Abstract

An incoherent Doppler wind lidar based on iodine edge filters has been developed at the Ocean University of China for remote measurements of atmospheric wind fields. The lidar is compact enough to fit in a minivan for mobile deployment. With its sophisticated and user-friendly data acquisition and analysis system (DAAS), this lidar has made a variety of line-of-sight (LOS) wind measurements in different operational modes. Through carefully developed data retrieval procedures, various wind products are provided by the lidar, including wind profile, LOS wind velocities in plan position indicator (PPI) and range height indicator (RHI) modes, and sea surface wind. Data are processed and displayed in real time, and continuous wind measurements have been demonstrated for as many as 16 days. Full-azimuth-scanned wind measurements in PPI mode and full-elevation-scanned wind measurements in RHI mode have been achieved with this lidar. The detection range of LOS wind velocity PPI and RHI reaches 810km at night and 68km during daytime with range resolution of 10m and temporal resolution of 3min. In this paper, we introduce the DAAS architecture and describe the data retrieval methods for various operation modes. We present the measurement procedures and results of LOS wind velocities in PPI and RHI scans along with wind profiles obtained by Doppler beam swing. The sea surface wind measured for the sailing competition during the 2008 Beijing Olympics is also presented. The precision and accuracy of wind measurements are estimated through analysis of the random errors associated with photon noise and the systematic errors introduced by the assumptions made in data retrieval. The three assumptions of horizontal homogeneity of atmosphere, close-to-zero vertical wind, and uniform sensitivity are made in order to experimentally determine the zero wind ratio and the measurement sensitivity, which are important factors in LOS wind retrieval. Deviations may occur under certain meteorological conditions, leading to bias in these situations. Based on the error analyses and measurement results, we point out the application ranges of this Doppler lidar and propose several paths for future improvement.

© 2010 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. J. Post and R. E. Cupp, “Optimizing a pulsed Doppler lidar,” Appl. Opt. 29, 4145–4158 (1990).
    [CrossRef] [PubMed]
  2. R. M. Banta, L. S. Daray, J. D. Fast, J. O. Pinto, C. D. Whiteman, W. J. Shaw, and B. W. Orr, “Nocturnal low-level jet in a mountain basin complex. part I: Evolution and effects on local flows,” J. Appl. Meteorol. 43, 1348–1365 (2004).
    [CrossRef]
  3. C. J. Grund, R. M. Banta, J. L. George, J. N. Howell, M. J. Post, R. A. Richter, and A. M. Weichmann, “High-resolution Doppler lidar for boundary layer and could research,” J. Atmos. Ocean. Technol. 18, 376–393 (2001).
    [CrossRef]
  4. S. C. Tucker, W. A. Brewer, R. M. Banta, C. J. Senff, S. P. Sandberg, D. C. Law, A. N. Weickmann, and R. M. Hardesty, “Doppler lidar estimation of mixing height using turbulence, shear, and aerosol profiles,” J. Atmos. Ocean. Technol. 26, 673–688 (2009).
    [CrossRef]
  5. X. Z. Chu and G. C. Papen, “Resonance fluorescence lidar for measurements of the middle and upper atmosphere,” in Laser Remote Sensing, T.Fujii and T.Fukuchi ed. (CRC Press, 2005) ISBN: 0-8247-4256-7, 179–432.
    [CrossRef]
  6. M. L. Chanin, A. Garnier, A. Hauchecorne, and J. Porteneuve, “A Doppler lidar for measuring winds in the middle atmosphere,” Geophys. Res. Lett. 16, 1273–1276 (1989).
    [CrossRef]
  7. B. M. Gentry and H. Chen, “Tropospheric wind measurements obtained with the Goddard Lidar Observatory for Winds (GLOW): validation and performance,” presented at the International Symposium on Optical Science and Technology, San Diego, Calif., USA, 30–31 July 2001.
  8. M. J. McGill, W. R. Skinner, and T. D. Irgang, “Validation of wind profiles measured using incoherent Doppler lidar,” Appl. Opt. 36, 1928–1939 (1997).
    [CrossRef] [PubMed]
  9. Y. Durand, A. Culoma, R. Meynart, D. Morancais, and F. Fabre, “Pre-development of a direct detection Doppler wind lidar for ADM/AELOUS mission,” Proc. SPIE 5234, 354–363(2004).
    [CrossRef]
  10. J. A. McKay, “Assessment of a multibeam fizeau wedge interferometer for Doppler wind lidar,” Appl. Opt. 41, 1760–1767 (2002).
    [CrossRef] [PubMed]
  11. J. Q. Liu, J. Zhou, and W. B. Chen, “Boundary Doppler lidar based on multibeam Fizeau interferometer,” Proc. SPIE 5653, 273–280 (2005).
    [CrossRef]
  12. C. Flesia and C. L. Korb, “Theory of the double-edge molecular technique for Doppler lidar wind measurement,” Appl. Opt. 38, 432–440 (1999).
    [CrossRef]
  13. W. T. Huang, X. Z. Chu, B. P. Williams, S. D. Harrell, J. Wiig, and C. Y. She, “Na double-edge magneto-optic filter for Na lidar profiling of wind and temperature in the lower atmosphere,” Opt. Lett. 34199–201 (2009).
    [CrossRef] [PubMed]
  14. W. T. Huang, X. Z. Chu, J. Wiig, B. Tan, C. Yamashita, T. Yuan, J. Yue, S. D. Harrell, C. Y. She, B. P. Williams, J. S. Friedman, and R. M. Hardesty, “Field demonstration of simultaneous wind and temperature measurements from 5 to 50km with a Na double-edgemagneto-optic filter in a multi-frequency Doppler lidar,” Opt. Lett. 34, 1552–1554 (2009).
    [CrossRef] [PubMed]
  15. J. S. Friedman, C. A. Tepley, P. A. Castleberg, and H. Roe, “Middle-atmospheric Doppler lidar using an iodine-vapor edge filter,” Opt. Lett. 22, 1648–1650 (1997).
    [CrossRef]
  16. C. A. Tepley, “Neutral winds of the middle atmosphere observed at Arecibo using a Doppler Rayleigh lidar,” J. Geophys. Res. 99, 25,781–25,790 (1994).
    [CrossRef]
  17. Z. S. Liu, W. B. Chen, T. L. Zhang, J. W. Hair, and C. Y. She, “An incoherent Doppler Lidar for ground-based atmospheric wind profiling,” Appl. Phys. B 64, 561–566 (1997).
    [CrossRef]
  18. Z. S. Liu, D. Wu, J. T. Liu, K. L. Zhang, W. B. Chen, X. Q. Song, J. W. Hair, and C.-Y. She, “Low-altitude atmospheric wind measurement from the combined Mie and Rayleigh backscattering by Doppler lidar with an iodine filter,” Appl. Opt. 417079–7086 (2002).
    [CrossRef] [PubMed]
  19. C. Y. She, J. Yue, Z. A. Yan, J. W. Hair, J. J. Guo, S. H. Wu, and Z. S. Liu, “Direct-detection Doppler wind measurements with a Cabannes–Mie lidar: A. Comparison between iodine vapor filter and Fabry-Perot interferometer methods,” Appl. Opt. 46, 4434–4443 (2007).
    [CrossRef] [PubMed]
  20. C. Y. She, J. Yue, Z. A. Yan, J. W. Hair, J. J. Guo, S. H. Wu, and Z. S. Liu, “Direct-detection Doppler wind measurements with a Cabannes–Mie lidar: B. Impact of aerosol variation on iodine vapor filter methods,” Appl. Opt. 46, 4444–4454(2007).
    [CrossRef] [PubMed]
  21. Z. S. Liu, B. Y. Liu, Z. G. Li, Z. A. Yan, S. H. Wu, and Z. B. Sun, “Wind measurements with incoherent Doppler lidar based on iodine filters at night and day,” Appl. Phys. B. 88, 327–335(2007).
    [CrossRef]
  22. Z. S. Liu, B. Y. Liu, S. H. Wu, Z. G. Li, and Z. J. Wang, “A high spatial and temporal resolution mobile incoherent Doppler lidar for sea surface wind measurements,” Opt. Lett. 33, 1485–1487 (2008).
    [CrossRef] [PubMed]
  23. Z. S. Liu, Z. J. Wang, S. H. Wu, B. Y. Liu, Z. G. Li, X. Zhang, D. C. Bi, Y. B. Chen, R. Z. Li, and Y. Q. Yang, “Fine-measuring technique and application for sea surface wind by mobile Doppler wind lidar,” Opt. Eng. 48, 066002 (2009).
  24. Z. S. Liu, S. H. Wu, and B. Y. Liu, “Seed injection and frequency locked Nd:YAG laser for direct-detection wind lidar,” Opt. Laser Technol. 39, 541–545 (2007).
    [CrossRef]
  25. S. H. Wu, Z. S. Liu, and B. Y. Liu, “Dual-wavelength laser frequency locking for the direct-detect wind lidar,” J. Mod. Opt. 53, 333–341 (2006).
    [CrossRef]
  26. Licel Ethernet Controller Installation and Reference Manual (Licel GmbH, 8 December 2005).
  27. C. Werner, “Doppler wind lidar,” in Lidar: Range-resolved Optical Remote Sensing of the Atmosphere, C.Weitkamp, ed. (Springer, 2005) ISBN 0-387-40075-3, 325–354.
  28. B. M. Gentry, H. Chen, and S. X. Li, “Wind measurements with 355nm molecular Doppler lidar,” Opt. Lett. 25, 1231–1233(2000).
    [CrossRef]
  29. K. A. Browning and R. Wexler, “The determination of kinematic properties of a wind field using Doppler radar,” J. Appl. Meteorol. 7, 105–113 (1968).
    [CrossRef]
  30. Z. Y. Tao, “The VAP method to retrieve the wind vectors field based on single-Doppler velocity field,” Acta meteorol. Sinica (In Chinese) 50, 81–90 (1992).
  31. C. Paulson, “The mathematical representation of wind speed and temperature profiles in the unstable atmospheric surface layer,” J. Appl. Meteorol. 9, 857–861 (1970).
    [CrossRef]
  32. J. S. Zhu, Y. B. Chen, Z. A. Yan, S. H. Wu, and Z. S. Liu, “Relationship between the aerosol scattering ratio and temperature of atmosphere and the sensitivity of a Doppler wind lidar with iodine filter,” Chinese Opt. Lett. 6, 449–453 (2008).
    [CrossRef]
  33. F. Köpp, S. Rahm, and I. Samlikho, “Characterization of aircaft wave vortices by 2μm pulsed Doppler lidar,” J. Atmos. Ocean. Technol. 21, 194–206 (2004).
    [CrossRef]
  34. Z. G. Li, Z. S. Liu, Z. A. Yan, and J. J. Guo, “Research on characters of the marine atmospheric boundary layer structure and aerosol profiles by high spectral resolution lidar,” Opt. Eng. 47, 086001 (2008).
    [CrossRef]

