Abstract

We introduce a microscope system using a solid immersion lens (SIL) to image Blu-ray disc samples without removing the protective cover layer. The aberration caused by the cover layer is minimized with a truncated SIL. A subsurface imaging simulation is achieved by using the rigorous coupled wave theory, partial coherence, vector diffraction, and the Babinet principle. Simulated results are compared with experimental images and atomic force microscopy measurements.

© 2010 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. C. A. Verschuren, J. M. A. van den Eerenbeemd, F. Zijp, J. Lee, and D. M. Bruls, “Near-field recording with a solid immersion lens on a polymer cover-layer protected discs,” Jpn. J. Appl. Phys. 45, 1325–1331 (2006).
    [CrossRef]
  2. C. A. Verschuren, F. Zijp, J. Lee, J. M. van den Eerenbeems, M. B. van der Mark, and H. P. Urbach, “Near-field recording on first-surface write-once media with a NA=1.9 solid immersion lens,” Jpn. J. Appl. Phys. 44, 3564–3567 (2005).
    [CrossRef]
  3. S. M. Mansfield and G. S. Kino, “Solid immersion microscope,” Appl. Phys. Lett. 57, 2615–2616 (1990).
    [CrossRef]
  4. J. Zhang, M. Lang, T. D. Milster, T. Chen, E. Aspnes, and B. Bell, “Fabrication and testing of a GaP SIL with NA=2.64,” Proc. SPIE 6620, 66201Z (2007).
    [CrossRef]
  5. T. Chen, T. D. Milster, S.-H. Yang, and D. Hansen, “Evanescent imaging with induced polarization by using a solid immersion lens,” Opt. Lett. 32, 124–126 (2007).
    [CrossRef]
  6. T. Chen, T. D. Milster, and S.-H. Yang, “Experimental investigation of photomask with near-field polarization imaging,” Proc. SPIE 6349, 634953 (2006).
    [CrossRef]
  7. R. Brunner, A. Menck, R. Steiner, G. Buchda, S. Weissenberg, U. Horn, and A. M. Zibold, “Immersion mask inspection with hybrid-microscopic systems at 193nm,” Proc. SPIE 5567, 887–893 (2004).
    [CrossRef]
  8. M. Lang, E. Aspnes, and T. D. Milster, “Geometrical analysis of third-order aberrations for a solid immersion lens,” Opt. Express 16, 20008–20028 (2008).
    [CrossRef] [PubMed]
  9. W. Singer, M. Totzeck, and H. Gross, Handbook of Optical Systems (Physical Image Formation, 2005), Vol. 2.
  10. M. Totzeck, “Numerical simulation of high-NA quantitative polarization microscopy and corresponding near-fields,” Optik (Jena) 112, 399–406 (2001).
    [CrossRef]
  11. K. Saito, T. Ishimoto, T. Kondo, A. Nakaoki, S. Masuhara, M. Furuki, and M. Yamamoto, “Readout method for read only memory signal and air gap control signal in a near field optical disc system,” Jpn. J. Appl. Phys. 41, 1898–1902 (2002).
    [CrossRef]
  12. S. Yang, J. Zhang, T. Milster, and J. R. Park, “High NA image simulation using Babinet’s principle,” J. Opt. Soc. Am. A 27, 1012–1023 (2010).
    [CrossRef]
  13. S. H. Yang, T. D. Milster, J. Zhang, and T. Chen, “Characteristics of evanescent polarization imaging,” J. Mod. Opt. 57, 783–797 (2010).
    [CrossRef]
  14. H. H. Hopkins, “On the diffraction theory of optical images,” Proc. R. Soc. London Ser. A 217, 408–432 (1953).
    [CrossRef]
  15. H.Lacoste and L.Ouwehand, eds., Fringe 2005 Workshop (ESA Special Publication, 2006), SP-610.
  16. H. A. Macleod, Thin Film Optical Filters (McGraw-Hill, 1989).
  17. http://www.blu-raydisc.com/Assets/Downloadablefile/BD-ROMwhitepaper20070308-15270.pdf.

