Abstract

We demonstrate depth-resolved spectral absorption measurements in the wavelength range from 750 to 850nm using a broadband light source consisting of three spectrally shifted superluminescent light- emitting diode modules and a low-cost spectrometer-based Fourier-domain optical coherence tomography system. We present the theoretical model and experimental verification of interferences between autocorrelation terms and the signal carrying cross-correlation terms, strongly affecting the absorption measurements. A simple background subtraction, minimizing the artifacts caused by the interferences of autocorrelation and cross-correlation terms, is presented.

© 2010 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
    [CrossRef] [PubMed]
  2. A. F. Fercher, C. K. Hitzenberger, G. Kamp, and S. Y. El-Zaiat, “Measurement of intraocular distances by backscattering spectral interferometry,” Opt. Commun. 117, 43–48 (1995).
    [CrossRef]
  3. R. Leitgeb, C. K. Hitzenberger, and A. F. Fercher, “Performance of Fourier domain vs. time domain optical coherence tomography,” Opt. Express 11, 889–894 (2003).
    [CrossRef] [PubMed]
  4. M. A. Choma, M. V. Sarunic, C. Yang, and J. A. Izatt, “Sensitivity advantage of swept source and Fourier domain optical coherence tomography,” Opt. Express 11, 2183–2189 (2003).
    [CrossRef] [PubMed]
  5. J. F. de Boer, B. Cense, B. H. Park, M. C. Pierce, G. J. Tearney, and B. E. Bouma, “Improved signal-to-noise ratio in spectral-domain compared with time-domain optical coherence tomography,” Opt. Lett. 28, 2067–2069 (2003).
    [CrossRef] [PubMed]
  6. J. Ai and L. V. Wang, “Synchronous self-elimination of autocorrelation interference in Fourier-domain optical coherence tomography,” Opt. Lett. 30, 2939–2941 (2005).
    [CrossRef] [PubMed]
  7. U. Morgner, W. Drexler, F. X. Kärtner, X. D. Li, C. Pitris, E. P. Ippen, and J. G. Fujimoto, “Spectroscopic optical coherence tomography,” Opt. Lett. 25, 111–113 (2000).
    [CrossRef]
  8. X. D. Li, S. A. Boppart, J. Van Dam, H. Mashimo, M. Mutinga, W. Drexler, M. Klein, C. Pitris, M. L. Krinsky, M. E. Brezinski, and J. G. Fujimoto, “Optical coherence tomography: advanced technology for the endoscopic imaging of Barrett’s esophagus,” Endoscopy 32, 921–930 (2000).
    [CrossRef]
  9. D. Adler, T. Ko, P. Herz, and J. G. Fujimoto, “Optical coherence tomography contrast enhancement using spectroscopic analysis with spectral autocorrelation,” Opt. Express 12, 5487–5501 (2004).
    [CrossRef] [PubMed]
  10. D. J. Faber, E. G. Mik, M. C. G. Alders, and T. G. van Leeuwen, “Light absorption of (oxy-)hemoglobin assessed by spectroscopic optical coherence tomography,” Opt. Lett. 28, 1436–1438 (2003).
    [CrossRef] [PubMed]
  11. D. J. Faber, E. G. Mik, M. C. G. Aalders, and T. G. van Leeuwen, “Toward assessment of blood oxygen saturation by spectroscopic optical coherence tomography,” Opt. Lett. 30, 1015–1017 (2005).
    [CrossRef] [PubMed]
  12. M. Kinnunen, R. Myllylä, T. Jokela, and S. Vainio, “In vitro studies toward noninvasive glucose monitoring with optical coherence tomography,” Appl. Opt. 45, 2251–2260 (2006).
    [CrossRef] [PubMed]
  13. A. L. Oldenburg, C. Xu, and S. A. Boppart, “Spectroscopic optical coherence tomography and microscopy,” IEEE J. Quantum Electron. 13, 1629–1640 (2007).
    [CrossRef]
  14. S. Brand, J. M. Poneros, B. E. Bouma, G. J. Tearney, C. C. Compton, and N. S. Nishioka, “Optical coherence tomography in the gastrointestinal tract,” Endoscopy 32, 796–803(2000).
    [CrossRef] [PubMed]
  15. J. G. Fujimoto, “Optical coherence tomography for ultrahigh resolution in vivo imaging,” Nat. Biotechnol. 21, 1361–1367(2003).
    [CrossRef] [PubMed]
  16. T. Gambichler, G. Moussa, M. Sand, D. Sand, P. Altmeyer, and K. Hoffmann, “Applications of optical coherence tomography in dermatology,” J. Dermatol. Sci. 40, 85–94 (2005).
    [CrossRef] [PubMed]
  17. J. M. Schmitt, S. H. Xiang, and K. M. Yung, “Differential absorption imaging with optical coherence tomography,” J. Opt. Soc. Am. A 15, 2288–2296 (1998).
    [CrossRef]
  18. B. Hermann, K. Bizheva, A. Unterhuber, B. Považay, H. Sattmann, L. Schmetterer, A. Fercher, and W. Drexler, “Precision of extracting absorption profiles from weakly scattering media with spectroscopic time-domain optical coherence tomography,” Opt. Express 12, 1677–1688 (2004).
    [CrossRef] [PubMed]
  19. R. Leitgeb, M. Wojtkowski, A. Kowalczky, C. K. Hitzenberger, M. Sticker, and A. Fercher, “Spectral measurement of absorption by frequency domain optical coherence tomography,” Opt. Lett. 25, 820–822 (2000).
    [CrossRef]
  20. B. Hermann, B. Hofer, Ch. Meier, and W. Drexler, “Spectroscopic measurements with dispersion encoded full range frequency domain optical coherence tomography in single- and multilayered non-scattering phantoms,” Opt. Express 17, 24162–24174 (2009).
    [CrossRef]
  21. T. L. Troy and S. N. Thennadil, “Optical properties of human skin in the near infrared wavelength range of 1000 to 2200 nm,” J. Biomed. Opt. 6, 167–176 (2001).
    [CrossRef] [PubMed]
  22. R. Choe, “Diffuse optical tomography and spectroscopy of breast cancer and fetal brain,” Ph.D. dissertation (University of Pennsylvania, 2005), Appendix 3.8, pp. 81–96.

