Abstract

The polarization dependence of directional couplers (DC) formed by silicon-on-insulator (SOI) slot waveguides was studied, and its applications as highly efficient polarization beam splitters (PBSs) and polarization-independent directional couplers (PIDCs) were investigated. The coupling lengths for the quasi-TE and quasi-TM modes may vary with the waveguide geometry due to structural birefringence; thus numerical simulations of the coupling effects in the directional couplers with different aspect ratios and waveguide spacing were conducted to obtain the optimal design parameters for high efficiency as well as compact device size. The lengths of the coupling regions of the designed PBS and PIDC are 47.61 and 23.13μm, respectively, and they delivered good performance, with an extinction ratio greater than 20 and 1dB bandwidth larger than 100nm. The tolerance of fabrication error in the practical device is also discussed.

© 2010 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. T. Tsuchizawa, K. Yamada, H. Fukuda, T. Watanabe, J. Takahashi, M. Takahashi, T. Shoji, E. Tamechika, S. Itabashi, and H. Morita, “Microphotonics devices based on silicon microfabrication technology,” IEEE J. Sel. Top. Quantum Electron. 11, 232–240 (2005).
    [CrossRef]
  2. K. K. Lee, D. R. Lim, H.-C. Luan, A. Agarwal, J. Foresi, and L. C. Kimerling, “Effect of size and roughness on light transmission in a Si/SiO2 waveguide: Experiments and model,” Appl. Phys. Lett. 77, 1617–1619 (2000).
    [CrossRef]
  3. P. Dumon, W. Bogaerts, V. Wiaux, J. Wouters, S. Beckx, J. V. Campenhout, D. Taillaert, B. Luyssaert, P. Bienstman, D. V. Thourhout, and R. Baets, “Low-loss SOI photonic wires and ring resonators fabricated with deep UV lithography,” IEEE Photonics Technol. Lett. 16, 1328–1330 (2004).
    [CrossRef]
  4. H. Yamada, T. Chu, S. Ishida, and Y. Arakawa, “Si photonic wire waveguide devices,” IEEE J. Sel. Top. Quantum Electron. 12, 1371–1376 (2006).
    [CrossRef]
  5. W. Bogaerts, R. Baets, P. Dumon, V. Wiaux, S. Beckx, D. Taillaert, B. Luyssaert, J. V. Campenhout, P. Bienstman, and D. V. Thourhout, “Nanophotonic waveguides in silicon-on-insulator fabricated with CMOS technology,” J. Lightwave Technol. 23, 401–412 (2005).
    [CrossRef]
  6. A. Miliou, R. Srivastava, and R. V. Ramaswamy, “A 1.3 μmdirectional coupler polarization splitter by ion exchange,” J. Lightwave Technol. 11, 220–225 (1993).
    [CrossRef]
  7. I. Kiyat, A. Aydinli, and N. Dagli, “A compact silicon-on-insulator polarization splitter,” IEEE Photonics Technol. Lett. 17, 100–102 (2005).
    [CrossRef]
  8. S. Hsu, “Optical waveguide tap with low polarization dependence and flattened wavelength using a Mach–Zehnder directional coupler,” Appl. Opt. 49, 2434–2440 (2010).
    [CrossRef]
  9. C. A. Barrios, K. B. Gylfason, B. Sánchez, A. Griol, H. Sohlström, and M. Holgado, “Slot-waveguide biochemical sensor,” Opt. Lett. 32, 3080–3082 (2007).
    [CrossRef] [PubMed]
  10. T. Fujisawa and M. Koshiba, “Polarization-independent optical directional coupler based on slot waveguides,” Opt. Lett. 31, 56–58 (2006).
    [CrossRef] [PubMed]
  11. A. Khanna, A. Säynätjoki, A. Tervonen, R. A. Norwood, and S. Honkanen, “Polarization properties of two-dimensional slot waveguides,” Appl. Opt. 49, 5321–5332 (2010).
    [CrossRef] [PubMed]
  12. A. Khanna, A. Säynätjoki, A. Tervonen, and S. Honkanen, “Control of optical mode properties in cross-slot waveguides,” Appl. Opt. 48, 6547–6552 (2009).
    [CrossRef] [PubMed]
  13. N. Feng, R. Sun, J. Michel, and L. C. Kimerling, “Low-loss compact-size slotted waveguide polarization rotator and transformer,” Opt. Lett. 32, 2131–2133 (2007).
    [CrossRef] [PubMed]
  14. J. V. Galan, P. Sanchis, . Garcia, J. Blasco, A. Martinez, and J. Martí, “Study of asymmetric silicon cross-slot waveguides for polarization diversity schemes,” Appl. Opt. 48, 2693–2696(2009).
    [CrossRef] [PubMed]
  15. V. R. Almeida, Q. Xu, C. A. Barrios, and M. Lipson, “Guiding and confining light in void nanostructure,” Opt. Lett. 29, 1209–1211 (2004).
    [CrossRef] [PubMed]
  16. Q. Xu, V. R. Almeida, R. R. Panepucci, and M. Lipson, “Experimental demonstration of guiding and confining light in nanometer-size low-refractive-index material,” Opt. Lett. 29, 1626–1628 (2004).
    [CrossRef] [PubMed]
  17. N. Feng, R. Sun, L. C. Kimerling, and J. Michel, “Lossless strip-to-slot waveguide transformer,” Opt. Lett. 32, 1250–1252(2007).
    [CrossRef] [PubMed]
  18. Q. Wang and S. He, “An effective and accurate method for the design of directional couplers,” IEEE J. Sel. Top. Quantum Electron. 8, 1233–1238 (2002).
    [CrossRef]
  19. W. Huang, “Coupled-mode theory for optical waveguides: an overview,” J. Opt. Soc. Am. A 11, 963–983 (1994).
    [CrossRef]
  20. J. Van Roey, J. Van der Donk, and P. E. Lagasse, “Beam-propagation method: analysis and assessment,” J. Opt. Soc. Am. 71, 803–810 (1981).
    [CrossRef]
  21. W. Huang, C. Xu, S. Chu, and S. K. Chaudhuri, “The finite-difference vector beam propagation method: analysis and assessment,” J. Lightwave Technol. 10, 295–305(1992).
    [CrossRef]