2010 (2)

S. Yang, J. Zhang, T. Milster, and J. R. Park, “High NA image simulation using Babinet’s principle,” J. Opt. Soc. Am. A 27, 1012–1023 (2010).
[CrossRef]

S. H. Yang, T. D. Milster, J. Zhang, and T. Chen, “Characteristics of evanescent polarization imaging,” J. Mod. Opt. 57, 783–797 (2010).
[CrossRef]

2008 (1)

2007 (2)

J. Zhang, M. Lang, T. D. Milster, T. Chen, E. Aspnes, and B. Bell, “Fabrication and testing of a GaP SIL with NA=2.64,” Proc. SPIE 6620, 66201Z (2007).
[CrossRef]

T. Chen, T. D. Milster, S.-H. Yang, and D. Hansen, “Evanescent imaging with induced polarization by using a solid immersion lens,” Opt. Lett. 32, 124–126 (2007).
[CrossRef]

2006 (2)

T. Chen, T. D. Milster, and S.-H. Yang, “Experimental investigation of photomask with near-field polarization imaging,” Proc. SPIE 6349, 634953 (2006).
[CrossRef]

C. A. Verschuren, J. M. A. van den Eerenbeemd, F. Zijp, J. Lee, and D. M. Bruls, “Near-field recording with a solid immersion lens on a polymer cover-layer protected discs,” Jpn. J. Appl. Phys. 45, 1325–1331 (2006).
[CrossRef]

2005 (1)

C. A. Verschuren, F. Zijp, J. Lee, J. M. van den Eerenbeems, M. B. van der Mark, and H. P. Urbach, “Near-field recording on first-surface write-once media with a NA=1.9 solid immersion lens,” Jpn. J. Appl. Phys. 44, 3564–3567 (2005).
[CrossRef]

2004 (1)

R. Brunner, A. Menck, R. Steiner, G. Buchda, S. Weissenberg, U. Horn, and A. M. Zibold, “Immersion mask inspection with hybrid-microscopic systems at 193nm,” Proc. SPIE 5567, 887–893 (2004).
[CrossRef]

2002 (1)

K. Saito, T. Ishimoto, T. Kondo, A. Nakaoki, S. Masuhara, M. Furuki, and M. Yamamoto, “Readout method for read only memory signal and air gap control signal in a near field optical disc system,” Jpn. J. Appl. Phys. 41, 1898–1902 (2002).
[CrossRef]

2001 (1)

M. Totzeck, “Numerical simulation of high-NA quantitative polarization microscopy and corresponding near-fields,” Optik (Jena) 112, 399–406 (2001).
[CrossRef]

1990 (1)

S. M. Mansfield and G. S. Kino, “Solid immersion microscope,” Appl. Phys. Lett. 57, 2615–2616 (1990).
[CrossRef]

1953 (1)

H. H. Hopkins, “On the diffraction theory of optical images,” Proc. R. Soc. London Ser. A 217, 408–432 (1953).
[CrossRef]

Aspnes, E.

M. Lang, E. Aspnes, and T. D. Milster, “Geometrical analysis of third-order aberrations for a solid immersion lens,” Opt. Express 16, 20008–20028 (2008).
[CrossRef] [PubMed]

J. Zhang, M. Lang, T. D. Milster, T. Chen, E. Aspnes, and B. Bell, “Fabrication and testing of a GaP SIL with NA=2.64,” Proc. SPIE 6620, 66201Z (2007).
[CrossRef]

Bell, B.

J. Zhang, M. Lang, T. D. Milster, T. Chen, E. Aspnes, and B. Bell, “Fabrication and testing of a GaP SIL with NA=2.64,” Proc. SPIE 6620, 66201Z (2007).
[CrossRef]

Bruls, D. M.

C. A. Verschuren, J. M. A. van den Eerenbeemd, F. Zijp, J. Lee, and D. M. Bruls, “Near-field recording with a solid immersion lens on a polymer cover-layer protected discs,” Jpn. J. Appl. Phys. 45, 1325–1331 (2006).
[CrossRef]

Brunner, R.