2009 (4)

S. C. Tucker, W. A. Brewer, R. M. Banta, C. J. Senff, S. P. Sandberg, D. C. Law, A. N. Weickmann, and R. M. Hardesty, “Doppler lidar estimation of mixing height using turbulence, shear, and aerosol profiles,” J. Atmos. Ocean. Technol. 26, 673–688 (2009).
[CrossRef]

W. T. Huang, X. Z. Chu, B. P. Williams, S. D. Harrell, J. Wiig, and C. Y. She, “Na double-edge magneto-optic filter for Na lidar profiling of wind and temperature in the lower atmosphere,” Opt. Lett. 34199–201 (2009).
[CrossRef] [PubMed]

W. T. Huang, X. Z. Chu, J. Wiig, B. Tan, C. Yamashita, T. Yuan, J. Yue, S. D. Harrell, C. Y. She, B. P. Williams, J. S. Friedman, and R. M. Hardesty, “Field demonstration of simultaneous wind and temperature measurements from 5 to 50km with a Na double-edgemagneto-optic filter in a multi-frequency Doppler lidar,” Opt. Lett. 34, 1552–1554 (2009).
[CrossRef] [PubMed]

Z. S. Liu, Z. J. Wang, S. H. Wu, B. Y. Liu, Z. G. Li, X. Zhang, D. C. Bi, Y. B. Chen, R. Z. Li, and Y. Q. Yang, “Fine-measuring technique and application for sea surface wind by mobile Doppler wind lidar,” Opt. Eng. 48, 066002 (2009).

2008 (3)

J. S. Zhu, Y. B. Chen, Z. A. Yan, S. H. Wu, and Z. S. Liu, “Relationship between the aerosol scattering ratio and temperature of atmosphere and the sensitivity of a Doppler wind lidar with iodine filter,” Chinese Opt. Lett. 6, 449–453 (2008).
[CrossRef]

Z. S. Liu, B. Y. Liu, S. H. Wu, Z. G. Li, and Z. J. Wang, “A high spatial and temporal resolution mobile incoherent Doppler lidar for sea surface wind measurements,” Opt. Lett. 33, 1485–1487 (2008).
[CrossRef] [PubMed]

Z. G. Li, Z. S. Liu, Z. A. Yan, and J. J. Guo, “Research on characters of the marine atmospheric boundary layer structure and aerosol profiles by high spectral resolution lidar,” Opt. Eng. 47, 086001 (2008).
[CrossRef]

2007 (4)

2006 (1)

S. H. Wu, Z. S. Liu, and B. Y. Liu, “Dual-wavelength laser frequency locking for the direct-detect wind lidar,” J. Mod. Opt. 53, 333–341 (2006).
[CrossRef]

2005 (1)

J. Q. Liu, J. Zhou, and W. B. Chen, “Boundary Doppler lidar based on multibeam Fizeau interferometer,” Proc. SPIE 5653, 273–280 (2005).
[CrossRef]

2004 (3)

R. M. Banta, L. S. Daray, J. D. Fast, J. O. Pinto, C. D. Whiteman, W. J. Shaw, and B. W. Orr, “Nocturnal low-level jet in a mountain basin complex. part I: Evolution and effects on local flows,” J. Appl. Meteorol. 43, 1348–1365 (2004).
[CrossRef]

Y. Durand, A. Culoma, R. Meynart, D. Morancais, and F. Fabre, “Pre-development of a direct detection Doppler wind lidar for ADM/AELOUS mission,” Proc. SPIE 5234, 354–363(2004).
[CrossRef]

F. Köpp, S. Rahm, and I. Samlikho, “Characterization of aircaft wave vortices by 2μm pulsed Doppler lidar,” J. Atmos. Ocean. Technol. 21, 194–206 (2004).
[CrossRef]

2002 (2)

2001 (1)

C. J. Grund, R. M. Banta, J. L. George, J. N. Howell, M. J. Post, R. A. Richter, and A. M. Weichmann, “High-resolution Doppler lidar for boundary layer and could research,” J. Atmos. Ocean. Technol. 18, 376–393 (2001).
[CrossRef]

2000 (1)

1999 (1)

1997 (3)

1994 (1)

C. A. Tepley, “Neutral winds of the middle atmosphere observed at Arecibo using a Doppler Rayleigh lidar,” J. Geophys. Res. 99, 25,781–25,790 (1994).
[CrossRef]

1992 (1)

Z. Y. Tao, “The VAP method to retrieve the wind vectors field based on single-Doppler velocity field,” Acta meteorol. Sinica (In Chinese) 50, 81–90 (1992).