2010 (2)

2009 (2)

2007 (3)

2006 (2)

H. Yamada, T. Chu, S. Ishida, and Y. Arakawa, “Si photonic wire waveguide devices,” IEEE J. Sel. Top. Quantum Electron. 12, 1371–1376 (2006).
[CrossRef]

T. Fujisawa and M. Koshiba, “Polarization-independent optical directional coupler based on slot waveguides,” Opt. Lett. 31, 56–58 (2006).
[CrossRef] [PubMed]

2005 (3)

T. Tsuchizawa, K. Yamada, H. Fukuda, T. Watanabe, J. Takahashi, M. Takahashi, T. Shoji, E. Tamechika, S. Itabashi, and H. Morita, “Microphotonics devices based on silicon microfabrication technology,” IEEE J. Sel. Top. Quantum Electron. 11, 232–240 (2005).
[CrossRef]

I. Kiyat, A. Aydinli, and N. Dagli, “A compact silicon-on-insulator polarization splitter,” IEEE Photonics Technol. Lett. 17, 100–102 (2005).
[CrossRef]

W. Bogaerts, R. Baets, P. Dumon, V. Wiaux, S. Beckx, D. Taillaert, B. Luyssaert, J. V. Campenhout, P. Bienstman, and D. V. Thourhout, “Nanophotonic waveguides in silicon-on-insulator fabricated with CMOS technology,” J. Lightwave Technol. 23, 401–412 (2005).
[CrossRef]

2004 (3)

P. Dumon, W. Bogaerts, V. Wiaux, J. Wouters, S. Beckx, J. V. Campenhout, D. Taillaert, B. Luyssaert, P. Bienstman, D. V. Thourhout, and R. Baets, “Low-loss SOI photonic wires and ring resonators fabricated with deep UV lithography,” IEEE Photonics Technol. Lett. 16, 1328–1330 (2004).
[CrossRef]