R. Brunner, A. Menck, R. Steiner, G. Buchda, S. Weissenberg, U. Horn, and A. M. Zibold, “Immersion mask inspection with hybrid-microscopic systems at 193nm,” Proc. SPIE 5567, 887–893 (2004).
[CrossRef]

Buchda, G.

R. Brunner, A. Menck, R. Steiner, G. Buchda, S. Weissenberg, U. Horn, and A. M. Zibold, “Immersion mask inspection with hybrid-microscopic systems at 193nm,” Proc. SPIE 5567, 887–893 (2004).
[CrossRef]

Chen, T.

S. H. Yang, T. D. Milster, J. Zhang, and T. Chen, “Characteristics of evanescent polarization imaging,” J. Mod. Opt. 57, 783–797 (2010).
[CrossRef]

J. Zhang, M. Lang, T. D. Milster, T. Chen, E. Aspnes, and B. Bell, “Fabrication and testing of a GaP SIL with NA=2.64,” Proc. SPIE 6620, 66201Z (2007).
[CrossRef]

T. Chen, T. D. Milster, S.-H. Yang, and D. Hansen, “Evanescent imaging with induced polarization by using a solid immersion lens,” Opt. Lett. 32, 124–126 (2007).
[CrossRef]

T. Chen, T. D. Milster, and S.-H. Yang, “Experimental investigation of photomask with near-field polarization imaging,” Proc. SPIE 6349, 634953 (2006).
[CrossRef]

Furuki, M.

K. Saito, T. Ishimoto, T. Kondo, A. Nakaoki, S. Masuhara, M. Furuki, and M. Yamamoto, “Readout method for read only memory signal and air gap control signal in a near field optical disc system,” Jpn. J. Appl. Phys. 41, 1898–1902 (2002).
[CrossRef]

Gross, H.

W. Singer, M. Totzeck, and H. Gross, Handbook of Optical Systems (Physical Image Formation, 2005), Vol. 2.

Hansen, D.

Hopkins, H. H.

H. H. Hopkins, “On the diffraction theory of optical images,” Proc. R. Soc. London Ser. A 217, 408–432 (1953).
[CrossRef]

Horn, U.

R. Brunner, A. Menck, R. Steiner, G. Buchda, S. Weissenberg, U. Horn, and A. M. Zibold, “Immersion mask inspection with hybrid-microscopic systems at 193nm,” Proc. SPIE 5567, 887–893 (2004).
[CrossRef]

Ishimoto, T.

K. Saito, T. Ishimoto, T. Kondo, A. Nakaoki, S. Masuhara, M. Furuki, and M. Yamamoto, “Readout method for read only memory signal and air gap control signal in a near field optical disc system,” Jpn. J. Appl. Phys. 41, 1898–1902 (2002).
[CrossRef]

Kino, G. S.

S. M. Mansfield and G. S. Kino, “Solid immersion microscope,” Appl. Phys. Lett. 57, 2615–2616 (1990).
[CrossRef]

Kondo, T.

K. Saito, T. Ishimoto, T. Kondo, A. Nakaoki, S. Masuhara, M. Furuki, and M. Yamamoto, “Readout method for read only memory signal and air gap control signal in a near field optical disc system,” Jpn. J. Appl. Phys. 41, 1898–1902 (2002).
[CrossRef]

Lang, M.

M. Lang, E. Aspnes, and T. D. Milster, “Geometrical analysis of third-order aberrations for a solid immersion lens,” Opt. Express 16, 20008–20028 (2008).
[CrossRef] [PubMed]

J. Zhang, M. Lang, T. D. Milster, T. Chen, E. Aspnes, and B. Bell, “Fabrication and testing of a GaP SIL with NA=2.64,” Proc. SPIE 6620, 66201Z (2007).
[CrossRef]

Lee, J.

