Abstract

A novel cylindrical hybrid plasmonic waveguide is proposed to achieve subwavelength confinement of light. With a metal core surrounded by a silica layer and a silicon layer, the proposed cylindrical hybrid plasmonic waveguide can achieve a ring-structure mode profile at the operating wavelength (1550nm). Most mode power locates in the silica layer with a nanoscale thickness (e.g., 50, 20, or even 5nm), which is due to the effects of both a strong discontinuity of the normal component of the electric field at the silicon–silica interface and the exited surface plasmon wave at the silica–metal interface. Cylindrical hybrid plasmonic waveguides with different structure parameters are investigated and a relatively long propagation distance of tens of micrometers (or even hundreds of micrometers) is observed.

© 2010 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 440, 508–511 (2006).
    [CrossRef]
  2. D. F. P. Pile and D. K. Gramotnev, “Channel plasmon-polariton in a triangular groove on a metal surface,” Opt. Lett. 29, 1069–1071 (2004).
    [CrossRef] [PubMed]
  3. S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, J. Y. Laluet, and T. W. Ebbesen, “Channel plasmon subwavelength waveguide components including interferometers and ring resonators,” Nature 424, 847–851 (2003).
    [CrossRef]
  4. L. Chen, J. Shakya, and M. Lipson, “Subwavelength confinement in an integrated metal slot waveguide on silicon,” Opt. Lett. 31, 2133–2135 (2006).
    [CrossRef] [PubMed]
  5. M. Yan and M. Qiu, “Guided plasmon polariton at 2D metal corners,” J. Opt. Soc. Am. B 24, 2333–2342 (2007).
    [CrossRef]
  6. A. Degiron, S. Y. Cho, C. Harrison, N. M. Jokerst, C. Dellagiacoma, O. J. F. Martin, and D. R. Smith, “Experimental comparison between conventional and hybrid long-range surface,” Phys. Rev. A 77, 021804 (2008).
    [CrossRef]
  7. D. K. Gramotnev, and S. I. Bozhevolnyi, “Plasmonics beyond the diffraction limit,” Nat. Photon. 4, 83–91 (2010).
    [CrossRef]
  8. L. Liu, Z. H. Han, and S. L. He, “Novel surface plasmon waveguide for high integration,” Opt. Express 13, 6645–6650 (2005).
    [CrossRef] [PubMed]
  9. D. F. P. Pile, T. Ogawa, D. K. Gramotnev, Y. Matsuzaki, K. C. Vernon, K. Yamaguchi, T. Okamoto, M. Haraguchi, and M. Fukui, “Two-dimensionally localized modes of a nanoscale gap plasmon waveguide,” Appl. Phys. Lett. 87, 261114–261116 (2005).
    [CrossRef]
  10. K. Tanaka and M. Tanaka, “Simulations of nanometric optical circuits based on surface plasmon polariton gap waveguide,” Appl. Phys. Lett. 82, 1158–1160 (2003).
    [CrossRef]
  11. J. Takahara, S. Yamagishi, H. Taki, A. Morimoto, and T. Kobayashi, “Guiding of a one-dimensional optical beam with nanometer diameter,” Opt. Lett. 22, 475–477 (1997).
    [CrossRef] [PubMed]
  12. L. Tong, R. R. Gattass, J. B. Ashcom, S. He, J. Lou, M. Shen, I. Maxwell, and E. Mazur, “Subwavelength-diameter silica wires for low-loss optical wave guiding,” Nature 426, 816–819(2003).
    [CrossRef] [PubMed]
  13. V. R. Almeida, Q. Xu, C. A. Barrios, and M. Lipson, “Guiding and confining light in void nanostructure,” Opt. Lett. 29, 1209–1211 (2004).
    [CrossRef] [PubMed]
  14. D. X. Dai, L. Yang, and S. H. He, “Ultrasmall thermally tunable microring resonator with a submicrometer heater on Si nanowires,” J. Lightwave Technol. 26, 704–709 (2008).
    [CrossRef]
  15. L. Thylén, M. Qiu, and S. Anand, “Photonic crystals—a step towards integrated circuits for photonics,” Chem. Phys. Chem. 5, 1268–1283 (2004).
    [CrossRef] [PubMed]
  16. G. S. Wiederhecher, C. M. B. Cordeiro, F. Couny, F. Benabid, S. A. Maier, J. C. Knight, C. H. B. Cruz, and H. L. Fragnito, “Field enhancement within an optical fibre with a subwavelength air core,” Nat. Photon. 1, 115–118 (2007).
    [CrossRef]
  17. A. M. Zheltikov, “The physical limit for the waveguide enhancement of nonlinear-optical processes,” Opt. Spectrosc. 95, 410–415 (2003).
    [CrossRef]
  18. Q. F. Xu, V. R. Almeida, R. R. Panepucci, and M. Lipson, “Experimental demonstration of guiding and confining light in nanometer-size low-refractive-index material,” Opt. Lett. 29, 1626–1628 (2004).
    [CrossRef] [PubMed]
  19. R. F. Oulton, V. J. Sorger, D. A. Genov, D. F. P. Pile, and X. Zhang, “A hybrid plasmonic waveguide for subwavelength confinement and long-range propagation,” Nat. Photon. 2, 496–500 (2008).
    [CrossRef]
  20. D. Dai and S. He, “A silicon-based hybrid plasmonic waveguide with a metal cap for a nano-scale light confinement,” Opt. Express 17, 16646–16653 (2009).
    [CrossRef] [PubMed]
  21. I. Avrutsky, R. Soref, and W. Buchwald, “Sub-wavelength plasmonic modes in a conductor-gap-dielectric system with a nanoscale gap,” Opt. Express 18, 348–363 (2010).
    [CrossRef] [PubMed]
  22. C. A. J. Putman, K. O. Werf, B. G. Grooth, N. F. Hulst, and J. Greve, “Viscoelasticity of living cells allows high resolution imaging by tapping mode atomic force microscopy,” Biophys. J. 67, 1749–1753 (1994).
    [CrossRef] [PubMed]
  23. S. S. Wong, J. D. Harper, P. T. Lansbury, and C. M. Lieber, “Carbon nanotube tips: high-resolution probes for imaging biological systems,” J. Am. Chem. Soc. 120, 603–604 (1998).
    [CrossRef]
  24. A. Ashkin, “Optical trapping and manipulation of neutral particles using lasers,” Proc. Natl. Acad. Sci. USA 94, 4853–4860(1997).
    [CrossRef] [PubMed]
  25. D. G. Grier, “A revolution in optical manipulation,” Nature 424, 810–816 (2003).
    [CrossRef] [PubMed]
  26. S. Lal, S. Link, and N. J. Halas, “Nano-optics from sensing to waveguiding,” Nat. Photon. 1, 641–648 (2007).
    [CrossRef]
  27. P. G. Agrawal, Nonlinear Fiber Optics (Academic, 2001).