2009 (1)

2007 (1)

A. L. Oldenburg, C. Xu, and S. A. Boppart, “Spectroscopic optical coherence tomography and microscopy,” IEEE J. Quantum Electron. 13, 1629–1640 (2007).
[CrossRef]

2006 (1)

2005 (3)

2004 (2)

2003 (5)

2001 (1)

T. L. Troy and S. N. Thennadil, “Optical properties of human skin in the near infrared wavelength range of 1000 to 2200 nm,” J. Biomed. Opt. 6, 167–176 (2001).
[CrossRef] [PubMed]

2000 (4)

U. Morgner, W. Drexler, F. X. Kärtner, X. D. Li, C. Pitris, E. P. Ippen, and J. G. Fujimoto, “Spectroscopic optical coherence tomography,” Opt. Lett. 25, 111–113 (2000).
[CrossRef]

X. D. Li, S. A. Boppart, J. Van Dam, H. Mashimo, M. Mutinga, W. Drexler, M. Klein, C. Pitris, M. L. Krinsky, M. E. Brezinski, and J. G. Fujimoto, “Optical coherence tomography: advanced technology for the endoscopic imaging of Barrett’s esophagus,” Endoscopy 32, 921–930 (2000).
[CrossRef]

R. Leitgeb, M. Wojtkowski, A. Kowalczky, C. K. Hitzenberger, M. Sticker, and A. Fercher, “Spectral measurement of absorption by frequency domain optical coherence tomography,” Opt. Lett. 25, 820–822 (2000).
[CrossRef]

S. Brand, J. M. Poneros, B. E. Bouma, G. J. Tearney, C. C. Compton, and N. S. Nishioka, “Optical coherence tomography in the gastrointestinal tract,” Endoscopy 32, 796–803(2000).
[CrossRef] [PubMed]

1998 (1)

1995 (1)

A. F. Fercher, C. K. Hitzenberger, G. Kamp, and S. Y. El-Zaiat, “Measurement of intraocular distances by backscattering spectral interferometry,” Opt. Commun. 117, 43–48 (1995).
[CrossRef]

1991 (1)

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef] [PubMed]

Aalders, M. C. G.