V. R. Almeida, Q. Xu, C. A. Barrios, and M. Lipson, “Guiding and confining light in void nanostructure,” Opt. Lett. 29, 1209–1211 (2004).
[CrossRef] [PubMed]

Q. Xu, V. R. Almeida, R. R. Panepucci, and M. Lipson, “Experimental demonstration of guiding and confining light in nanometer-size low-refractive-index material,” Opt. Lett. 29, 1626–1628 (2004).
[CrossRef] [PubMed]

2002 (1)

Q. Wang and S. He, “An effective and accurate method for the design of directional couplers,” IEEE J. Sel. Top. Quantum Electron. 8, 1233–1238 (2002).
[CrossRef]

2000 (1)

K. K. Lee, D. R. Lim, H.-C. Luan, A. Agarwal, J. Foresi, and L. C. Kimerling, “Effect of size and roughness on light transmission in a Si/SiO2 waveguide: Experiments and model,” Appl. Phys. Lett. 77, 1617–1619 (2000).
[CrossRef]

1994 (1)

1993 (1)

A. Miliou, R. Srivastava, and R. V. Ramaswamy, “A 1.3 μmdirectional coupler polarization splitter by ion exchange,” J. Lightwave Technol. 11, 220–225 (1993).
[CrossRef]

1992 (1)

W. Huang, C. Xu, S. Chu, and S. K. Chaudhuri, “The finite-difference vector beam propagation method: analysis and assessment,” J. Lightwave Technol. 10, 295–305(1992).
[CrossRef]

1981 (1)

Agarwal, A.

K. K. Lee, D. R. Lim, H.-C. Luan, A. Agarwal, J. Foresi, and L. C. Kimerling, “Effect of size and roughness on light transmission in a Si/SiO2 waveguide: Experiments and model,” Appl. Phys. Lett. 77, 1617–1619 (2000).
[CrossRef]

Almeida, V. R.

Arakawa, Y.

H. Yamada, T. Chu, S. Ishida, and Y. Arakawa, “Si photonic wire waveguide devices,” IEEE J. Sel. Top. Quantum Electron. 12, 1371–1376 (2006).
[CrossRef]

Aydinli, A.

I. Kiyat, A. Aydinli, and N. Dagli, “A compact silicon-on-insulator polarization splitter,” IEEE Photonics Technol. Lett. 17, 100–102 (2005).
[CrossRef]

Baets, R.

W. Bogaerts, R. Baets, P. Dumon, V. Wiaux, S. Beckx, D. Taillaert, B. Luyssaert, J. V. Campenhout, P. Bienstman, and D. V. Thourhout, “Nanophotonic waveguides in silicon-on-insulator fabricated with CMOS technology,” J. Lightwave Technol. 23, 401–412 (2005).
[CrossRef]

P. Dumon, W. Bogaerts, V. Wiaux, J. Wouters, S. Beckx, J. V. Campenhout, D. Taillaert, B. Luyssaert, P. Bienstman, D. V. Thourhout, and R. Baets, “Low-loss SOI photonic wires and ring resonators fabricated with deep UV lithography,” IEEE Photonics Technol. Lett. 16, 1328–1330 (2004).
[CrossRef]

Barrios, C. A.

Beckx, S.

W. Bogaerts, R. Baets, P. Dumon, V. Wiaux, S. Beckx, D. Taillaert, B. Luyssaert, J. V. Campenhout, P. Bienstman, and D. V. Thourhout, “Nanophotonic waveguides in silicon-on-insulator fabricated with CMOS technology,” J. Lightwave Technol. 23, 401–412 (2005).
[CrossRef]

P. Dumon, W. Bogaerts, V. Wiaux, J. Wouters, S. Beckx, J. V. Campenhout, D. Taillaert, B. Luyssaert, P. Bienstman, D. V. Thourhout, and R. Baets, “Low-loss SOI photonic wires and ring resonators fabricated with deep UV lithography,” IEEE Photonics Technol. Lett. 16, 1328–1330 (2004).
[CrossRef]

Bienstman, P.