2010 (2)

2009 (1)

2008 (3)

D. X. Dai, L. Yang, and S. H. He, “Ultrasmall thermally tunable microring resonator with a submicrometer heater on Si nanowires,” J. Lightwave Technol. 26, 704–709 (2008).
[CrossRef]

A. Degiron, S. Y. Cho, C. Harrison, N. M. Jokerst, C. Dellagiacoma, O. J. F. Martin, and D. R. Smith, “Experimental comparison between conventional and hybrid long-range surface,” Phys. Rev. A 77, 021804 (2008).
[CrossRef]

R. F. Oulton, V. J. Sorger, D. A. Genov, D. F. P. Pile, and X. Zhang, “A hybrid plasmonic waveguide for subwavelength confinement and long-range propagation,” Nat. Photon. 2, 496–500 (2008).
[CrossRef]

2007 (3)

S. Lal, S. Link, and N. J. Halas, “Nano-optics from sensing to waveguiding,” Nat. Photon. 1, 641–648 (2007).
[CrossRef]

G. S. Wiederhecher, C. M. B. Cordeiro, F. Couny, F. Benabid, S. A. Maier, J. C. Knight, C. H. B. Cruz, and H. L. Fragnito, “Field enhancement within an optical fibre with a subwavelength air core,” Nat. Photon. 1, 115–118 (2007).
[CrossRef]