Adler, D.

Ai, J.

Alders, M. C. G.

Altmeyer, P.

T. Gambichler, G. Moussa, M. Sand, D. Sand, P. Altmeyer, and K. Hoffmann, “Applications of optical coherence tomography in dermatology,” J. Dermatol. Sci. 40, 85–94 (2005).
[CrossRef] [PubMed]

Bizheva, K.

Boppart, S. A.

A. L. Oldenburg, C. Xu, and S. A. Boppart, “Spectroscopic optical coherence tomography and microscopy,” IEEE J. Quantum Electron. 13, 1629–1640 (2007).
[CrossRef]

X. D. Li, S. A. Boppart, J. Van Dam, H. Mashimo, M. Mutinga, W. Drexler, M. Klein, C. Pitris, M. L. Krinsky, M. E. Brezinski, and J. G. Fujimoto, “Optical coherence tomography: advanced technology for the endoscopic imaging of Barrett’s esophagus,” Endoscopy 32, 921–930 (2000).
[CrossRef]

Bouma, B. E.

J. F. de Boer, B. Cense, B. H. Park, M. C. Pierce, G. J. Tearney, and B. E. Bouma, “Improved signal-to-noise ratio in spectral-domain compared with time-domain optical coherence tomography,” Opt. Lett. 28, 2067–2069 (2003).
[CrossRef] [PubMed]

S. Brand, J. M. Poneros, B. E. Bouma, G. J. Tearney, C. C. Compton, and N. S. Nishioka, “Optical coherence tomography in the gastrointestinal tract,” Endoscopy 32, 796–803(2000).
[CrossRef] [PubMed]

Brand, S.

S. Brand, J. M. Poneros, B. E. Bouma, G. J. Tearney, C. C. Compton, and N. S. Nishioka, “Optical coherence tomography in the gastrointestinal tract,” Endoscopy 32, 796–803(2000).
[CrossRef] [PubMed]

Brezinski, M. E.

X. D. Li, S. A. Boppart, J. Van Dam, H. Mashimo, M. Mutinga, W. Drexler, M. Klein, C. Pitris, M. L. Krinsky, M. E. Brezinski, and J. G. Fujimoto, “Optical coherence tomography: advanced technology for the endoscopic imaging of Barrett’s esophagus,” Endoscopy 32, 921–930 (2000).
[CrossRef]

Cense, B.

Chang, W.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef] [PubMed]

Choe, R.

R. Choe, “Diffuse optical tomography and spectroscopy of breast cancer and fetal brain,” Ph.D. dissertation (University of Pennsylvania, 2005), Appendix 3.8, pp. 81–96.

Choma, M. A.

Compton, C. C.

S. Brand, J. M. Poneros, B. E. Bouma, G. J. Tearney, C. C. Compton, and N. S. Nishioka, “Optical coherence tomography in the gastrointestinal tract,” Endoscopy 32, 796–803(2000).
[CrossRef] [PubMed]

de Boer, J. F.

Drexler, W.

El-Zaiat, S. Y.

A. F. Fercher, C. K. Hitzenberger, G. Kamp, and S. Y. El-Zaiat, “Measurement of intraocular distances by backscattering spectral interferometry,” Opt. Commun. 117, 43–48 (1995).
[CrossRef]

Faber, D. J.

Fercher, A.

Fercher, A. F.

R. Leitgeb, C. K. Hitzenberger, and A. F. Fercher, “Performance of Fourier domain vs. time domain optical coherence tomography,” Opt. Express 11, 889–894 (2003).
[CrossRef] [PubMed]

A. F. Fercher, C. K. Hitzenberger, G. Kamp, and S. Y. El-Zaiat, “Measurement of intraocular distances by backscattering spectral interferometry,” Opt. Commun. 117, 43–48 (1995).
[CrossRef]

Flotte, T.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef] [PubMed]

Fujimoto, J. G.