W. Bogaerts, R. Baets, P. Dumon, V. Wiaux, S. Beckx, D. Taillaert, B. Luyssaert, J. V. Campenhout, P. Bienstman, and D. V. Thourhout, “Nanophotonic waveguides in silicon-on-insulator fabricated with CMOS technology,” J. Lightwave Technol. 23, 401–412 (2005).
[CrossRef]

P. Dumon, W. Bogaerts, V. Wiaux, J. Wouters, S. Beckx, J. V. Campenhout, D. Taillaert, B. Luyssaert, P. Bienstman, D. V. Thourhout, and R. Baets, “Low-loss SOI photonic wires and ring resonators fabricated with deep UV lithography,” IEEE Photonics Technol. Lett. 16, 1328–1330 (2004).
[CrossRef]

Blasco, J.

Bogaerts, W.

W. Bogaerts, R. Baets, P. Dumon, V. Wiaux, S. Beckx, D. Taillaert, B. Luyssaert, J. V. Campenhout, P. Bienstman, and D. V. Thourhout, “Nanophotonic waveguides in silicon-on-insulator fabricated with CMOS technology,” J. Lightwave Technol. 23, 401–412 (2005).
[CrossRef]

P. Dumon, W. Bogaerts, V. Wiaux, J. Wouters, S. Beckx, J. V. Campenhout, D. Taillaert, B. Luyssaert, P. Bienstman, D. V. Thourhout, and R. Baets, “Low-loss SOI photonic wires and ring resonators fabricated with deep UV lithography,” IEEE Photonics Technol. Lett. 16, 1328–1330 (2004).
[CrossRef]

Campenhout, J. V.

W. Bogaerts, R. Baets, P. Dumon, V. Wiaux, S. Beckx, D. Taillaert, B. Luyssaert, J. V. Campenhout, P. Bienstman, and D. V. Thourhout, “Nanophotonic waveguides in silicon-on-insulator fabricated with CMOS technology,” J. Lightwave Technol. 23, 401–412 (2005).
[CrossRef]

P. Dumon, W. Bogaerts, V. Wiaux, J. Wouters, S. Beckx, J. V. Campenhout, D. Taillaert, B. Luyssaert, P. Bienstman, D. V. Thourhout, and R. Baets, “Low-loss SOI photonic wires and ring resonators fabricated with deep UV lithography,” IEEE Photonics Technol. Lett. 16, 1328–1330 (2004).
[CrossRef]

Chaudhuri, S. K.

W. Huang, C. Xu, S. Chu, and S. K. Chaudhuri, “The finite-difference vector beam propagation method: analysis and assessment,” J. Lightwave Technol. 10, 295–305(1992).
[CrossRef]

Chu, S.

W. Huang, C. Xu, S. Chu, and S. K. Chaudhuri, “The finite-difference vector beam propagation method: analysis and assessment,” J. Lightwave Technol. 10, 295–305(1992).
[CrossRef]

Chu, T.

H. Yamada, T. Chu, S. Ishida, and Y. Arakawa, “Si photonic wire waveguide devices,” IEEE J. Sel. Top. Quantum Electron. 12, 1371–1376 (2006).
[CrossRef]

Dagli, N.

I. Kiyat, A. Aydinli, and N. Dagli, “A compact silicon-on-insulator polarization splitter,” IEEE Photonics Technol. Lett. 17, 100–102 (2005).
[CrossRef]

Dumon, P.

W. Bogaerts, R. Baets, P. Dumon, V. Wiaux, S. Beckx, D. Taillaert, B. Luyssaert, J. V. Campenhout, P. Bienstman, and D. V. Thourhout, “Nanophotonic waveguides in silicon-on-insulator fabricated with CMOS technology,” J. Lightwave Technol. 23, 401–412 (2005).
[CrossRef]

P. Dumon, W. Bogaerts, V. Wiaux, J. Wouters, S. Beckx, J. V. Campenhout, D. Taillaert, B. Luyssaert, P. Bienstman, D. V. Thourhout, and R. Baets, “Low-loss SOI photonic wires and ring resonators fabricated with deep UV lithography,” IEEE Photonics Technol. Lett. 16, 1328–1330 (2004).
[CrossRef]

Feng, N.

Foresi, J.