M. Yan and M. Qiu, “Guided plasmon polariton at 2D metal corners,” J. Opt. Soc. Am. B 24, 2333–2342 (2007).
[CrossRef]

2006 (2)

2005 (2)

D. F. P. Pile, T. Ogawa, D. K. Gramotnev, Y. Matsuzaki, K. C. Vernon, K. Yamaguchi, T. Okamoto, M. Haraguchi, and M. Fukui, “Two-dimensionally localized modes of a nanoscale gap plasmon waveguide,” Appl. Phys. Lett. 87, 261114–261116 (2005).
[CrossRef]

L. Liu, Z. H. Han, and S. L. He, “Novel surface plasmon waveguide for high integration,” Opt. Express 13, 6645–6650 (2005).
[CrossRef] [PubMed]

2004 (4)

2003 (5)

A. M. Zheltikov, “The physical limit for the waveguide enhancement of nonlinear-optical processes,” Opt. Spectrosc. 95, 410–415 (2003).
[CrossRef]

L. Tong, R. R. Gattass, J. B. Ashcom, S. He, J. Lou, M. Shen, I. Maxwell, and E. Mazur, “Subwavelength-diameter silica wires for low-loss optical wave guiding,” Nature 426, 816–819(2003).
[CrossRef] [PubMed]

K. Tanaka and M. Tanaka, “Simulations of nanometric optical circuits based on surface plasmon polariton gap waveguide,” Appl. Phys. Lett. 82, 1158–1160 (2003).
[CrossRef]

S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, J. Y. Laluet, and T. W. Ebbesen, “Channel plasmon subwavelength waveguide components including interferometers and ring resonators,” Nature 424, 847–851 (2003).
[CrossRef]

D. G. Grier, “A revolution in optical manipulation,” Nature 424, 810–816 (2003).
[CrossRef] [PubMed]

1998 (1)

S. S. Wong, J. D. Harper, P. T. Lansbury, and C. M. Lieber, “Carbon nanotube tips: high-resolution probes for imaging biological systems,” J. Am. Chem. Soc. 120, 603–604 (1998).
[CrossRef]

1997 (2)

1994 (1)

C. A. J. Putman, K. O. Werf, B. G. Grooth, N. F. Hulst, and J. Greve, “Viscoelasticity of living cells allows high resolution imaging by tapping mode atomic force microscopy,” Biophys. J. 67, 1749–1753 (1994).
[CrossRef] [PubMed]

Agrawal, P. G.

P. G. Agrawal, Nonlinear Fiber Optics (Academic, 2001).

Almeida, V. R.

Anand, S.

L. Thylén, M. Qiu, and S. Anand, “Photonic crystals—a step towards integrated circuits for photonics,” Chem. Phys. Chem. 5, 1268–1283 (2004).
[CrossRef] [PubMed]

Ashcom, J. B.

L. Tong, R. R. Gattass, J. B. Ashcom, S. He, J. Lou, M. Shen, I. Maxwell, and E. Mazur, “Subwavelength-diameter silica wires for low-loss optical wave guiding,” Nature 426, 816–819(2003).
[CrossRef] [PubMed]

Ashkin, A.

A. Ashkin, “Optical trapping and manipulation of neutral particles using lasers,” Proc. Natl. Acad. Sci. USA 94, 4853–4860(1997).
[CrossRef] [PubMed]

Avrutsky, I.

Barnes, W. L.

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 440, 508–511 (2006).
[CrossRef]

Barrios, C. A.

Benabid, F.

G. S. Wiederhecher, C. M. B. Cordeiro, F. Couny, F. Benabid, S. A. Maier, J. C. Knight, C. H. B. Cruz, and H. L. Fragnito, “Field enhancement within an optical fibre with a subwavelength air core,” Nat. Photon. 1, 115–118 (2007).
[CrossRef]

Bozhevolnyi, S. I.