1990 (1)

1989 (1)

M. L. Chanin, A. Garnier, A. Hauchecorne, and J. Porteneuve, “A Doppler lidar for measuring winds in the middle atmosphere,” Geophys. Res. Lett. 16, 1273–1276 (1989).
[CrossRef]

1970 (1)

C. Paulson, “The mathematical representation of wind speed and temperature profiles in the unstable atmospheric surface layer,” J. Appl. Meteorol. 9, 857–861 (1970).
[CrossRef]

1968 (1)

K. A. Browning and R. Wexler, “The determination of kinematic properties of a wind field using Doppler radar,” J. Appl. Meteorol. 7, 105–113 (1968).
[CrossRef]

Banta, R. M.

S. C. Tucker, W. A. Brewer, R. M. Banta, C. J. Senff, S. P. Sandberg, D. C. Law, A. N. Weickmann, and R. M. Hardesty, “Doppler lidar estimation of mixing height using turbulence, shear, and aerosol profiles,” J. Atmos. Ocean. Technol. 26, 673–688 (2009).
[CrossRef]

R. M. Banta, L. S. Daray, J. D. Fast, J. O. Pinto, C. D. Whiteman, W. J. Shaw, and B. W. Orr, “Nocturnal low-level jet in a mountain basin complex. part I: Evolution and effects on local flows,” J. Appl. Meteorol. 43, 1348–1365 (2004).
[CrossRef]

C. J. Grund, R. M. Banta, J. L. George, J. N. Howell, M. J. Post, R. A. Richter, and A. M. Weichmann, “High-resolution Doppler lidar for boundary layer and could research,” J. Atmos. Ocean. Technol. 18, 376–393 (2001).
[CrossRef]

Bi, D. C.

Z. S. Liu, Z. J. Wang, S. H. Wu, B. Y. Liu, Z. G. Li, X. Zhang, D. C. Bi, Y. B. Chen, R. Z. Li, and Y. Q. Yang, “Fine-measuring technique and application for sea surface wind by mobile Doppler wind lidar,” Opt. Eng. 48, 066002 (2009).

Brewer, W. A.

S. C. Tucker, W. A. Brewer, R. M. Banta, C. J. Senff, S. P. Sandberg, D. C. Law, A. N. Weickmann, and R. M. Hardesty, “Doppler lidar estimation of mixing height using turbulence, shear, and aerosol profiles,” J. Atmos. Ocean. Technol. 26, 673–688 (2009).
[CrossRef]

Browning, K. A.

K. A. Browning and R. Wexler, “The determination of kinematic properties of a wind field using Doppler radar,” J. Appl. Meteorol. 7, 105–113 (1968).
[CrossRef]

Castleberg, P. A.

Chanin, M. L.

M. L. Chanin, A. Garnier, A. Hauchecorne, and J. Porteneuve, “A Doppler lidar for measuring winds in the middle atmosphere,” Geophys. Res. Lett. 16, 1273–1276 (1989).
[CrossRef]

Chen, H.

B. M. Gentry, H. Chen, and S. X. Li, “Wind measurements with 355nm molecular Doppler lidar,” Opt. Lett. 25, 1231–1233(2000).
[CrossRef]

B. M. Gentry and H. Chen, “Tropospheric wind measurements obtained with the Goddard Lidar Observatory for Winds (GLOW): validation and performance,” presented at the International Symposium on Optical Science and Technology, San Diego, Calif., USA, 30–31 July 2001.

Chen, W. B.

J. Q. Liu, J. Zhou, and W. B. Chen, “Boundary Doppler lidar based on multibeam Fizeau interferometer,” Proc. SPIE 5653, 273–280 (2005).
[CrossRef]

Z. S. Liu, D. Wu, J. T. Liu, K. L. Zhang, W. B. Chen, X. Q. Song, J. W. Hair, and C.-Y. She, “Low-altitude atmospheric wind measurement from the combined Mie and Rayleigh backscattering by Doppler lidar with an iodine filter,” Appl. Opt. 417079–7086 (2002).
[CrossRef] [PubMed]

Z. S. Liu, W. B. Chen, T. L. Zhang, J. W. Hair, and C. Y. She, “An incoherent Doppler Lidar for ground-based atmospheric wind profiling,” Appl. Phys. B 64, 561–566 (1997).
[CrossRef]

Chen, Y. B.

Z. S. Liu, Z. J. Wang, S. H. Wu, B. Y. Liu, Z. G. Li, X. Zhang, D. C. Bi, Y. B. Chen, R. Z. Li, and Y. Q. Yang, “Fine-measuring technique and application for sea surface wind by mobile Doppler wind lidar,” Opt. Eng. 48, 066002 (2009).

J. S. Zhu, Y. B. Chen, Z. A. Yan, S. H. Wu, and Z. S. Liu, “Relationship between the aerosol scattering ratio and temperature of atmosphere and the sensitivity of a Doppler wind lidar with iodine filter,” Chinese Opt. Lett. 6, 449–453 (2008).
[CrossRef]

Chu, X. Z.

Culoma, A.

Y. Durand, A. Culoma, R. Meynart, D. Morancais, and F. Fabre, “Pre-development of a direct detection Doppler wind lidar for ADM/AELOUS mission,” Proc. SPIE 5234, 354–363(2004).
[CrossRef]

Cupp, R. E.

Daray, L. S.

R. M. Banta, L. S. Daray, J. D. Fast, J. O. Pinto, C. D. Whiteman, W. J. Shaw, and B. W. Orr, “Nocturnal low-level jet in a mountain basin complex. part I: Evolution and effects on local flows,” J. Appl. Meteorol. 43, 1348–1365 (2004).
[CrossRef]

Durand, Y.

Y. Durand, A. Culoma, R. Meynart, D. Morancais, and F. Fabre, “Pre-development of a direct detection Doppler wind lidar for ADM/AELOUS mission,” Proc. SPIE 5234, 354–363(2004).
[CrossRef]

Fabre, F.

Y. Durand, A. Culoma, R. Meynart, D. Morancais, and F. Fabre, “Pre-development of a direct detection Doppler wind lidar for ADM/AELOUS mission,” Proc. SPIE 5234, 354–363(2004).
[CrossRef]

Fast, J. D.

R. M. Banta, L. S. Daray, J. D. Fast, J. O. Pinto, C. D. Whiteman, W. J. Shaw, and B. W. Orr, “Nocturnal low-level jet in a mountain basin complex. part I: Evolution and effects on local flows,” J. Appl. Meteorol. 43, 1348–1365 (2004).
[CrossRef]

Flesia, C.

Friedman, J. S.

Garnier, A.

M. L. Chanin, A. Garnier, A. Hauchecorne, and J. Porteneuve, “A Doppler lidar for measuring winds in the middle atmosphere,” Geophys. Res. Lett. 16, 1273–1276 (1989).
[CrossRef]

Gentry, B. M.

B. M. Gentry, H. Chen, and S. X. Li, “Wind measurements with 355nm molecular Doppler lidar,” Opt. Lett. 25, 1231–1233(2000).
[CrossRef]

B. M. Gentry and H. Chen, “Tropospheric wind measurements obtained with the Goddard Lidar Observatory for Winds (GLOW): validation and performance,” presented at the International Symposium on Optical Science and Technology, San Diego, Calif., USA, 30–31 July 2001.

George, J. L.

C. J. Grund, R. M. Banta, J. L. George, J. N. Howell, M. J. Post, R. A. Richter, and A. M. Weichmann, “High-resolution Doppler lidar for boundary layer and could research,” J. Atmos. Ocean. Technol. 18, 376–393 (2001).
[CrossRef]

Grund, C. J.