C. A. Verschuren, J. M. A. van den Eerenbeemd, F. Zijp, J. Lee, and D. M. Bruls, “Near-field recording with a solid immersion lens on a polymer cover-layer protected discs,” Jpn. J. Appl. Phys. 45, 1325–1331 (2006).
[CrossRef]

C. A. Verschuren, F. Zijp, J. Lee, J. M. van den Eerenbeems, M. B. van der Mark, and H. P. Urbach, “Near-field recording on first-surface write-once media with a NA=1.9 solid immersion lens,” Jpn. J. Appl. Phys. 44, 3564–3567 (2005).
[CrossRef]

Macleod, H. A.

H. A. Macleod, Thin Film Optical Filters (McGraw-Hill, 1989).

Mansfield, S. M.

S. M. Mansfield and G. S. Kino, “Solid immersion microscope,” Appl. Phys. Lett. 57, 2615–2616 (1990).
[CrossRef]

Masuhara, S.

K. Saito, T. Ishimoto, T. Kondo, A. Nakaoki, S. Masuhara, M. Furuki, and M. Yamamoto, “Readout method for read only memory signal and air gap control signal in a near field optical disc system,” Jpn. J. Appl. Phys. 41, 1898–1902 (2002).
[CrossRef]

Menck, A.

R. Brunner, A. Menck, R. Steiner, G. Buchda, S. Weissenberg, U. Horn, and A. M. Zibold, “Immersion mask inspection with hybrid-microscopic systems at 193nm,” Proc. SPIE 5567, 887–893 (2004).
[CrossRef]

Milster, T.

Milster, T. D.

S. H. Yang, T. D. Milster, J. Zhang, and T. Chen, “Characteristics of evanescent polarization imaging,” J. Mod. Opt. 57, 783–797 (2010).
[CrossRef]

M. Lang, E. Aspnes, and T. D. Milster, “Geometrical analysis of third-order aberrations for a solid immersion lens,” Opt. Express 16, 20008–20028 (2008).
[CrossRef] [PubMed]

J. Zhang, M. Lang, T. D. Milster, T. Chen, E. Aspnes, and B. Bell, “Fabrication and testing of a GaP SIL with NA=2.64,” Proc. SPIE 6620, 66201Z (2007).
[CrossRef]

T. Chen, T. D. Milster, S.-H. Yang, and D. Hansen, “Evanescent imaging with induced polarization by using a solid immersion lens,” Opt. Lett. 32, 124–126 (2007).
[CrossRef]

T. Chen, T. D. Milster, and S.-H. Yang, “Experimental investigation of photomask with near-field polarization imaging,” Proc. SPIE 6349, 634953 (2006).
[CrossRef]

Nakaoki, A.

K. Saito, T. Ishimoto, T. Kondo, A. Nakaoki, S. Masuhara, M. Furuki, and M. Yamamoto, “Readout method for read only memory signal and air gap control signal in a near field optical disc system,” Jpn. J. Appl. Phys. 41, 1898–1902 (2002).
[CrossRef]

Park, J. R.

Saito, K.

K. Saito, T. Ishimoto, T. Kondo, A. Nakaoki, S. Masuhara, M. Furuki, and M. Yamamoto, “Readout method for read only memory signal and air gap control signal in a near field optical disc system,” Jpn. J. Appl. Phys. 41, 1898–1902 (2002).
[CrossRef]

Singer, W.

W. Singer, M. Totzeck, and H. Gross, Handbook of Optical Systems (Physical Image Formation, 2005), Vol. 2.

Steiner, R.

R. Brunner, A. Menck, R. Steiner, G. Buchda, S. Weissenberg, U. Horn, and A. M. Zibold, “Immersion mask inspection with hybrid-microscopic systems at 193nm,” Proc. SPIE 5567, 887–893 (2004).
[CrossRef]

Totzeck, M.

M. Totzeck, “Numerical simulation of high-NA quantitative polarization microscopy and corresponding near-fields,” Optik (Jena) 112, 399–406 (2001).
[CrossRef]

W. Singer, M. Totzeck, and H. Gross, Handbook of Optical Systems (Physical Image Formation, 2005), Vol. 2.

Urbach, H. P.