K. K. Lee, D. R. Lim, H.-C. Luan, A. Agarwal, J. Foresi, and L. C. Kimerling, “Effect of size and roughness on light transmission in a Si/SiO2 waveguide: Experiments and model,” Appl. Phys. Lett. 77, 1617–1619 (2000).
[CrossRef]

Fujisawa, T.

Fukuda, H.

T. Tsuchizawa, K. Yamada, H. Fukuda, T. Watanabe, J. Takahashi, M. Takahashi, T. Shoji, E. Tamechika, S. Itabashi, and H. Morita, “Microphotonics devices based on silicon microfabrication technology,” IEEE J. Sel. Top. Quantum Electron. 11, 232–240 (2005).
[CrossRef]

Galan, J. V.

Garcia,

Griol, A.

Gylfason, K. B.

He, S.

Q. Wang and S. He, “An effective and accurate method for the design of directional couplers,” IEEE J. Sel. Top. Quantum Electron. 8, 1233–1238 (2002).
[CrossRef]

Holgado, M.

Honkanen, S.

Hsu, S.

Huang, W.

W. Huang, “Coupled-mode theory for optical waveguides: an overview,” J. Opt. Soc. Am. A 11, 963–983 (1994).
[CrossRef]

W. Huang, C. Xu, S. Chu, and S. K. Chaudhuri, “The finite-difference vector beam propagation method: analysis and assessment,” J. Lightwave Technol. 10, 295–305(1992).
[CrossRef]

Ishida, S.

H. Yamada, T. Chu, S. Ishida, and Y. Arakawa, “Si photonic wire waveguide devices,” IEEE J. Sel. Top. Quantum Electron. 12, 1371–1376 (2006).
[CrossRef]

Itabashi, S.

T. Tsuchizawa, K. Yamada, H. Fukuda, T. Watanabe, J. Takahashi, M. Takahashi, T. Shoji, E. Tamechika, S. Itabashi, and H. Morita, “Microphotonics devices based on silicon microfabrication technology,” IEEE J. Sel. Top. Quantum Electron. 11, 232–240 (2005).
[CrossRef]

Khanna, A.

Kimerling, L. C.

Kiyat, I.

I. Kiyat, A. Aydinli, and N. Dagli, “A compact silicon-on-insulator polarization splitter,” IEEE Photonics Technol. Lett. 17, 100–102 (2005).
[CrossRef]

Koshiba, M.

Lagasse, P. E.

Lee, K. K.

K. K. Lee, D. R. Lim, H.-C. Luan, A. Agarwal, J. Foresi, and L. C. Kimerling, “Effect of size and roughness on light transmission in a Si/SiO2 waveguide: Experiments and model,” Appl. Phys. Lett. 77, 1617–1619 (2000).
[CrossRef]

Lim, D. R.

K. K. Lee, D. R. Lim, H.-C. Luan, A. Agarwal, J. Foresi, and L. C. Kimerling, “Effect of size and roughness on light transmission in a Si/SiO2 waveguide: Experiments and model,” Appl. Phys. Lett. 77, 1617–1619 (2000).
[CrossRef]

Lipson, M.

Luan, H.-C.

K. K. Lee, D. R. Lim, H.-C. Luan, A. Agarwal, J. Foresi, and L. C. Kimerling, “Effect of size and roughness on light transmission in a Si/SiO2 waveguide: Experiments and model,” Appl. Phys. Lett. 77, 1617–1619 (2000).
[CrossRef]

Luyssaert, B.

W. Bogaerts, R. Baets, P. Dumon, V. Wiaux, S. Beckx, D. Taillaert, B. Luyssaert, J. V. Campenhout, P. Bienstman, and D. V. Thourhout, “Nanophotonic waveguides in silicon-on-insulator fabricated with CMOS technology,” J. Lightwave Technol. 23, 401–412 (2005).
[CrossRef]

P. Dumon, W. Bogaerts, V. Wiaux, J. Wouters, S. Beckx, J. V. Campenhout, D. Taillaert, B. Luyssaert, P. Bienstman, D. V. Thourhout, and R. Baets, “Low-loss SOI photonic wires and ring resonators fabricated with deep UV lithography,” IEEE Photonics Technol. Lett. 16, 1328–1330 (2004).
[CrossRef]

Martí, J.