C. J. Grund, R. M. Banta, J. L. George, J. N. Howell, M. J. Post, R. A. Richter, and A. M. Weichmann, “High-resolution Doppler lidar for boundary layer and could research,” J. Atmos. Ocean. Technol. 18, 376–393 (2001).
[CrossRef]

Guo, J. J.

Hair, J. W.

Hardesty, R. M.

S. C. Tucker, W. A. Brewer, R. M. Banta, C. J. Senff, S. P. Sandberg, D. C. Law, A. N. Weickmann, and R. M. Hardesty, “Doppler lidar estimation of mixing height using turbulence, shear, and aerosol profiles,” J. Atmos. Ocean. Technol. 26, 673–688 (2009).
[CrossRef]

W. T. Huang, X. Z. Chu, J. Wiig, B. Tan, C. Yamashita, T. Yuan, J. Yue, S. D. Harrell, C. Y. She, B. P. Williams, J. S. Friedman, and R. M. Hardesty, “Field demonstration of simultaneous wind and temperature measurements from 5 to 50km with a Na double-edgemagneto-optic filter in a multi-frequency Doppler lidar,” Opt. Lett. 34, 1552–1554 (2009).
[CrossRef] [PubMed]

Harrell, S. D.

Hauchecorne, A.

M. L. Chanin, A. Garnier, A. Hauchecorne, and J. Porteneuve, “A Doppler lidar for measuring winds in the middle atmosphere,” Geophys. Res. Lett. 16, 1273–1276 (1989).
[CrossRef]

Howell, J. N.

C. J. Grund, R. M. Banta, J. L. George, J. N. Howell, M. J. Post, R. A. Richter, and A. M. Weichmann, “High-resolution Doppler lidar for boundary layer and could research,” J. Atmos. Ocean. Technol. 18, 376–393 (2001).
[CrossRef]

Huang, W. T.

Irgang, T. D.

Köpp, F.

F. Köpp, S. Rahm, and I. Samlikho, “Characterization of aircaft wave vortices by 2μm pulsed Doppler lidar,” J. Atmos. Ocean. Technol. 21, 194–206 (2004).
[CrossRef]

Korb, C. L.

Law, D. C.

S. C. Tucker, W. A. Brewer, R. M. Banta, C. J. Senff, S. P. Sandberg, D. C. Law, A. N. Weickmann, and R. M. Hardesty, “Doppler lidar estimation of mixing height using turbulence, shear, and aerosol profiles,” J. Atmos. Ocean. Technol. 26, 673–688 (2009).
[CrossRef]

Li, R. Z.

Z. S. Liu, Z. J. Wang, S. H. Wu, B. Y. Liu, Z. G. Li, X. Zhang, D. C. Bi, Y. B. Chen, R. Z. Li, and Y. Q. Yang, “Fine-measuring technique and application for sea surface wind by mobile Doppler wind lidar,” Opt. Eng. 48, 066002 (2009).

Li, S. X.

Li, Z. G.

Z. S. Liu, Z. J. Wang, S. H. Wu, B. Y. Liu, Z. G. Li, X. Zhang, D. C. Bi, Y. B. Chen, R. Z. Li, and Y. Q. Yang, “Fine-measuring technique and application for sea surface wind by mobile Doppler wind lidar,” Opt. Eng. 48, 066002 (2009).

Z. S. Liu, B. Y. Liu, S. H. Wu, Z. G. Li, and Z. J. Wang, “A high spatial and temporal resolution mobile incoherent Doppler lidar for sea surface wind measurements,” Opt. Lett. 33, 1485–1487 (2008).
[CrossRef] [PubMed]

Z. G. Li, Z. S. Liu, Z. A. Yan, and J. J. Guo, “Research on characters of the marine atmospheric boundary layer structure and aerosol profiles by high spectral resolution lidar,” Opt. Eng. 47, 086001 (2008).
[CrossRef]

Z. S. Liu, B. Y. Liu, Z. G. Li, Z. A. Yan, S. H. Wu, and Z. B. Sun, “Wind measurements with incoherent Doppler lidar based on iodine filters at night and day,” Appl. Phys. B. 88, 327–335(2007).
[CrossRef]

Liu, B. Y.

Z. S. Liu, Z. J. Wang, S. H. Wu, B. Y. Liu, Z. G. Li, X. Zhang, D. C. Bi, Y. B. Chen, R. Z. Li, and Y. Q. Yang, “Fine-measuring technique and application for sea surface wind by mobile Doppler wind lidar,” Opt. Eng. 48, 066002 (2009).

Z. S. Liu, B. Y. Liu, S. H. Wu, Z. G. Li, and Z. J. Wang, “A high spatial and temporal resolution mobile incoherent Doppler lidar for sea surface wind measurements,” Opt. Lett. 33, 1485–1487 (2008).
[CrossRef] [PubMed]

Z. S. Liu, B. Y. Liu, Z. G. Li, Z. A. Yan, S. H. Wu, and Z. B. Sun, “Wind measurements with incoherent Doppler lidar based on iodine filters at night and day,” Appl. Phys. B. 88, 327–335(2007).
[CrossRef]

Z. S. Liu, S. H. Wu, and B. Y. Liu, “Seed injection and frequency locked Nd:YAG laser for direct-detection wind lidar,” Opt. Laser Technol. 39, 541–545 (2007).
[CrossRef]

S. H. Wu, Z. S. Liu, and B. Y. Liu, “Dual-wavelength laser frequency locking for the direct-detect wind lidar,” J. Mod. Opt. 53, 333–341 (2006).
[CrossRef]

Liu, J. Q.

J. Q. Liu, J. Zhou, and W. B. Chen, “Boundary Doppler lidar based on multibeam Fizeau interferometer,” Proc. SPIE 5653, 273–280 (2005).
[CrossRef]

Liu, J. T.

Liu, Z. S.

Z. S. Liu, Z. J. Wang, S. H. Wu, B. Y. Liu, Z. G. Li, X. Zhang, D. C. Bi, Y. B. Chen, R. Z. Li, and Y. Q. Yang, “Fine-measuring technique and application for sea surface wind by mobile Doppler wind lidar,” Opt. Eng. 48, 066002 (2009).

J. S. Zhu, Y. B. Chen, Z. A. Yan, S. H. Wu, and Z. S. Liu, “Relationship between the aerosol scattering ratio and temperature of atmosphere and the sensitivity of a Doppler wind lidar with iodine filter,” Chinese Opt. Lett. 6, 449–453 (2008).
[CrossRef]

Z. S. Liu, B. Y. Liu, S. H. Wu, Z. G. Li, and Z. J. Wang, “A high spatial and temporal resolution mobile incoherent Doppler lidar for sea surface wind measurements,” Opt. Lett. 33, 1485–1487 (2008).
[CrossRef] [PubMed]

Z. G. Li, Z. S. Liu, Z. A. Yan, and J. J. Guo, “Research on characters of the marine atmospheric boundary layer structure and aerosol profiles by high spectral resolution lidar,” Opt. Eng. 47, 086001 (2008).
[CrossRef]

C. Y. She, J. Yue, Z. A. Yan, J. W. Hair, J. J. Guo, S. H. Wu, and Z. S. Liu, “Direct-detection Doppler wind measurements with a Cabannes–Mie lidar: A. Comparison between iodine vapor filter and Fabry-Perot interferometer methods,” Appl. Opt. 46, 4434–4443 (2007).
[CrossRef] [PubMed]

C. Y. She, J. Yue, Z. A. Yan, J. W. Hair, J. J. Guo, S. H. Wu, and Z. S. Liu, “Direct-detection Doppler wind measurements with a Cabannes–Mie lidar: B. Impact of aerosol variation on iodine vapor filter methods,” Appl. Opt. 46, 4444–4454(2007).
[CrossRef] [PubMed]