D. K. Gramotnev, and S. I. Bozhevolnyi, “Plasmonics beyond the diffraction limit,” Nat. Photon. 4, 83–91 (2010).
[CrossRef]

S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, J. Y. Laluet, and T. W. Ebbesen, “Channel plasmon subwavelength waveguide components including interferometers and ring resonators,” Nature 424, 847–851 (2003).
[CrossRef]

Buchwald, W.

Chen, L.

Cho, S. Y.

A. Degiron, S. Y. Cho, C. Harrison, N. M. Jokerst, C. Dellagiacoma, O. J. F. Martin, and D. R. Smith, “Experimental comparison between conventional and hybrid long-range surface,” Phys. Rev. A 77, 021804 (2008).
[CrossRef]

Cordeiro, C. M. B.

G. S. Wiederhecher, C. M. B. Cordeiro, F. Couny, F. Benabid, S. A. Maier, J. C. Knight, C. H. B. Cruz, and H. L. Fragnito, “Field enhancement within an optical fibre with a subwavelength air core,” Nat. Photon. 1, 115–118 (2007).
[CrossRef]

Couny, F.

G. S. Wiederhecher, C. M. B. Cordeiro, F. Couny, F. Benabid, S. A. Maier, J. C. Knight, C. H. B. Cruz, and H. L. Fragnito, “Field enhancement within an optical fibre with a subwavelength air core,” Nat. Photon. 1, 115–118 (2007).
[CrossRef]

Cruz, C. H. B.

G. S. Wiederhecher, C. M. B. Cordeiro, F. Couny, F. Benabid, S. A. Maier, J. C. Knight, C. H. B. Cruz, and H. L. Fragnito, “Field enhancement within an optical fibre with a subwavelength air core,” Nat. Photon. 1, 115–118 (2007).
[CrossRef]

Dai, D.

Dai, D. X.

Degiron, A.

A. Degiron, S. Y. Cho, C. Harrison, N. M. Jokerst, C. Dellagiacoma, O. J. F. Martin, and D. R. Smith, “Experimental comparison between conventional and hybrid long-range surface,” Phys. Rev. A 77, 021804 (2008).
[CrossRef]

Dellagiacoma, C.

A. Degiron, S. Y. Cho, C. Harrison, N. M. Jokerst, C. Dellagiacoma, O. J. F. Martin, and D. R. Smith, “Experimental comparison between conventional and hybrid long-range surface,” Phys. Rev. A 77, 021804 (2008).
[CrossRef]

Dereux, A.

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 440, 508–511 (2006).
[CrossRef]

Devaux, E.

S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, J. Y. Laluet, and T. W. Ebbesen, “Channel plasmon subwavelength waveguide components including interferometers and ring resonators,” Nature 424, 847–851 (2003).
[CrossRef]

Ebbesen, T. W.

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 440, 508–511 (2006).
[CrossRef]

S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, J. Y. Laluet, and T. W. Ebbesen, “Channel plasmon subwavelength waveguide components including interferometers and ring resonators,” Nature 424, 847–851 (2003).
[CrossRef]

Fragnito, H. L.

G. S. Wiederhecher, C. M. B. Cordeiro, F. Couny, F. Benabid, S. A. Maier, J. C. Knight, C. H. B. Cruz, and H. L. Fragnito, “Field enhancement within an optical fibre with a subwavelength air core,” Nat. Photon. 1, 115–118 (2007).
[CrossRef]

Fukui, M.

D. F. P. Pile, T. Ogawa, D. K. Gramotnev, Y. Matsuzaki, K. C. Vernon, K. Yamaguchi, T. Okamoto, M. Haraguchi, and M. Fukui, “Two-dimensionally localized modes of a nanoscale gap plasmon waveguide,” Appl. Phys. Lett. 87, 261114–261116 (2005).
[CrossRef]

Gattass, R. R.

L. Tong, R. R. Gattass, J. B. Ashcom, S. He, J. Lou, M. Shen, I. Maxwell, and E. Mazur, “Subwavelength-diameter silica wires for low-loss optical wave guiding,” Nature 426, 816–819(2003).
[CrossRef] [PubMed]

Genov, D. A.