C. A. Verschuren, F. Zijp, J. Lee, J. M. van den Eerenbeems, M. B. van der Mark, and H. P. Urbach, “Near-field recording on first-surface write-once media with a NA=1.9 solid immersion lens,” Jpn. J. Appl. Phys. 44, 3564–3567 (2005).
[CrossRef]

van den Eerenbeemd, J. M. A.

C. A. Verschuren, J. M. A. van den Eerenbeemd, F. Zijp, J. Lee, and D. M. Bruls, “Near-field recording with a solid immersion lens on a polymer cover-layer protected discs,” Jpn. J. Appl. Phys. 45, 1325–1331 (2006).
[CrossRef]

van den Eerenbeems, J. M.

C. A. Verschuren, F. Zijp, J. Lee, J. M. van den Eerenbeems, M. B. van der Mark, and H. P. Urbach, “Near-field recording on first-surface write-once media with a NA=1.9 solid immersion lens,” Jpn. J. Appl. Phys. 44, 3564–3567 (2005).
[CrossRef]

van der Mark, M. B.

C. A. Verschuren, F. Zijp, J. Lee, J. M. van den Eerenbeems, M. B. van der Mark, and H. P. Urbach, “Near-field recording on first-surface write-once media with a NA=1.9 solid immersion lens,” Jpn. J. Appl. Phys. 44, 3564–3567 (2005).
[CrossRef]

Verschuren, C. A.

C. A. Verschuren, J. M. A. van den Eerenbeemd, F. Zijp, J. Lee, and D. M. Bruls, “Near-field recording with a solid immersion lens on a polymer cover-layer protected discs,” Jpn. J. Appl. Phys. 45, 1325–1331 (2006).
[CrossRef]

C. A. Verschuren, F. Zijp, J. Lee, J. M. van den Eerenbeems, M. B. van der Mark, and H. P. Urbach, “Near-field recording on first-surface write-once media with a NA=1.9 solid immersion lens,” Jpn. J. Appl. Phys. 44, 3564–3567 (2005).
[CrossRef]

Weissenberg, S.

R. Brunner, A. Menck, R. Steiner, G. Buchda, S. Weissenberg, U. Horn, and A. M. Zibold, “Immersion mask inspection with hybrid-microscopic systems at 193nm,” Proc. SPIE 5567, 887–893 (2004).
[CrossRef]

Yamamoto, M.

K. Saito, T. Ishimoto, T. Kondo, A. Nakaoki, S. Masuhara, M. Furuki, and M. Yamamoto, “Readout method for read only memory signal and air gap control signal in a near field optical disc system,” Jpn. J. Appl. Phys. 41, 1898–1902 (2002).
[CrossRef]

Yang, S.

Yang, S. H.

S. H. Yang, T. D. Milster, J. Zhang, and T. Chen, “Characteristics of evanescent polarization imaging,” J. Mod. Opt. 57, 783–797 (2010).
[CrossRef]

Yang, S.-H.

T. Chen, T. D. Milster, S.-H. Yang, and D. Hansen, “Evanescent imaging with induced polarization by using a solid immersion lens,” Opt. Lett. 32, 124–126 (2007).
[CrossRef]

T. Chen, T. D. Milster, and S.-H. Yang, “Experimental investigation of photomask with near-field polarization imaging,” Proc. SPIE 6349, 634953 (2006).
[CrossRef]

Zhang, J.

S. H. Yang, T. D. Milster, J. Zhang, and T. Chen, “Characteristics of evanescent polarization imaging,” J. Mod. Opt. 57, 783–797 (2010).
[CrossRef]

S. Yang, J. Zhang, T. Milster, and J. R. Park, “High NA image simulation using Babinet’s principle,” J. Opt. Soc. Am. A 27, 1012–1023 (2010).
[CrossRef]

J. Zhang, M. Lang, T. D. Milster, T. Chen, E. Aspnes, and B. Bell, “Fabrication and testing of a GaP SIL with NA=2.64,” Proc. SPIE 6620, 66201Z (2007).
[CrossRef]

Zibold, A. M.