Z. S. Liu, B. Y. Liu, Z. G. Li, Z. A. Yan, S. H. Wu, and Z. B. Sun, “Wind measurements with incoherent Doppler lidar based on iodine filters at night and day,” Appl. Phys. B. 88, 327–335(2007).
[CrossRef]

Z. S. Liu, S. H. Wu, and B. Y. Liu, “Seed injection and frequency locked Nd:YAG laser for direct-detection wind lidar,” Opt. Laser Technol. 39, 541–545 (2007).
[CrossRef]

S. H. Wu, Z. S. Liu, and B. Y. Liu, “Dual-wavelength laser frequency locking for the direct-detect wind lidar,” J. Mod. Opt. 53, 333–341 (2006).
[CrossRef]

Z. S. Liu, D. Wu, J. T. Liu, K. L. Zhang, W. B. Chen, X. Q. Song, J. W. Hair, and C.-Y. She, “Low-altitude atmospheric wind measurement from the combined Mie and Rayleigh backscattering by Doppler lidar with an iodine filter,” Appl. Opt. 417079–7086 (2002).
[CrossRef] [PubMed]

Z. S. Liu, W. B. Chen, T. L. Zhang, J. W. Hair, and C. Y. She, “An incoherent Doppler Lidar for ground-based atmospheric wind profiling,” Appl. Phys. B 64, 561–566 (1997).
[CrossRef]

McGill, M. J.

McKay, J. A.

Meynart, R.

Y. Durand, A. Culoma, R. Meynart, D. Morancais, and F. Fabre, “Pre-development of a direct detection Doppler wind lidar for ADM/AELOUS mission,” Proc. SPIE 5234, 354–363(2004).
[CrossRef]

Morancais, D.

Y. Durand, A. Culoma, R. Meynart, D. Morancais, and F. Fabre, “Pre-development of a direct detection Doppler wind lidar for ADM/AELOUS mission,” Proc. SPIE 5234, 354–363(2004).
[CrossRef]

Orr, B. W.

R. M. Banta, L. S. Daray, J. D. Fast, J. O. Pinto, C. D. Whiteman, W. J. Shaw, and B. W. Orr, “Nocturnal low-level jet in a mountain basin complex. part I: Evolution and effects on local flows,” J. Appl. Meteorol. 43, 1348–1365 (2004).
[CrossRef]

Papen, G. C.

X. Z. Chu and G. C. Papen, “Resonance fluorescence lidar for measurements of the middle and upper atmosphere,” in Laser Remote Sensing, T.Fujii and T.Fukuchi ed. (CRC Press, 2005) ISBN: 0-8247-4256-7, 179–432.
[CrossRef]

Paulson, C.

C. Paulson, “The mathematical representation of wind speed and temperature profiles in the unstable atmospheric surface layer,” J. Appl. Meteorol. 9, 857–861 (1970).
[CrossRef]

Pinto, J. O.

R. M. Banta, L. S. Daray, J. D. Fast, J. O. Pinto, C. D. Whiteman, W. J. Shaw, and B. W. Orr, “Nocturnal low-level jet in a mountain basin complex. part I: Evolution and effects on local flows,” J. Appl. Meteorol. 43, 1348–1365 (2004).
[CrossRef]

Porteneuve, J.

M. L. Chanin, A. Garnier, A. Hauchecorne, and J. Porteneuve, “A Doppler lidar for measuring winds in the middle atmosphere,” Geophys. Res. Lett. 16, 1273–1276 (1989).
[CrossRef]

Post, M. J.

C. J. Grund, R. M. Banta, J. L. George, J. N. Howell, M. J. Post, R. A. Richter, and A. M. Weichmann, “High-resolution Doppler lidar for boundary layer and could research,” J. Atmos. Ocean. Technol. 18, 376–393 (2001).
[CrossRef]

M. J. Post and R. E. Cupp, “Optimizing a pulsed Doppler lidar,” Appl. Opt. 29, 4145–4158 (1990).
[CrossRef] [PubMed]

Rahm, S.

F. Köpp, S. Rahm, and I. Samlikho, “Characterization of aircaft wave vortices by 2μm pulsed Doppler lidar,” J. Atmos. Ocean. Technol. 21, 194–206 (2004).
[CrossRef]

Richter, R. A.

C. J. Grund, R. M. Banta, J. L. George, J. N. Howell, M. J. Post, R. A. Richter, and A. M. Weichmann, “High-resolution Doppler lidar for boundary layer and could research,” J. Atmos. Ocean. Technol. 18, 376–393 (2001).
[CrossRef]

Roe, H.

Samlikho, I.

F. Köpp, S. Rahm, and I. Samlikho, “Characterization of aircaft wave vortices by 2μm pulsed Doppler lidar,” J. Atmos. Ocean. Technol. 21, 194–206 (2004).
[CrossRef]

Sandberg, S. P.

S. C. Tucker, W. A. Brewer, R. M. Banta, C. J. Senff, S. P. Sandberg, D. C. Law, A. N. Weickmann, and R. M. Hardesty, “Doppler lidar estimation of mixing height using turbulence, shear, and aerosol profiles,” J. Atmos. Ocean. Technol. 26, 673–688 (2009).
[CrossRef]

Senff, C. J.

S. C. Tucker, W. A. Brewer, R. M. Banta, C. J. Senff, S. P. Sandberg, D. C. Law, A. N. Weickmann, and R. M. Hardesty, “Doppler lidar estimation of mixing height using turbulence, shear, and aerosol profiles,” J. Atmos. Ocean. Technol. 26, 673–688 (2009).
[CrossRef]

Shaw, W. J.

R. M. Banta, L. S. Daray, J. D. Fast, J. O. Pinto, C. D. Whiteman, W. J. Shaw, and B. W. Orr, “Nocturnal low-level jet in a mountain basin complex. part I: Evolution and effects on local flows,” J. Appl. Meteorol. 43, 1348–1365 (2004).
[CrossRef]

She, C. Y.

W. T. Huang, X. Z. Chu, J. Wiig, B. Tan, C. Yamashita, T. Yuan, J. Yue, S. D. Harrell, C. Y. She, B. P. Williams, J. S. Friedman, and R. M. Hardesty, “Field demonstration of simultaneous wind and temperature measurements from 5 to 50km with a Na double-edgemagneto-optic filter in a multi-frequency Doppler lidar,” Opt. Lett. 34, 1552–1554 (2009).
[CrossRef] [PubMed]

W. T. Huang, X. Z. Chu, B. P. Williams, S. D. Harrell, J. Wiig, and C. Y. She, “Na double-edge magneto-optic filter for Na lidar profiling of wind and temperature in the lower atmosphere,” Opt. Lett. 34199–201 (2009).
[CrossRef] [PubMed]

C. Y. She, J. Yue, Z. A. Yan, J. W. Hair, J. J. Guo, S. H. Wu, and Z. S. Liu, “Direct-detection Doppler wind measurements with a Cabannes–Mie lidar: A. Comparison between iodine vapor filter and Fabry-Perot interferometer methods,” Appl. Opt. 46, 4434–4443 (2007).
[CrossRef] [PubMed]

C. Y. She, J. Yue, Z. A. Yan, J. W. Hair, J. J. Guo, S. H. Wu, and Z. S. Liu, “Direct-detection Doppler wind measurements with a Cabannes–Mie lidar: B. Impact of aerosol variation on iodine vapor filter methods,” Appl. Opt. 46, 4444–4454(2007).
[CrossRef] [PubMed]

Z. S. Liu, D. Wu, J. T. Liu, K. L. Zhang, W. B. Chen, X. Q. Song, J. W. Hair, and C.-Y. She, “Low-altitude atmospheric wind measurement from the combined Mie and Rayleigh backscattering by Doppler lidar with an iodine filter,” Appl. Opt. 417079–7086 (2002).
[CrossRef] [PubMed]

Z. S. Liu, W. B. Chen, T. L. Zhang, J. W. Hair, and C. Y. She, “An incoherent Doppler Lidar for ground-based atmospheric wind profiling,” Appl. Phys. B 64, 561–566 (1997).
[CrossRef]

Skinner, W. R.