D. Adler, T. Ko, P. Herz, and J. G. Fujimoto, “Optical coherence tomography contrast enhancement using spectroscopic analysis with spectral autocorrelation,” Opt. Express 12, 5487–5501 (2004).
[CrossRef] [PubMed]

J. G. Fujimoto, “Optical coherence tomography for ultrahigh resolution in vivo imaging,” Nat. Biotechnol. 21, 1361–1367(2003).
[CrossRef] [PubMed]

X. D. Li, S. A. Boppart, J. Van Dam, H. Mashimo, M. Mutinga, W. Drexler, M. Klein, C. Pitris, M. L. Krinsky, M. E. Brezinski, and J. G. Fujimoto, “Optical coherence tomography: advanced technology for the endoscopic imaging of Barrett’s esophagus,” Endoscopy 32, 921–930 (2000).
[CrossRef]

U. Morgner, W. Drexler, F. X. Kärtner, X. D. Li, C. Pitris, E. P. Ippen, and J. G. Fujimoto, “Spectroscopic optical coherence tomography,” Opt. Lett. 25, 111–113 (2000).
[CrossRef]

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef] [PubMed]

Gambichler, T.

T. Gambichler, G. Moussa, M. Sand, D. Sand, P. Altmeyer, and K. Hoffmann, “Applications of optical coherence tomography in dermatology,” J. Dermatol. Sci. 40, 85–94 (2005).
[CrossRef] [PubMed]

Gregory, K.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef] [PubMed]

Hee, M. R.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef] [PubMed]

Hermann, B.

Herz, P.

Hitzenberger, C. K.

Hofer, B.

Hoffmann, K.

T. Gambichler, G. Moussa, M. Sand, D. Sand, P. Altmeyer, and K. Hoffmann, “Applications of optical coherence tomography in dermatology,” J. Dermatol. Sci. 40, 85–94 (2005).
[CrossRef] [PubMed]

Huang, D.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef] [PubMed]

Ippen, E. P.

Izatt, J. A.

Jokela, T.

Kamp, G.

A. F. Fercher, C. K. Hitzenberger, G. Kamp, and S. Y. El-Zaiat, “Measurement of intraocular distances by backscattering spectral interferometry,” Opt. Commun. 117, 43–48 (1995).
[CrossRef]

Kärtner, F. X.

Kinnunen, M.

Klein, M.

X. D. Li, S. A. Boppart, J. Van Dam, H. Mashimo, M. Mutinga, W. Drexler, M. Klein, C. Pitris, M. L. Krinsky, M. E. Brezinski, and J. G. Fujimoto, “Optical coherence tomography: advanced technology for the endoscopic imaging of Barrett’s esophagus,” Endoscopy 32, 921–930 (2000).
[CrossRef]

Ko, T.

Kowalczky, A.

Krinsky, M. L.

X. D. Li, S. A. Boppart, J. Van Dam, H. Mashimo, M. Mutinga, W. Drexler, M. Klein, C. Pitris, M. L. Krinsky, M. E. Brezinski, and J. G. Fujimoto, “Optical coherence tomography: advanced technology for the endoscopic imaging of Barrett’s esophagus,” Endoscopy 32, 921–930 (2000).
[CrossRef]

Leitgeb, R.

Li, X. D.

U. Morgner, W. Drexler, F. X. Kärtner, X. D. Li, C. Pitris, E. P. Ippen, and J. G. Fujimoto, “Spectroscopic optical coherence tomography,” Opt. Lett. 25, 111–113 (2000).
[CrossRef]

X. D. Li, S. A. Boppart, J. Van Dam, H. Mashimo, M. Mutinga, W. Drexler, M. Klein, C. Pitris, M. L. Krinsky, M. E. Brezinski, and J. G. Fujimoto, “Optical coherence tomography: advanced technology for the endoscopic imaging of Barrett’s esophagus,” Endoscopy 32, 921–930 (2000).
[CrossRef]

Lin, C. P.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef] [PubMed]

Mashimo, H.