R. Brunner, A. Menck, R. Steiner, G. Buchda, S. Weissenberg, U. Horn, and A. M. Zibold, “Immersion mask inspection with hybrid-microscopic systems at 193nm,” Proc. SPIE 5567, 887–893 (2004).
[CrossRef]

Zijp, F.

C. A. Verschuren, J. M. A. van den Eerenbeemd, F. Zijp, J. Lee, and D. M. Bruls, “Near-field recording with a solid immersion lens on a polymer cover-layer protected discs,” Jpn. J. Appl. Phys. 45, 1325–1331 (2006).
[CrossRef]

C. A. Verschuren, F. Zijp, J. Lee, J. M. van den Eerenbeems, M. B. van der Mark, and H. P. Urbach, “Near-field recording on first-surface write-once media with a NA=1.9 solid immersion lens,” Jpn. J. Appl. Phys. 44, 3564–3567 (2005).
[CrossRef]

Appl. Phys. Lett. (1)

S. M. Mansfield and G. S. Kino, “Solid immersion microscope,” Appl. Phys. Lett. 57, 2615–2616 (1990).
[CrossRef]

J. Mod. Opt. (1)

S. H. Yang, T. D. Milster, J. Zhang, and T. Chen, “Characteristics of evanescent polarization imaging,” J. Mod. Opt. 57, 783–797 (2010).
[CrossRef]

J. Opt. Soc. Am. A (1)

Jpn. J. Appl. Phys. (3)

K. Saito, T. Ishimoto, T. Kondo, A. Nakaoki, S. Masuhara, M. Furuki, and M. Yamamoto, “Readout method for read only memory signal and air gap control signal in a near field optical disc system,” Jpn. J. Appl. Phys. 41, 1898–1902 (2002).
[CrossRef]

C. A. Verschuren, J. M. A. van den Eerenbeemd, F. Zijp, J. Lee, and D. M. Bruls, “Near-field recording with a solid immersion lens on a polymer cover-layer protected discs,” Jpn. J. Appl. Phys. 45, 1325–1331 (2006).
[CrossRef]

C. A. Verschuren, F. Zijp, J. Lee, J. M. van den Eerenbeems, M. B. van der Mark, and H. P. Urbach, “Near-field recording on first-surface write-once media with a NA=1.9 solid immersion lens,” Jpn. J. Appl. Phys. 44, 3564–3567 (2005).
[CrossRef]

Opt. Express (1)

Opt. Lett. (1)

Optik (Jena) (1)

M. Totzeck, “Numerical simulation of high-NA quantitative polarization microscopy and corresponding near-fields,” Optik (Jena) 112, 399–406 (2001).
[CrossRef]

Proc. R. Soc. London Ser. A (1)

H. H. Hopkins, “On the diffraction theory of optical images,” Proc. R. Soc. London Ser. A 217, 408–432 (1953).
[CrossRef]

Proc. SPIE (3)

T. Chen, T. D. Milster, and S.-H. Yang, “Experimental investigation of photomask with near-field polarization imaging,” Proc. SPIE 6349, 634953 (2006).
[CrossRef]

R. Brunner, A. Menck, R. Steiner, G. Buchda, S. Weissenberg, U. Horn, and A. M. Zibold, “Immersion mask inspection with hybrid-microscopic systems at 193nm,” Proc. SPIE 5567, 887–893 (2004).
[CrossRef]

J. Zhang, M. Lang, T. D. Milster, T. Chen, E. Aspnes, and B. Bell, “Fabrication and testing of a GaP SIL with NA=2.64,” Proc. SPIE 6620, 66201Z (2007).
[CrossRef]

Other (4)

W. Singer, M. Totzeck, and H. Gross, Handbook of Optical Systems (Physical Image Formation, 2005), Vol. 2.

H.Lacoste and L.Ouwehand, eds., Fringe 2005 Workshop (ESA Special Publication, 2006), SP-610.