Song, X. Q.

Sun, Z. B.

Z. S. Liu, B. Y. Liu, Z. G. Li, Z. A. Yan, S. H. Wu, and Z. B. Sun, “Wind measurements with incoherent Doppler lidar based on iodine filters at night and day,” Appl. Phys. B. 88, 327–335(2007).
[CrossRef]

Tan, B.

Tao, Z. Y.

Z. Y. Tao, “The VAP method to retrieve the wind vectors field based on single-Doppler velocity field,” Acta meteorol. Sinica (In Chinese) 50, 81–90 (1992).

Tepley, C. A.

J. S. Friedman, C. A. Tepley, P. A. Castleberg, and H. Roe, “Middle-atmospheric Doppler lidar using an iodine-vapor edge filter,” Opt. Lett. 22, 1648–1650 (1997).
[CrossRef]

C. A. Tepley, “Neutral winds of the middle atmosphere observed at Arecibo using a Doppler Rayleigh lidar,” J. Geophys. Res. 99, 25,781–25,790 (1994).
[CrossRef]

Tucker, S. C.

S. C. Tucker, W. A. Brewer, R. M. Banta, C. J. Senff, S. P. Sandberg, D. C. Law, A. N. Weickmann, and R. M. Hardesty, “Doppler lidar estimation of mixing height using turbulence, shear, and aerosol profiles,” J. Atmos. Ocean. Technol. 26, 673–688 (2009).
[CrossRef]

Wang, Z. J.

Z. S. Liu, Z. J. Wang, S. H. Wu, B. Y. Liu, Z. G. Li, X. Zhang, D. C. Bi, Y. B. Chen, R. Z. Li, and Y. Q. Yang, “Fine-measuring technique and application for sea surface wind by mobile Doppler wind lidar,” Opt. Eng. 48, 066002 (2009).

Z. S. Liu, B. Y. Liu, S. H. Wu, Z. G. Li, and Z. J. Wang, “A high spatial and temporal resolution mobile incoherent Doppler lidar for sea surface wind measurements,” Opt. Lett. 33, 1485–1487 (2008).
[CrossRef] [PubMed]

Weichmann, A. M.

C. J. Grund, R. M. Banta, J. L. George, J. N. Howell, M. J. Post, R. A. Richter, and A. M. Weichmann, “High-resolution Doppler lidar for boundary layer and could research,” J. Atmos. Ocean. Technol. 18, 376–393 (2001).
[CrossRef]

Weickmann, A. N.

S. C. Tucker, W. A. Brewer, R. M. Banta, C. J. Senff, S. P. Sandberg, D. C. Law, A. N. Weickmann, and R. M. Hardesty, “Doppler lidar estimation of mixing height using turbulence, shear, and aerosol profiles,” J. Atmos. Ocean. Technol. 26, 673–688 (2009).
[CrossRef]

Werner, C.

C. Werner, “Doppler wind lidar,” in Lidar: Range-resolved Optical Remote Sensing of the Atmosphere, C.Weitkamp, ed. (Springer, 2005) ISBN 0-387-40075-3, 325–354.

Wexler, R.

K. A. Browning and R. Wexler, “The determination of kinematic properties of a wind field using Doppler radar,” J. Appl. Meteorol. 7, 105–113 (1968).
[CrossRef]

Whiteman, C. D.

R. M. Banta, L. S. Daray, J. D. Fast, J. O. Pinto, C. D. Whiteman, W. J. Shaw, and B. W. Orr, “Nocturnal low-level jet in a mountain basin complex. part I: Evolution and effects on local flows,” J. Appl. Meteorol. 43, 1348–1365 (2004).
[CrossRef]

Wiig, J.

Williams, B. P.

Wu, D.

Wu, S. H.

Z. S. Liu, Z. J. Wang, S. H. Wu, B. Y. Liu, Z. G. Li, X. Zhang, D. C. Bi, Y. B. Chen, R. Z. Li, and Y. Q. Yang, “Fine-measuring technique and application for sea surface wind by mobile Doppler wind lidar,” Opt. Eng. 48, 066002 (2009).

J. S. Zhu, Y. B. Chen, Z. A. Yan, S. H. Wu, and Z. S. Liu, “Relationship between the aerosol scattering ratio and temperature of atmosphere and the sensitivity of a Doppler wind lidar with iodine filter,” Chinese Opt. Lett. 6, 449–453 (2008).
[CrossRef]

Z. S. Liu, B. Y. Liu, S. H. Wu, Z. G. Li, and Z. J. Wang, “A high spatial and temporal resolution mobile incoherent Doppler lidar for sea surface wind measurements,” Opt. Lett. 33, 1485–1487 (2008).
[CrossRef] [PubMed]

Z. S. Liu, B. Y. Liu, Z. G. Li, Z. A. Yan, S. H. Wu, and Z. B. Sun, “Wind measurements with incoherent Doppler lidar based on iodine filters at night and day,” Appl. Phys. B. 88, 327–335(2007).
[CrossRef]

C. Y. She, J. Yue, Z. A. Yan, J. W. Hair, J. J. Guo, S. H. Wu, and Z. S. Liu, “Direct-detection Doppler wind measurements with a Cabannes–Mie lidar: B. Impact of aerosol variation on iodine vapor filter methods,” Appl. Opt. 46, 4444–4454(2007).
[CrossRef] [PubMed]

C. Y. She, J. Yue, Z. A. Yan, J. W. Hair, J. J. Guo, S. H. Wu, and Z. S. Liu, “Direct-detection Doppler wind measurements with a Cabannes–Mie lidar: A. Comparison between iodine vapor filter and Fabry-Perot interferometer methods,” Appl. Opt. 46, 4434–4443 (2007).
[CrossRef] [PubMed]

Z. S. Liu, S. H. Wu, and B. Y. Liu, “Seed injection and frequency locked Nd:YAG laser for direct-detection wind lidar,” Opt. Laser Technol. 39, 541–545 (2007).
[CrossRef]

S. H. Wu, Z. S. Liu, and B. Y. Liu, “Dual-wavelength laser frequency locking for the direct-detect wind lidar,” J. Mod. Opt. 53, 333–341 (2006).
[CrossRef]

Yamashita, C.

Yan, Z. A.

J. S. Zhu, Y. B. Chen, Z. A. Yan, S. H. Wu, and Z. S. Liu, “Relationship between the aerosol scattering ratio and temperature of atmosphere and the sensitivity of a Doppler wind lidar with iodine filter,” Chinese Opt. Lett. 6, 449–453 (2008).
[CrossRef]

Z. G. Li, Z. S. Liu, Z. A. Yan, and J. J. Guo, “Research on characters of the marine atmospheric boundary layer structure and aerosol profiles by high spectral resolution lidar,” Opt. Eng. 47, 086001 (2008).
[CrossRef]

C. Y. She, J. Yue, Z. A. Yan, J. W. Hair, J. J. Guo, S. H. Wu, and Z. S. Liu, “Direct-detection Doppler wind measurements with a Cabannes–Mie lidar: A. Comparison between iodine vapor filter and Fabry-Perot interferometer methods,” Appl. Opt. 46, 4434–4443 (2007).
[CrossRef] [PubMed]

C. Y. She, J. Yue, Z. A. Yan, J. W. Hair, J. J. Guo, S. H. Wu, and Z. S. Liu, “Direct-detection Doppler wind measurements with a Cabannes–Mie lidar: B. Impact of aerosol variation on iodine vapor filter methods,” Appl. Opt. 46, 4444–4454(2007).
[CrossRef] [PubMed]

Z. S. Liu, B. Y. Liu, Z. G. Li, Z. A. Yan, S. H. Wu, and Z. B. Sun, “Wind measurements with incoherent Doppler lidar based on iodine filters at night and day,” Appl. Phys. B. 88, 327–335(2007).
[CrossRef]

Yang, Y. Q.