X. D. Li, S. A. Boppart, J. Van Dam, H. Mashimo, M. Mutinga, W. Drexler, M. Klein, C. Pitris, M. L. Krinsky, M. E. Brezinski, and J. G. Fujimoto, “Optical coherence tomography: advanced technology for the endoscopic imaging of Barrett’s esophagus,” Endoscopy 32, 921–930 (2000).
[CrossRef]

Meier, Ch.

Mik, E. G.

Morgner, U.

Moussa, G.

T. Gambichler, G. Moussa, M. Sand, D. Sand, P. Altmeyer, and K. Hoffmann, “Applications of optical coherence tomography in dermatology,” J. Dermatol. Sci. 40, 85–94 (2005).
[CrossRef] [PubMed]

Mutinga, M.

X. D. Li, S. A. Boppart, J. Van Dam, H. Mashimo, M. Mutinga, W. Drexler, M. Klein, C. Pitris, M. L. Krinsky, M. E. Brezinski, and J. G. Fujimoto, “Optical coherence tomography: advanced technology for the endoscopic imaging of Barrett’s esophagus,” Endoscopy 32, 921–930 (2000).
[CrossRef]

Myllylä, R.

Nishioka, N. S.

S. Brand, J. M. Poneros, B. E. Bouma, G. J. Tearney, C. C. Compton, and N. S. Nishioka, “Optical coherence tomography in the gastrointestinal tract,” Endoscopy 32, 796–803(2000).
[CrossRef] [PubMed]

Oldenburg, A. L.

A. L. Oldenburg, C. Xu, and S. A. Boppart, “Spectroscopic optical coherence tomography and microscopy,” IEEE J. Quantum Electron. 13, 1629–1640 (2007).
[CrossRef]

Park, B. H.

Pierce, M. C.

Pitris, C.

U. Morgner, W. Drexler, F. X. Kärtner, X. D. Li, C. Pitris, E. P. Ippen, and J. G. Fujimoto, “Spectroscopic optical coherence tomography,” Opt. Lett. 25, 111–113 (2000).
[CrossRef]

X. D. Li, S. A. Boppart, J. Van Dam, H. Mashimo, M. Mutinga, W. Drexler, M. Klein, C. Pitris, M. L. Krinsky, M. E. Brezinski, and J. G. Fujimoto, “Optical coherence tomography: advanced technology for the endoscopic imaging of Barrett’s esophagus,” Endoscopy 32, 921–930 (2000).
[CrossRef]

Poneros, J. M.

S. Brand, J. M. Poneros, B. E. Bouma, G. J. Tearney, C. C. Compton, and N. S. Nishioka, “Optical coherence tomography in the gastrointestinal tract,” Endoscopy 32, 796–803(2000).
[CrossRef] [PubMed]

Považay, B.

Puliafito, C. A.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef] [PubMed]

Sand, D.

T. Gambichler, G. Moussa, M. Sand, D. Sand, P. Altmeyer, and K. Hoffmann, “Applications of optical coherence tomography in dermatology,” J. Dermatol. Sci. 40, 85–94 (2005).
[CrossRef] [PubMed]

Sand, M.

T. Gambichler, G. Moussa, M. Sand, D. Sand, P. Altmeyer, and K. Hoffmann, “Applications of optical coherence tomography in dermatology,” J. Dermatol. Sci. 40, 85–94 (2005).
[CrossRef] [PubMed]

Sarunic, M. V.

Sattmann, H.

Schmetterer, L.

Schmitt, J. M.

Schuman, J. S.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef] [PubMed]

Sticker, M.

Stinson, W. G.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef] [PubMed]

Swanson, E. A.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef] [PubMed]

Tearney, G. J.

J. F. de Boer, B. Cense, B. H. Park, M. C. Pierce, G. J. Tearney, and B. E. Bouma, “Improved signal-to-noise ratio in spectral-domain compared with time-domain optical coherence tomography,” Opt. Lett. 28, 2067–2069 (2003).
[CrossRef] [PubMed]

S. Brand, J. M. Poneros, B. E. Bouma, G. J. Tearney, C. C. Compton, and N. S. Nishioka, “Optical coherence tomography in the gastrointestinal tract,” Endoscopy 32, 796–803(2000).
[CrossRef] [PubMed]

Thennadil, S. N.