R. F. Oulton, V. J. Sorger, D. A. Genov, D. F. P. Pile, and X. Zhang, “A hybrid plasmonic waveguide for subwavelength confinement and long-range propagation,” Nat. Photon. 2, 496–500 (2008).
[CrossRef]

Gramotnev, D. K.

D. K. Gramotnev, and S. I. Bozhevolnyi, “Plasmonics beyond the diffraction limit,” Nat. Photon. 4, 83–91 (2010).
[CrossRef]

D. F. P. Pile, T. Ogawa, D. K. Gramotnev, Y. Matsuzaki, K. C. Vernon, K. Yamaguchi, T. Okamoto, M. Haraguchi, and M. Fukui, “Two-dimensionally localized modes of a nanoscale gap plasmon waveguide,” Appl. Phys. Lett. 87, 261114–261116 (2005).
[CrossRef]

D. F. P. Pile and D. K. Gramotnev, “Channel plasmon-polariton in a triangular groove on a metal surface,” Opt. Lett. 29, 1069–1071 (2004).
[CrossRef] [PubMed]

Greve, J.

C. A. J. Putman, K. O. Werf, B. G. Grooth, N. F. Hulst, and J. Greve, “Viscoelasticity of living cells allows high resolution imaging by tapping mode atomic force microscopy,” Biophys. J. 67, 1749–1753 (1994).
[CrossRef] [PubMed]

Grier, D. G.

D. G. Grier, “A revolution in optical manipulation,” Nature 424, 810–816 (2003).
[CrossRef] [PubMed]

Grooth, B. G.

C. A. J. Putman, K. O. Werf, B. G. Grooth, N. F. Hulst, and J. Greve, “Viscoelasticity of living cells allows high resolution imaging by tapping mode atomic force microscopy,” Biophys. J. 67, 1749–1753 (1994).
[CrossRef] [PubMed]

Halas, N. J.

S. Lal, S. Link, and N. J. Halas, “Nano-optics from sensing to waveguiding,” Nat. Photon. 1, 641–648 (2007).
[CrossRef]

Han, Z. H.

Haraguchi, M.

D. F. P. Pile, T. Ogawa, D. K. Gramotnev, Y. Matsuzaki, K. C. Vernon, K. Yamaguchi, T. Okamoto, M. Haraguchi, and M. Fukui, “Two-dimensionally localized modes of a nanoscale gap plasmon waveguide,” Appl. Phys. Lett. 87, 261114–261116 (2005).
[CrossRef]

Harper, J. D.

S. S. Wong, J. D. Harper, P. T. Lansbury, and C. M. Lieber, “Carbon nanotube tips: high-resolution probes for imaging biological systems,” J. Am. Chem. Soc. 120, 603–604 (1998).
[CrossRef]

Harrison, C.

A. Degiron, S. Y. Cho, C. Harrison, N. M. Jokerst, C. Dellagiacoma, O. J. F. Martin, and D. R. Smith, “Experimental comparison between conventional and hybrid long-range surface,” Phys. Rev. A 77, 021804 (2008).
[CrossRef]

He, S.

D. Dai and S. He, “A silicon-based hybrid plasmonic waveguide with a metal cap for a nano-scale light confinement,” Opt. Express 17, 16646–16653 (2009).
[CrossRef] [PubMed]

L. Tong, R. R. Gattass, J. B. Ashcom, S. He, J. Lou, M. Shen, I. Maxwell, and E. Mazur, “Subwavelength-diameter silica wires for low-loss optical wave guiding,” Nature 426, 816–819(2003).
[CrossRef] [PubMed]

He, S. H.

He, S. L.

Hulst, N. F.

C. A. J. Putman, K. O. Werf, B. G. Grooth, N. F. Hulst, and J. Greve, “Viscoelasticity of living cells allows high resolution imaging by tapping mode atomic force microscopy,” Biophys. J. 67, 1749–1753 (1994).
[CrossRef] [PubMed]

Jokerst, N. M.

A. Degiron, S. Y. Cho, C. Harrison, N. M. Jokerst, C. Dellagiacoma, O. J. F. Martin, and D. R. Smith, “Experimental comparison between conventional and hybrid long-range surface,” Phys. Rev. A 77, 021804 (2008).
[CrossRef]

Knight, J. C.