H. A. Macleod, Thin Film Optical Filters (McGraw-Hill, 1989).

http://www.blu-raydisc.com/Assets/Downloadablefile/BD-ROMwhitepaper20070308-15270.pdf.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (17)

Fig. 1
Fig. 1

Blu-ray disc imaging system.

Fig. 2
Fig. 2

Types of SILs: (a) hemispheric SIL (Mansfield and Kino [3]) and (b) BD microscope SIL. A high-index cover layer is introduced above the object being imaged, and the SIL thickness is reduced.

Fig. 3
Fig. 3

Third-order aberrations of a SIL imaging system without a cover layer ( NA objective = 0.3 , n CL = 1.600 , n SIL = 1.530 at 405 nm , SIL radius of curvature = 1.5 mm , and object field height = 25 μm ).

Fig. 4
Fig. 4

Third-order aberrations of the SIL BD microscope imaging system with a cover layer ( NA objective = 0.3 , n CL = 1.600 , n SIL = 1.530 at 405 nm , SIL radius of curvature = 1.5 mm , object field height = 25 μm , and cover layer thickness t CL = 0.1 mm ).

Fig. 5
Fig. 5

Root-mean-square aberration and NA in the cover layer versus normalized SIL thickness ( NA objective = 0.8 , n CL = 1.6 , n SIL = 1.530 at 405 nm , SIL radius of curvature = 1.5 mm , object field height = 25 μm , and cover layer thickness t CL = 0.1 mm ).

Fig. 6
Fig. 6

Root-mean-square aberration versus image height and SIL decenter in cases of t SIL = 1.371 and 1.650 mm ( NA objective = 0.8 , n CL = 1.6 , n SIL = 1.530 at 405 nm , SIL radius of curvature = 1.5 mm , object field height = 25 μm , finite illumination conjugate on the objective lens, and cover layer thickness t CL = 0.1 mm ).

Fig. 7
Fig. 7

Abbe theory adapted to the BD microscope. An obliquely incident plane wave from a point light source is diffracted by the object according to the object structure. The diffracted orders are filtered by the stop and form the image by interference in the image plane.

Fig. 8
Fig. 8

Angle definitions for RCWT. θ is the angle of incidence with respect to the z axis. ϕ is the rotational angle about the z axis. ψ inc is the polarization angle ( ψ inc = 90 ° for s polarization and ψ inc = 0 ° for p polarization).

Fig. 9
Fig. 9

Flow chart of the subsurface imaging system simulation.

Fig. 10
Fig. 10

BD-ROM geometry for the RCWT [15].

Fig. 11
Fig. 11

Contrast of images with different partial coherence σ c . The grating pitch = 320 nm , and the structure is shown in Fig. 9. The calculation is performed with the RCWT without aberration.

Fig. 12
Fig. 12

Modulation transfer function with respect to partial coherence σ c . For BD samples, the normalized spatial frequency corresponding to a grating pitch of 320 nm is ξ λ / NA = 1.04 .

Fig. 13
Fig. 13

Experimental images of BD-ROM and BD-R samples with different illuminations. Images of (a) ψ SRC = 0 ° ; (b) ψ SRC = 45 ° , and (c) ψ SRC = 90 ° are taken in the same region of the BD-ROM sample. Only the best contrast image for the BD-R sample is shown for ψ SRC = 90 ° . σ c = 1 for all images.

Fig. 14
Fig. 14

Line profiles for BD-ROM samples from experimental images with different illuminations. (a) ψ SRC = 0 ° illumination, (b) ψ SRC = 45 ° illumination, and (c) ψ SRC = 90 ° illumination.

Fig. 15
Fig. 15

Experimental image for the BD-ROM sample under ψ SRC = 90 ° illumination with σ c = 0.33 .

Fig. 16
Fig. 16

Aberration measurement plot. The aberration is measured and shows 0.05 wave rms.

