t θ + θ min ,
ϕ l 2 linear = ( l 2 1 ) t ϕ + ϕ min ,
t θ = min ( | θ w 1 mean θ w mean | ) ,
t ϕ = min ( | ϕ h 1 mean ϕ h mean | ) ,
L 1 = max ( θ k ) min ( θ k ) t θ ,
L 2 = max ( ϕ k ) min ( ϕ k ) t ϕ
d l 1 θ = | θ l 1 + 1 θ l 1 | ρ l 1 + 1 + ρ l 1 2
d l 2 ϕ = | ϕ l 1 + 1 ϕ l 1 | ρ l 1 + 1 + ρ l 1 2 .
D = ( θ j 1 1 θ j 1 ) ρ j 1 lp + ρ j 1 1 lp 2 ,
θ j 1 1 = θ j 1 + D ρ j 1 lp .
θ j 1 + 1 = θ j 1 D ρ j 1 lp .
ϕ j 2 1 = ϕ j 2 + D ρ j 2 lp if j 2 < J 2 2 , ϕ j 2 + 1 = ϕ j 2 D ρ j 2 lp if j 2 > J 2 2 .

Metrics