G. S. Wiederhecher, C. M. B. Cordeiro, F. Couny, F. Benabid, S. A. Maier, J. C. Knight, C. H. B. Cruz, and H. L. Fragnito, “Field enhancement within an optical fibre with a subwavelength air core,” Nat. Photon. 1, 115–118 (2007).
[CrossRef]

Kobayashi, T.

Lal, S.

S. Lal, S. Link, and N. J. Halas, “Nano-optics from sensing to waveguiding,” Nat. Photon. 1, 641–648 (2007).
[CrossRef]

Laluet, J. Y.

S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, J. Y. Laluet, and T. W. Ebbesen, “Channel plasmon subwavelength waveguide components including interferometers and ring resonators,” Nature 424, 847–851 (2003).
[CrossRef]

Lansbury, P. T.

S. S. Wong, J. D. Harper, P. T. Lansbury, and C. M. Lieber, “Carbon nanotube tips: high-resolution probes for imaging biological systems,” J. Am. Chem. Soc. 120, 603–604 (1998).
[CrossRef]

Lieber, C. M.

S. S. Wong, J. D. Harper, P. T. Lansbury, and C. M. Lieber, “Carbon nanotube tips: high-resolution probes for imaging biological systems,” J. Am. Chem. Soc. 120, 603–604 (1998).
[CrossRef]

Link, S.

S. Lal, S. Link, and N. J. Halas, “Nano-optics from sensing to waveguiding,” Nat. Photon. 1, 641–648 (2007).
[CrossRef]

Lipson, M.

Liu, L.

Lou, J.

L. Tong, R. R. Gattass, J. B. Ashcom, S. He, J. Lou, M. Shen, I. Maxwell, and E. Mazur, “Subwavelength-diameter silica wires for low-loss optical wave guiding,” Nature 426, 816–819(2003).
[CrossRef] [PubMed]

Maier, S. A.

G. S. Wiederhecher, C. M. B. Cordeiro, F. Couny, F. Benabid, S. A. Maier, J. C. Knight, C. H. B. Cruz, and H. L. Fragnito, “Field enhancement within an optical fibre with a subwavelength air core,” Nat. Photon. 1, 115–118 (2007).
[CrossRef]

Martin, O. J. F.

A. Degiron, S. Y. Cho, C. Harrison, N. M. Jokerst, C. Dellagiacoma, O. J. F. Martin, and D. R. Smith, “Experimental comparison between conventional and hybrid long-range surface,” Phys. Rev. A 77, 021804 (2008).
[CrossRef]

Matsuzaki, Y.

D. F. P. Pile, T. Ogawa, D. K. Gramotnev, Y. Matsuzaki, K. C. Vernon, K. Yamaguchi, T. Okamoto, M. Haraguchi, and M. Fukui, “Two-dimensionally localized modes of a nanoscale gap plasmon waveguide,” Appl. Phys. Lett. 87, 261114–261116 (2005).
[CrossRef]

Maxwell, I.

L. Tong, R. R. Gattass, J. B. Ashcom, S. He, J. Lou, M. Shen, I. Maxwell, and E. Mazur, “Subwavelength-diameter silica wires for low-loss optical wave guiding,” Nature 426, 816–819(2003).
[CrossRef] [PubMed]

Mazur, E.

L. Tong, R. R. Gattass, J. B. Ashcom, S. He, J. Lou, M. Shen, I. Maxwell, and E. Mazur, “Subwavelength-diameter silica wires for low-loss optical wave guiding,” Nature 426, 816–819(2003).
[CrossRef] [PubMed]

Morimoto, A.

Ogawa, T.

D. F. P. Pile, T. Ogawa, D. K. Gramotnev, Y. Matsuzaki, K. C. Vernon, K. Yamaguchi, T. Okamoto, M. Haraguchi, and M. Fukui, “Two-dimensionally localized modes of a nanoscale gap plasmon waveguide,” Appl. Phys. Lett. 87, 261114–261116 (2005).
[CrossRef]

Okamoto, T.