Martinez, A.

Michel, J.

Miliou, A.

A. Miliou, R. Srivastava, and R. V. Ramaswamy, “A 1.3 μmdirectional coupler polarization splitter by ion exchange,” J. Lightwave Technol. 11, 220–225 (1993).
[CrossRef]

Morita, H.

T. Tsuchizawa, K. Yamada, H. Fukuda, T. Watanabe, J. Takahashi, M. Takahashi, T. Shoji, E. Tamechika, S. Itabashi, and H. Morita, “Microphotonics devices based on silicon microfabrication technology,” IEEE J. Sel. Top. Quantum Electron. 11, 232–240 (2005).
[CrossRef]

Norwood, R. A.

Panepucci, R. R.

Ramaswamy, R. V.

A. Miliou, R. Srivastava, and R. V. Ramaswamy, “A 1.3 μmdirectional coupler polarization splitter by ion exchange,” J. Lightwave Technol. 11, 220–225 (1993).
[CrossRef]

Sánchez, B.

Sanchis, P.

Säynätjoki, A.

Shoji, T.

T. Tsuchizawa, K. Yamada, H. Fukuda, T. Watanabe, J. Takahashi, M. Takahashi, T. Shoji, E. Tamechika, S. Itabashi, and H. Morita, “Microphotonics devices based on silicon microfabrication technology,” IEEE J. Sel. Top. Quantum Electron. 11, 232–240 (2005).
[CrossRef]

Sohlström, H.

Srivastava, R.

A. Miliou, R. Srivastava, and R. V. Ramaswamy, “A 1.3 μmdirectional coupler polarization splitter by ion exchange,” J. Lightwave Technol. 11, 220–225 (1993).
[CrossRef]

Sun, R.

Taillaert, D.

W. Bogaerts, R. Baets, P. Dumon, V. Wiaux, S. Beckx, D. Taillaert, B. Luyssaert, J. V. Campenhout, P. Bienstman, and D. V. Thourhout, “Nanophotonic waveguides in silicon-on-insulator fabricated with CMOS technology,” J. Lightwave Technol. 23, 401–412 (2005).
[CrossRef]

P. Dumon, W. Bogaerts, V. Wiaux, J. Wouters, S. Beckx, J. V. Campenhout, D. Taillaert, B. Luyssaert, P. Bienstman, D. V. Thourhout, and R. Baets, “Low-loss SOI photonic wires and ring resonators fabricated with deep UV lithography,” IEEE Photonics Technol. Lett. 16, 1328–1330 (2004).
[CrossRef]

Takahashi, J.

T. Tsuchizawa, K. Yamada, H. Fukuda, T. Watanabe, J. Takahashi, M. Takahashi, T. Shoji, E. Tamechika, S. Itabashi, and H. Morita, “Microphotonics devices based on silicon microfabrication technology,” IEEE J. Sel. Top. Quantum Electron. 11, 232–240 (2005).
[CrossRef]

Takahashi, M.

T. Tsuchizawa, K. Yamada, H. Fukuda, T. Watanabe, J. Takahashi, M. Takahashi, T. Shoji, E. Tamechika, S. Itabashi, and H. Morita, “Microphotonics devices based on silicon microfabrication technology,” IEEE J. Sel. Top. Quantum Electron. 11, 232–240 (2005).
[CrossRef]

Tamechika, E.

T. Tsuchizawa, K. Yamada, H. Fukuda, T. Watanabe, J. Takahashi, M. Takahashi, T. Shoji, E. Tamechika, S. Itabashi, and H. Morita, “Microphotonics devices based on silicon microfabrication technology,” IEEE J. Sel. Top. Quantum Electron. 11, 232–240 (2005).
[CrossRef]

Tervonen, A.

Thourhout, D. V.