Z. S. Liu, Z. J. Wang, S. H. Wu, B. Y. Liu, Z. G. Li, X. Zhang, D. C. Bi, Y. B. Chen, R. Z. Li, and Y. Q. Yang, “Fine-measuring technique and application for sea surface wind by mobile Doppler wind lidar,” Opt. Eng. 48, 066002 (2009).

Yuan, T.

Yue, J.

Zhang, K. L.

Zhang, T. L.

Z. S. Liu, W. B. Chen, T. L. Zhang, J. W. Hair, and C. Y. She, “An incoherent Doppler Lidar for ground-based atmospheric wind profiling,” Appl. Phys. B 64, 561–566 (1997).
[CrossRef]

Zhang, X.

Z. S. Liu, Z. J. Wang, S. H. Wu, B. Y. Liu, Z. G. Li, X. Zhang, D. C. Bi, Y. B. Chen, R. Z. Li, and Y. Q. Yang, “Fine-measuring technique and application for sea surface wind by mobile Doppler wind lidar,” Opt. Eng. 48, 066002 (2009).

Zhou, J.

J. Q. Liu, J. Zhou, and W. B. Chen, “Boundary Doppler lidar based on multibeam Fizeau interferometer,” Proc. SPIE 5653, 273–280 (2005).
[CrossRef]

Zhu, J. S.

J. S. Zhu, Y. B. Chen, Z. A. Yan, S. H. Wu, and Z. S. Liu, “Relationship between the aerosol scattering ratio and temperature of atmosphere and the sensitivity of a Doppler wind lidar with iodine filter,” Chinese Opt. Lett. 6, 449–453 (2008).
[CrossRef]

Acta meteorol. Sinica (1)

Z. Y. Tao, “The VAP method to retrieve the wind vectors field based on single-Doppler velocity field,” Acta meteorol. Sinica (In Chinese) 50, 81–90 (1992).

Appl. Opt. (7)

Appl. Phys. B (1)

Z. S. Liu, W. B. Chen, T. L. Zhang, J. W. Hair, and C. Y. She, “An incoherent Doppler Lidar for ground-based atmospheric wind profiling,” Appl. Phys. B 64, 561–566 (1997).
[CrossRef]

Appl. Phys. B. (1)

Z. S. Liu, B. Y. Liu, Z. G. Li, Z. A. Yan, S. H. Wu, and Z. B. Sun, “Wind measurements with incoherent Doppler lidar based on iodine filters at night and day,” Appl. Phys. B. 88, 327–335(2007).
[CrossRef]

Chinese Opt. Lett. (1)

J. S. Zhu, Y. B. Chen, Z. A. Yan, S. H. Wu, and Z. S. Liu, “Relationship between the aerosol scattering ratio and temperature of atmosphere and the sensitivity of a Doppler wind lidar with iodine filter,” Chinese Opt. Lett. 6, 449–453 (2008).
[CrossRef]

Geophys. Res. Lett. (1)

M. L. Chanin, A. Garnier, A. Hauchecorne, and J. Porteneuve, “A Doppler lidar for measuring winds in the middle atmosphere,” Geophys. Res. Lett. 16, 1273–1276 (1989).
[CrossRef]

J. Appl. Meteorol. (3)

R. M. Banta, L. S. Daray, J. D. Fast, J. O. Pinto, C. D. Whiteman, W. J. Shaw, and B. W. Orr, “Nocturnal low-level jet in a mountain basin complex. part I: Evolution and effects on local flows,” J. Appl. Meteorol. 43, 1348–1365 (2004).
[CrossRef]

C. Paulson, “The mathematical representation of wind speed and temperature profiles in the unstable atmospheric surface layer,” J. Appl. Meteorol. 9, 857–861 (1970).
[CrossRef]

K. A. Browning and R. Wexler, “The determination of kinematic properties of a wind field using Doppler radar,” J. Appl. Meteorol. 7, 105–113 (1968).
[CrossRef]

J. Atmos. Ocean. Technol. (3)

F. Köpp, S. Rahm, and I. Samlikho, “Characterization of aircaft wave vortices by 2μm pulsed Doppler lidar,” J. Atmos. Ocean. Technol. 21, 194–206 (2004).
[CrossRef]

C. J. Grund, R. M. Banta, J. L. George, J. N. Howell, M. J. Post, R. A. Richter, and A. M. Weichmann, “High-resolution Doppler lidar for boundary layer and could research,” J. Atmos. Ocean. Technol. 18, 376–393 (2001).
[CrossRef]

S. C. Tucker, W. A. Brewer, R. M. Banta, C. J. Senff, S. P. Sandberg, D. C. Law, A. N. Weickmann, and R. M. Hardesty, “Doppler lidar estimation of mixing height using turbulence, shear, and aerosol profiles,” J. Atmos. Ocean. Technol. 26, 673–688 (2009).
[CrossRef]

J. Geophys. Res. (1)

C. A. Tepley, “Neutral winds of the middle atmosphere observed at Arecibo using a Doppler Rayleigh lidar,” J. Geophys. Res. 99, 25,781–25,790 (1994).
[CrossRef]

J. Mod. Opt. (1)

S. H. Wu, Z. S. Liu, and B. Y. Liu, “Dual-wavelength laser frequency locking for the direct-detect wind lidar,” J. Mod. Opt. 53, 333–341 (2006).
[CrossRef]

Opt. Eng. (2)

Z. S. Liu, Z. J. Wang, S. H. Wu, B. Y. Liu, Z. G. Li, X. Zhang, D. C. Bi, Y. B. Chen, R. Z. Li, and Y. Q. Yang, “Fine-measuring technique and application for sea surface wind by mobile Doppler wind lidar,” Opt. Eng. 48, 066002 (2009).

Z. G. Li, Z. S. Liu, Z. A. Yan, and J. J. Guo, “Research on characters of the marine atmospheric boundary layer structure and aerosol profiles by high spectral resolution lidar,” Opt. Eng. 47, 086001 (2008).
[CrossRef]

Opt. Laser Technol. (1)

Z. S. Liu, S. H. Wu, and B. Y. Liu, “Seed injection and frequency locked Nd:YAG laser for direct-detection wind lidar,” Opt. Laser Technol. 39, 541–545 (2007).
[CrossRef]

Opt. Lett. (5)

Proc. SPIE (2)

J. Q. Liu, J. Zhou, and W. B. Chen, “Boundary Doppler lidar based on multibeam Fizeau interferometer,” Proc. SPIE 5653, 273–280 (2005).
[CrossRef]

Y. Durand, A. Culoma, R. Meynart, D. Morancais, and F. Fabre, “Pre-development of a direct detection Doppler wind lidar for ADM/AELOUS mission,” Proc. SPIE 5234, 354–363(2004).
[CrossRef]

Other (4)

B. M. Gentry and H. Chen, “Tropospheric wind measurements obtained with the Goddard Lidar Observatory for Winds (GLOW): validation and performance,” presented at the International Symposium on Optical Science and Technology, San Diego, Calif., USA, 30–31 July 2001.

X. Z. Chu and G. C. Papen, “Resonance fluorescence lidar for measurements of the middle and upper atmosphere,” in Laser Remote Sensing, T.Fujii and T.Fukuchi ed. (CRC Press, 2005) ISBN: 0-8247-4256-7, 179–432.
[CrossRef]

Licel Ethernet Controller Installation and Reference Manual (Licel GmbH, 8 December 2005).