D. F. P. Pile, T. Ogawa, D. K. Gramotnev, Y. Matsuzaki, K. C. Vernon, K. Yamaguchi, T. Okamoto, M. Haraguchi, and M. Fukui, “Two-dimensionally localized modes of a nanoscale gap plasmon waveguide,” Appl. Phys. Lett. 87, 261114–261116 (2005).
[CrossRef]

Oulton, R. F.

R. F. Oulton, V. J. Sorger, D. A. Genov, D. F. P. Pile, and X. Zhang, “A hybrid plasmonic waveguide for subwavelength confinement and long-range propagation,” Nat. Photon. 2, 496–500 (2008).
[CrossRef]

Panepucci, R. R.

Pile, D. F. P.

R. F. Oulton, V. J. Sorger, D. A. Genov, D. F. P. Pile, and X. Zhang, “A hybrid plasmonic waveguide for subwavelength confinement and long-range propagation,” Nat. Photon. 2, 496–500 (2008).
[CrossRef]

D. F. P. Pile, T. Ogawa, D. K. Gramotnev, Y. Matsuzaki, K. C. Vernon, K. Yamaguchi, T. Okamoto, M. Haraguchi, and M. Fukui, “Two-dimensionally localized modes of a nanoscale gap plasmon waveguide,” Appl. Phys. Lett. 87, 261114–261116 (2005).
[CrossRef]

D. F. P. Pile and D. K. Gramotnev, “Channel plasmon-polariton in a triangular groove on a metal surface,” Opt. Lett. 29, 1069–1071 (2004).
[CrossRef] [PubMed]

Putman, C. A. J.

C. A. J. Putman, K. O. Werf, B. G. Grooth, N. F. Hulst, and J. Greve, “Viscoelasticity of living cells allows high resolution imaging by tapping mode atomic force microscopy,” Biophys. J. 67, 1749–1753 (1994).
[CrossRef] [PubMed]

Qiu, M.

M. Yan and M. Qiu, “Guided plasmon polariton at 2D metal corners,” J. Opt. Soc. Am. B 24, 2333–2342 (2007).
[CrossRef]

L. Thylén, M. Qiu, and S. Anand, “Photonic crystals—a step towards integrated circuits for photonics,” Chem. Phys. Chem. 5, 1268–1283 (2004).
[CrossRef] [PubMed]

Shakya, J.

Shen, M.

L. Tong, R. R. Gattass, J. B. Ashcom, S. He, J. Lou, M. Shen, I. Maxwell, and E. Mazur, “Subwavelength-diameter silica wires for low-loss optical wave guiding,” Nature 426, 816–819(2003).
[CrossRef] [PubMed]

Smith, D. R.

A. Degiron, S. Y. Cho, C. Harrison, N. M. Jokerst, C. Dellagiacoma, O. J. F. Martin, and D. R. Smith, “Experimental comparison between conventional and hybrid long-range surface,” Phys. Rev. A 77, 021804 (2008).
[CrossRef]

Soref, R.

Sorger, V. J.

R. F. Oulton, V. J. Sorger, D. A. Genov, D. F. P. Pile, and X. Zhang, “A hybrid plasmonic waveguide for subwavelength confinement and long-range propagation,” Nat. Photon. 2, 496–500 (2008).
[CrossRef]

Takahara, J.

Taki, H.

Tanaka, K.

K. Tanaka and M. Tanaka, “Simulations of nanometric optical circuits based on surface plasmon polariton gap waveguide,” Appl. Phys. Lett. 82, 1158–1160 (2003).
[CrossRef]

Tanaka, M.

K. Tanaka and M. Tanaka, “Simulations of nanometric optical circuits based on surface plasmon polariton gap waveguide,” Appl. Phys. Lett. 82, 1158–1160 (2003).
[CrossRef]

Thylén, L.

L. Thylén, M. Qiu, and S. Anand, “Photonic crystals—a step towards integrated circuits for photonics,” Chem. Phys. Chem. 5, 1268–1283 (2004).
[CrossRef] [PubMed]

Tong, L.