W. Bogaerts, R. Baets, P. Dumon, V. Wiaux, S. Beckx, D. Taillaert, B. Luyssaert, J. V. Campenhout, P. Bienstman, and D. V. Thourhout, “Nanophotonic waveguides in silicon-on-insulator fabricated with CMOS technology,” J. Lightwave Technol. 23, 401–412 (2005).
[CrossRef]

P. Dumon, W. Bogaerts, V. Wiaux, J. Wouters, S. Beckx, J. V. Campenhout, D. Taillaert, B. Luyssaert, P. Bienstman, D. V. Thourhout, and R. Baets, “Low-loss SOI photonic wires and ring resonators fabricated with deep UV lithography,” IEEE Photonics Technol. Lett. 16, 1328–1330 (2004).
[CrossRef]

Tsuchizawa, T.

T. Tsuchizawa, K. Yamada, H. Fukuda, T. Watanabe, J. Takahashi, M. Takahashi, T. Shoji, E. Tamechika, S. Itabashi, and H. Morita, “Microphotonics devices based on silicon microfabrication technology,” IEEE J. Sel. Top. Quantum Electron. 11, 232–240 (2005).
[CrossRef]

Van der Donk, J.

Van Roey, J.

Wang, Q.

Q. Wang and S. He, “An effective and accurate method for the design of directional couplers,” IEEE J. Sel. Top. Quantum Electron. 8, 1233–1238 (2002).
[CrossRef]

Watanabe, T.

T. Tsuchizawa, K. Yamada, H. Fukuda, T. Watanabe, J. Takahashi, M. Takahashi, T. Shoji, E. Tamechika, S. Itabashi, and H. Morita, “Microphotonics devices based on silicon microfabrication technology,” IEEE J. Sel. Top. Quantum Electron. 11, 232–240 (2005).
[CrossRef]

Wiaux, V.

W. Bogaerts, R. Baets, P. Dumon, V. Wiaux, S. Beckx, D. Taillaert, B. Luyssaert, J. V. Campenhout, P. Bienstman, and D. V. Thourhout, “Nanophotonic waveguides in silicon-on-insulator fabricated with CMOS technology,” J. Lightwave Technol. 23, 401–412 (2005).
[CrossRef]

P. Dumon, W. Bogaerts, V. Wiaux, J. Wouters, S. Beckx, J. V. Campenhout, D. Taillaert, B. Luyssaert, P. Bienstman, D. V. Thourhout, and R. Baets, “Low-loss SOI photonic wires and ring resonators fabricated with deep UV lithography,” IEEE Photonics Technol. Lett. 16, 1328–1330 (2004).
[CrossRef]

Wouters, J.

P. Dumon, W. Bogaerts, V. Wiaux, J. Wouters, S. Beckx, J. V. Campenhout, D. Taillaert, B. Luyssaert, P. Bienstman, D. V. Thourhout, and R. Baets, “Low-loss SOI photonic wires and ring resonators fabricated with deep UV lithography,” IEEE Photonics Technol. Lett. 16, 1328–1330 (2004).
[CrossRef]

Xu, C.

W. Huang, C. Xu, S. Chu, and S. K. Chaudhuri, “The finite-difference vector beam propagation method: analysis and assessment,” J. Lightwave Technol. 10, 295–305(1992).
[CrossRef]

Xu, Q.

Yamada, H.

H. Yamada, T. Chu, S. Ishida, and Y. Arakawa, “Si photonic wire waveguide devices,” IEEE J. Sel. Top. Quantum Electron. 12, 1371–1376 (2006).
[CrossRef]

Yamada, K.

T. Tsuchizawa, K. Yamada, H. Fukuda, T. Watanabe, J. Takahashi, M. Takahashi, T. Shoji, E. Tamechika, S. Itabashi, and H. Morita, “Microphotonics devices based on silicon microfabrication technology,” IEEE J. Sel. Top. Quantum Electron. 11, 232–240 (2005).
[CrossRef]

Appl. Opt. (4)

Appl. Phys. Lett. (1)

K. K. Lee, D. R. Lim, H.-C. Luan, A. Agarwal, J. Foresi, and L. C. Kimerling, “Effect of size and roughness on light transmission in a Si/SiO2 waveguide: Experiments and model,” Appl. Phys. Lett. 77, 1617–1619 (2000).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (3)

H. Yamada, T. Chu, S. Ishida, and Y. Arakawa, “Si photonic wire waveguide devices,” IEEE J. Sel. Top. Quantum Electron. 12, 1371–1376 (2006).
[CrossRef]