C. Werner, “Doppler wind lidar,” in Lidar: Range-resolved Optical Remote Sensing of the Atmosphere, C.Weitkamp, ed. (Springer, 2005) ISBN 0-387-40075-3, 325–354.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (16)

Fig. 1
Fig. 1

Schematic diagram of the incoherent mobile and scanning Doppler wind lidar.

Fig. 2
Fig. 2

Architecture of the overall computer control system for the mobile Doppler wind lidar.

Fig. 3
Fig. 3

DAAS user interface with raw lidar data profiles and various control modules displayed.

Fig. 4
Fig. 4

Flowchart of the DAQ subsystem.

Fig. 5
Fig. 5

General flowchart of all the products.

Fig. 6
Fig. 6

Example of wind ratio versus azimuth measured in PPI scan.

Fig. 7
Fig. 7

Schematic diagram of the sea surface wind retrieval method.

Fig. 8
Fig. 8

LOS wind velocity measured at azimuth of 90 ° (east) by the Doppler lidar at 22 09 LT on 4 March 2008, and the wind uncertainty under different vertical winds. The integration time Δ t = 100 s and the spatial resolution Δ z = 10 m .

Fig. 9
Fig. 9

Horizontal wind profile measured by the Doppler lidar from 09 13 to 09 28 LT local time on 19 March 2008 is compared to the balloon sonde data taken at the same time. The spatial resolution is 30 m in order to compare with sonde. Δ V H and Δ θ H represent the differences between the lidar and balloon data for the wind speed and direction, respectively.

Fig. 10
Fig. 10

Horizontal wind profile measured by the Doppler lidar from 19 52 to 20 07 LT on 19 October 2007 is compared to the balloon sonde data taken at the same time. The spatial resolution is 30 m for both the lidar and the balloon data. Δ V H and Δ θ H represent the differences between the lidar and balloon data for the wind speed and direction, respectively.

Fig. 11
Fig. 11

LOS wind velocity measured by PPI scans from 20 41 to 21 41 LT in the night on 30 December 2007. Color bar scales are from 33 to + 33 m / s . White color denotes zero wind velocity. North is up, and east is to the right. Positive LOS wind velocity is defined as radially outward from the lidar. The radius in the plots represents the height, and the maximum displayed height is 8 km . Each circle is separated by 1.14 km . The spatial resolution Δ z = 10 m , while the temporal resolutions are (a) Δ t = 3 min , (b) Δ t = 21 min , and (c) Δ t = 60 min .

Fig. 12
Fig. 12

Wind profiles measured by the Doppler lidar in different scan modes with different data retrieval methods between 20 00 and 21 41 LT on 30 December 2007.

Fig. 13
Fig. 13

LOS wind velocity measured by PPI scan from 15 36 to 15 59 LT during daytime on 30 December 2007. The integration time is 8 s in each direction and the spatial resolution is 10 m . The radius in the plots represents the height, and the maximum displayed height is 8 km . Each circle is separated by 1.14 km .

Fig. 14
Fig. 14

LOS wind velocity measured by RHI scans from 00 33 to 00 56 LT on 30 December 2007 in Qingdao, China. Color bar scales are from 33 to + 33 m / s . North is to the right and positive LOS wind velocity is defined as radially outward from the lidar. The radius in the plots represents the height, and the maximum displayed height is 8 km . Each circle is separated by 1.6 km . The spatial resolution is 10 m , while the temporal resolutions are (a) 2 min and (b) 24 min .

Fig. 15
Fig. 15

LOS wind velocity measured in sector PPI scan from 08 26 to 08 28 LT on 17 August 2008. The radius of scan is about 3 km , and the spatial resolution is 100 by 100 m . The x axis and y axis represent longitude (deg) and latitude (deg), respectively.

Fig. 16
Fig. 16

SSW measured from 08 26 to 08 28 LT on 17 August 2008. The radius of the scan is about 3 km , and the spatial resolution is 100 by 100 m . The x axis and y axis represent longitude (deg) and latitude (deg), respectively.

Equations (30)

Equations on this page are rendered with MathJax. Learn more.

V LOS = 0 + V LOS , H + V LOS , V ,
R W , i = R 0 Δ R H , i Δ R V , i ,
Δ V LOS = d V LOS d R W Δ R W ,
V LOS , i = R W , i R 0 R 0 S ,
S = 1 R 0 d R W d V LOS = 3.76 * 1 R 0 d R W d ν ,
V LOS , i = R W , i R 0 3.76 * d R W / d ν .
V LOS , i = V LOS , i , V + V LOS , i , H = V V sin φ + V H cos φ cos [ 2 π 360 ( θ i θ 0 ) ] ,
R W , i = R V + Δ R cos [ 2 π 360 ( θ i θ 0 ) ] ,
V LOS , i , H = R W , i R V 3.76 * d R W / d ν = Δ R cos [ 2 π 360 ( θ i θ 0 ) ] 3.76 * d R W / d ν .
{ R W , Z = R 0 + Δ R V R W , E = R 0 + Δ R H , E + Δ R V , E R W , W = R 0 + Δ R H , W + Δ R V , W R W , S = R 0 + Δ R H , S + Δ R V , S R W , N = R 0 + Δ R H , N + Δ R V , N ,
( R W , E R W , W ) / 2 = ( Δ R H , E Δ R H , W ) / 2 = Δ R H , E .
V LOS , E W , H = Δ R H , E 3.76 * d R W / d ν = ( R W , E R W , W ) / 2 3.76 * d R W / d ν .
u = V H , E W = V LOS , E W , H / cos φ .
v = V H , S N = V LOS , S N , H / cos φ .
V H = u 2 + v 2 = V H , E W 2 + V H , S N 2 , θ H = arctan ( u / v ) = arctan ( V H , E W / V H , S N ) ,
R W , 0 ° = R 0 + Δ R cos ( Δ θ 0 ) ,
R W , ± 60 ° = R 0 + Δ R cos ( Δ θ 0 ± 60 ° ) .
R 0 = R W , + 60 ° + R W , 60 ° R W , 0 °
cos ( Δ θ 0 + 60 ° ) + cos ( Δ θ 0 60 ° ) cos ( Δ θ 0 ) = 0.
{ V LOS , θ Δ θ = V H cos ( α Δ θ ) V LOS , θ = V H cos α V LOS , θ + Δ θ = V H cos ( α + Δ θ ) ,
α = arctan ( V LOS , θ Δ θ V LOS , θ + Δ θ V LOS , θ Δ θ + V LOS , θ + Δ θ · cot Δ θ ) ,
V H = V LOS , θ cos α .
{ u = i = 1 M ( u i / d i ) / i = 1 M ( 1 / d i ) v = i = 1 M ( v i / d i ) / i = 1 M ( 1 / d i ) .
Δ V LOS = V LOS R W Δ R W + V LOS R 0 Δ R 0 + V LOS ( d R W / d ν ) Δ ( d R W / d ν ) ,
( Δ V LOS ) rms = 1 3.76 * ( d R W / d ν ) × ( Δ R W ) 2 + ( Δ R 0 ) 2 + [ 3.76 V LOS Δ ( d R W / d ν ) ] 2 ,
( Δ R W R W ) rms = 1 + 1 R W N R 1 + 2 B M + 2 B R R W 2 N R ( 1 + 1 R W ) ,
( Δ V LOS ) rms = 2 · ( Δ R W ) rms 3.76 * ( d R W / d ν ) 2 S · ( Δ R W R W ) rms .
V LOS , i = R W , i 3.76 * d R W / d ν R 0 3.76 * d R W / d ν .
Δ V LOS = V LOS Δ ( d R W / d ν ) ( d R W / d ν ) ,
Δ V LOS = Δ R 0 3.76 * ( d R W / d ν ) = 1 S · Δ R 0 R 0 ,

Metrics