Fig. 17
Fig. 17

Experimental BD-ROM image comparison with AFM image and simulation. The experimental image is not from the same region of the object as the AFM and simulation images. (a) AFM image, (b) experimental image, (c) simulation image without aberration, (d) simulation image with aberration for collimated beam illumination (0.33 wave rms), and (e) simulation image with measured aberration (0.05 wave rms) in Fig. 16 for convergent beam illumination.

Tables (1)

Tables Icon

Table 1 Contrast Comparison between the RCWT Simulation, Babinet Simulation (Both without Aberration and with 0.05 Waves rms Aberration), and Experiment for σ c = 1

Equations (18)

Equations on this page are rendered with MathJax. Learn more.

U ill ( r ) = A ill ( k ^ ) exp ( i k · r ) ,
A ill ( k ^ ) = [ A s A p ] = 1 α 2 + β 2 [ β α α β ] A SRC ( k ^ , ψ SRC ) ,
A SRC ( k ^ , ψ SRC ) = A SRC ( k ^ ) [ cos ψ SRC sin ψ SRC ] ,
U R ( r , k ^ ) = R ( k ^ ) U ill ( r ) ,
R ( k ^ ) = [ R s ( k ^ ) 0 0 R p ( k ^ ) ] ,
U R ( r , k ^ ) = { R pit ( k ^ ) p ( r ) + R land ( k ^ ) [ 1 b ( r ) ] } U ill ( r ) = [ R land ( k ^ ) Δ R ( k ^ ) b ( r ) ] U ill ( r ) ,
U image ( r , k ^ ) = n n image f 2 f 1 1 α 2 + β 2 [ β α α β ] U R ( r / m t , k ^ ) * * h ( r ) ,
I image ( r ) = C I | U image ( k ^ ) | 2 d k ^ = C I | [ R A ( k ^ ) R B ( k ^ ) b ( r / m t ) ] * * h ( r ) | 2 d k ^ = C I | R A ( k ^ ) | 2 | H ( k ^ ) | 2 d k ^ 2 C I Re [ b ( r / m t ) * * h * ( r ) R A ( k ^ ) R B ( k ^ ) d k ^ ] + C I | R B ( k ^ ) | 2 | b ( r / m t ) exp [ i k · r ] * * h ( r ) | 2 d k ^ ,
R A ( k ^ ) = 1 α 2 + β 2 [ β α α β ] R land ( k ^ ) [ β α α β ] [ cos ψ SRC sin ψ SRC ] ,
R B ( k ^ ) = 1 α 2 + β 2 [ β α α β ] Δ R ( k ^ ) [ β α α β ] [ cos ψ SRC sin ψ SRC ] ,
W 040 = 1 8 A 2 y Δ ( u n ) , W 131 = 4 γ W 040 , W 222 = 4 γ 2 W 040 , W 220 = 2 γ 2 W 040 , W 311 = γ 4 W 040 , W 220 p = 1 4 H 2 P , W 220 s = W 220 p + 1 2 W 222 ,
γ = A / A ¯ , A = n i = n u + n u C , A ¯ = n i ¯ = n u ¯ + n y ¯ C , Δ ( u n ) = u n u n , H = n u ¯ y n u y ¯ , P = C Δ ( n 1 ) = C ( 1 / n 1 / n ) ,
y 1 = n 1 u 1 ( n 3 t 1 + n 2 t 2 ) R n 2 n 3 R ( n 3 t 1 + n 2 t 2 ) ( n 2 n 1 ) ,
y 2 = n 1 n 2 u 1 t 2 R n 2 n 3 R ( n 3 t 1 + n 2 t 2 ) ( n 2 n 1 ) ,
y 3 = 0.
u 2 = n 1 n 3 u 1 R n 2 n 3 R ( n 3 t 1 + n 2 t 2 ) ( n 2 n 1 ) ,
u 3 = n 1 n 2 u 1 R n 2 n 3 R ( n 3 t 1 + n 2 t 2 ) ( n 2 n 1 ) ,
y ¯ 2 = n 3 y ¯ 3 t 1 n 3 t 1 + n 2 t 2 ,

Metrics