T. Tsuchizawa, K. Yamada, H. Fukuda, T. Watanabe, J. Takahashi, M. Takahashi, T. Shoji, E. Tamechika, S. Itabashi, and H. Morita, “Microphotonics devices based on silicon microfabrication technology,” IEEE J. Sel. Top. Quantum Electron. 11, 232–240 (2005).
[CrossRef]

Q. Wang and S. He, “An effective and accurate method for the design of directional couplers,” IEEE J. Sel. Top. Quantum Electron. 8, 1233–1238 (2002).
[CrossRef]

IEEE Photonics Technol. Lett. (2)

I. Kiyat, A. Aydinli, and N. Dagli, “A compact silicon-on-insulator polarization splitter,” IEEE Photonics Technol. Lett. 17, 100–102 (2005).
[CrossRef]

P. Dumon, W. Bogaerts, V. Wiaux, J. Wouters, S. Beckx, J. V. Campenhout, D. Taillaert, B. Luyssaert, P. Bienstman, D. V. Thourhout, and R. Baets, “Low-loss SOI photonic wires and ring resonators fabricated with deep UV lithography,” IEEE Photonics Technol. Lett. 16, 1328–1330 (2004).
[CrossRef]

J. Lightwave Technol. (3)

A. Miliou, R. Srivastava, and R. V. Ramaswamy, “A 1.3 μmdirectional coupler polarization splitter by ion exchange,” J. Lightwave Technol. 11, 220–225 (1993).
[CrossRef]

W. Huang, C. Xu, S. Chu, and S. K. Chaudhuri, “The finite-difference vector beam propagation method: analysis and assessment,” J. Lightwave Technol. 10, 295–305(1992).
[CrossRef]

W. Bogaerts, R. Baets, P. Dumon, V. Wiaux, S. Beckx, D. Taillaert, B. Luyssaert, J. V. Campenhout, P. Bienstman, and D. V. Thourhout, “Nanophotonic waveguides in silicon-on-insulator fabricated with CMOS technology,” J. Lightwave Technol. 23, 401–412 (2005).
[CrossRef]

J. Opt. Soc. Am. (1)

J. Opt. Soc. Am. A (1)

Opt. Lett. (6)

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

Cross-sectional view of the directional coupler formed by a slot waveguide at the coupling section.

Fig. 2
Fig. 2

Schematic layout of the entire device.

Fig. 3
Fig. 3

Transverse field distributions of the even and odd quasi-TE and quasi-TM modes in a dual-channel directional coupler: (a) even quasi-TE mode, (b) odd quasi-TE mode, (c) even quasi-TM mode, and (d) odd quasi-TM mode. (e) Effective indices of even and odd quasi-TE modes ( n e , TE , n o , TE ) and quasi-TM modes ( n e , TM , n e , TM ) in a dual-channel coupler as a function of the waveguide spacing g.

Fig. 4
Fig. 4

Evolution of the coupling length ratio L TE / L TM of quasi-TE and quasi-TM modes for each aspect ratio ( w / h ) as a function of waveguide spacing g.

Fig. 5
Fig. 5

BPM simulation results of the evolutions of the mode fields for (a) quasi-TE and (b) quasi-TM modes between the adjacent waveguides along the coupling section of PBS.

Fig. 6
Fig. 6

(a) Transmission spectra of both modes in the device and the transmittance as a function of (b) L CNV and (c) Δ w of PBS.

Fig. 7
Fig. 7

BPM simulation results of the evolutions of the mode fields for (a) quasi-TE and (b) quasi-TM modes between the adjacent waveguides along the coupling section of PIDC.

Fig. 8
Fig. 8

(a) Transmission spectra of both modes in the device and the transmittance as a function of (b) L CNV and (c) Δ w of PIDC.

Fig. 9
Fig. 9

Required waveguide spacing g and L CNV for completely polarization splitting ( L TE / L TM = 0.5 ) of different aspect ratios of design for (a) PBS and (b) PIDC.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

L c = π k 0 ( n e n o ) = π k 0 Δ n ,

Metrics