T. L. Troy and S. N. Thennadil, “Optical properties of human skin in the near infrared wavelength range of 1000 to 2200 nm,” J. Biomed. Opt. 6, 167–176 (2001).
[CrossRef] [PubMed]

Troy, T. L.

T. L. Troy and S. N. Thennadil, “Optical properties of human skin in the near infrared wavelength range of 1000 to 2200 nm,” J. Biomed. Opt. 6, 167–176 (2001).
[CrossRef] [PubMed]

Unterhuber, A.

Vainio, S.

Van Dam, J.

X. D. Li, S. A. Boppart, J. Van Dam, H. Mashimo, M. Mutinga, W. Drexler, M. Klein, C. Pitris, M. L. Krinsky, M. E. Brezinski, and J. G. Fujimoto, “Optical coherence tomography: advanced technology for the endoscopic imaging of Barrett’s esophagus,” Endoscopy 32, 921–930 (2000).
[CrossRef]

van Leeuwen, T. G.

Wang, L. V.

Wojtkowski, M.

Xiang, S. H.

Xu, C.

A. L. Oldenburg, C. Xu, and S. A. Boppart, “Spectroscopic optical coherence tomography and microscopy,” IEEE J. Quantum Electron. 13, 1629–1640 (2007).
[CrossRef]

Yang, C.

Yung, K. M.

Appl. Opt. (1)

Endoscopy (2)

S. Brand, J. M. Poneros, B. E. Bouma, G. J. Tearney, C. C. Compton, and N. S. Nishioka, “Optical coherence tomography in the gastrointestinal tract,” Endoscopy 32, 796–803(2000).
[CrossRef] [PubMed]

X. D. Li, S. A. Boppart, J. Van Dam, H. Mashimo, M. Mutinga, W. Drexler, M. Klein, C. Pitris, M. L. Krinsky, M. E. Brezinski, and J. G. Fujimoto, “Optical coherence tomography: advanced technology for the endoscopic imaging of Barrett’s esophagus,” Endoscopy 32, 921–930 (2000).
[CrossRef]

IEEE J. Quantum Electron. (1)

A. L. Oldenburg, C. Xu, and S. A. Boppart, “Spectroscopic optical coherence tomography and microscopy,” IEEE J. Quantum Electron. 13, 1629–1640 (2007).
[CrossRef]

J. Biomed. Opt. (1)

T. L. Troy and S. N. Thennadil, “Optical properties of human skin in the near infrared wavelength range of 1000 to 2200 nm,” J. Biomed. Opt. 6, 167–176 (2001).
[CrossRef] [PubMed]

J. Dermatol. Sci. (1)

T. Gambichler, G. Moussa, M. Sand, D. Sand, P. Altmeyer, and K. Hoffmann, “Applications of optical coherence tomography in dermatology,” J. Dermatol. Sci. 40, 85–94 (2005).
[CrossRef] [PubMed]

J. Opt. Soc. Am. A (1)

Nat. Biotechnol. (1)

J. G. Fujimoto, “Optical coherence tomography for ultrahigh resolution in vivo imaging,” Nat. Biotechnol. 21, 1361–1367(2003).
[CrossRef] [PubMed]

Opt. Commun. (1)

A. F. Fercher, C. K. Hitzenberger, G. Kamp, and S. Y. El-Zaiat, “Measurement of intraocular distances by backscattering spectral interferometry,” Opt. Commun. 117, 43–48 (1995).
[CrossRef]

Opt. Express (5)

Opt. Lett. (6)

Science (1)

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef] [PubMed]

Other (1)

R. Choe, “Diffuse optical tomography and spectroscopy of breast cancer and fetal brain,” Ph.D. dissertation (University of Pennsylvania, 2005), Appendix 3.8, pp. 81–96.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Experimental SOCT system with a low-cost spectrometer-and-fiber-based interferometer. The light source spectrum is shown at top left and the sample setup for the single layer measurements is shown at bottom right. The sample setup consists of two microscope coverslips, separated by spacers, and the sample liquid kept in the resulting space by adhesion force.

Fig. 2
Fig. 2

SOCT postprocessing algorithm with spatial domain peak detection, symmetric filtering, and spectral absorption coefficient calculation with the Hilbert transformation (H) and Beer–Lambert law. A simplified sample is shown at the top right with reflective layers at depths z 0 and z 1 , with reflection coefficients r s 1 and r s 2 , and the resulting reflected intensities I 0 and I 1 .

Fig. 3
Fig. 3

Schematic representation of the reflection and autocorrelation peaks positioned within the filter bandwidth with filter function described by h ( z ) .

Fig. 4
Fig. 4

Recorded OCT signal of a double layer setup with DC and autocorrelation terms. Signal (a) before and (b) after background subtraction.

Fig. 5
Fig. 5

Spectrally resolved absorption coefficients of different ICG concentrations, recorded with a commercial spectrometer (blue curves) and with SOCT (green and red curves). The dotted lines show the standard deviation of the five spatially shifted measurements. The deviation for the 600 μM concentration is most likely explained by the low sample arm power and possible multiple scattering processes in this wavelength range.

Fig. 6
Fig. 6

Effects of the interferences between autocorrelation and cross-correlation terms on the spectral absorption measurements of ICG solution. Results are shown for measurements in transmission (blue curve), without background correction (red curve), with background correction (black curve), and a single uncorrected measurement (gray dotted curve). Standard deviations are shown as solid green curves for (a) measurements with background correction and (b) without background correction.

Fig. 7
Fig. 7

Effects of the interferences between autocorrelation and cross-correlation terms on the spectral absorption measurements of an ICG and Intralipid mixture. Results are shown for measurements in transmission (blue curve), without background correction (red curve) and with background correction (black curve). Standard deviations are shown as solid green curves for (a) measurements with background correction and (b) without background correction.

Equations (11)

Equations on this page are rendered with MathJax. Learn more.

μ t ( λ ) = μ a ( λ ) + μ s ( λ ) .
I ( λ , z ) = I 0 ( λ ) e μ t ( λ ) z .
μ t ( λ ) = 1 ( z 2 z 1 ) ln ( I 1 ( λ , z 1 ) I 2 ( λ , z 2 ) ) .
I n ( λ , z n ) = | F { h ( z n ) F 1 { FD ( λ n ) } } + i H { F { h ( z n ) F 1 { FD ( λ n ) } } } | ,
FD ( k ) = S ( k ) [ r r 2 + i = 1 n r s i 2 background   part + 2 i = 1 n r r r s i cos ( 2 k ( z r z s i ) ) cross-correlation part + 2 i = 1 j n r s j r s i cos ( 2 k ( z s j z s i ) ) autocorrelation part ] ,
FD ( k ) = S ( k ) [ 2 r r r s 1 1 2 ( e i 2 k ( z r z s 1 ) + e i 2 k ( z r z s 1 ) ) + 2 r s 1 r s 2 h 1 1 2 ( e i 2 k ( z s 2 z s 1 ) + e i 2 k ( z s 2 z s 1 ) ) ] ,
H { cos ( φ ) } = sin ( φ )
FD a ( k ) = FD ( k ) + i H { FD ( k ) } = S ( k ) [ r r r s 1 e i 2 k ( z r z s 1 ) + r s 1 r s 2 h 1 e i 2 k ( z s 2 z s 1 ) ] .
env ( k ) = | FD ( k ) + i H { FD ( k ) } | = 2 | S ( k ) r s 1 | [ r r 2 + r s 2 2 h 1 2 + 2 r r r s 2 h 1 cos ( 2 k [ ( z r z s 1 ) ( z s 2 z s 1 ) ] ) ] 1 / 2 .
I D = | U r + U s | 2 | U r | 2 | U s | 2 .
λ = π 4 ln ( 2 ) l c Δ λ z 6 nm ,

Metrics