L. Tong, R. R. Gattass, J. B. Ashcom, S. He, J. Lou, M. Shen, I. Maxwell, and E. Mazur, “Subwavelength-diameter silica wires for low-loss optical wave guiding,” Nature 426, 816–819(2003).
[CrossRef] [PubMed]

Vernon, K. C.

D. F. P. Pile, T. Ogawa, D. K. Gramotnev, Y. Matsuzaki, K. C. Vernon, K. Yamaguchi, T. Okamoto, M. Haraguchi, and M. Fukui, “Two-dimensionally localized modes of a nanoscale gap plasmon waveguide,” Appl. Phys. Lett. 87, 261114–261116 (2005).
[CrossRef]

Volkov, V. S.

S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, J. Y. Laluet, and T. W. Ebbesen, “Channel plasmon subwavelength waveguide components including interferometers and ring resonators,” Nature 424, 847–851 (2003).
[CrossRef]

Werf, K. O.

C. A. J. Putman, K. O. Werf, B. G. Grooth, N. F. Hulst, and J. Greve, “Viscoelasticity of living cells allows high resolution imaging by tapping mode atomic force microscopy,” Biophys. J. 67, 1749–1753 (1994).
[CrossRef] [PubMed]

Wiederhecher, G. S.

G. S. Wiederhecher, C. M. B. Cordeiro, F. Couny, F. Benabid, S. A. Maier, J. C. Knight, C. H. B. Cruz, and H. L. Fragnito, “Field enhancement within an optical fibre with a subwavelength air core,” Nat. Photon. 1, 115–118 (2007).
[CrossRef]

Wong, S. S.

S. S. Wong, J. D. Harper, P. T. Lansbury, and C. M. Lieber, “Carbon nanotube tips: high-resolution probes for imaging biological systems,” J. Am. Chem. Soc. 120, 603–604 (1998).
[CrossRef]

Xu, Q.

Xu, Q. F.

Yamagishi, S.

Yamaguchi, K.

D. F. P. Pile, T. Ogawa, D. K. Gramotnev, Y. Matsuzaki, K. C. Vernon, K. Yamaguchi, T. Okamoto, M. Haraguchi, and M. Fukui, “Two-dimensionally localized modes of a nanoscale gap plasmon waveguide,” Appl. Phys. Lett. 87, 261114–261116 (2005).
[CrossRef]

Yan, M.

Yang, L.

Zhang, X.

R. F. Oulton, V. J. Sorger, D. A. Genov, D. F. P. Pile, and X. Zhang, “A hybrid plasmonic waveguide for subwavelength confinement and long-range propagation,” Nat. Photon. 2, 496–500 (2008).
[CrossRef]

Zheltikov, A. M.

A. M. Zheltikov, “The physical limit for the waveguide enhancement of nonlinear-optical processes,” Opt. Spectrosc. 95, 410–415 (2003).
[CrossRef]

Appl. Phys. Lett. (2)

D. F. P. Pile, T. Ogawa, D. K. Gramotnev, Y. Matsuzaki, K. C. Vernon, K. Yamaguchi, T. Okamoto, M. Haraguchi, and M. Fukui, “Two-dimensionally localized modes of a nanoscale gap plasmon waveguide,” Appl. Phys. Lett. 87, 261114–261116 (2005).
[CrossRef]

K. Tanaka and M. Tanaka, “Simulations of nanometric optical circuits based on surface plasmon polariton gap waveguide,” Appl. Phys. Lett. 82, 1158–1160 (2003).
[CrossRef]

Biophys. J. (1)

C. A. J. Putman, K. O. Werf, B. G. Grooth, N. F. Hulst, and J. Greve, “Viscoelasticity of living cells allows high resolution imaging by tapping mode atomic force microscopy,” Biophys. J. 67, 1749–1753 (1994).
[CrossRef] [PubMed]

Chem. Phys. Chem. (1)

L. Thylén, M. Qiu, and S. Anand, “Photonic crystals—a step towards integrated circuits for photonics,” Chem. Phys. Chem. 5, 1268–1283 (2004).
[CrossRef] [PubMed]

J. Am. Chem. Soc. (1)

S. S. Wong, J. D. Harper, P. T. Lansbury, and C. M. Lieber, “Carbon nanotube tips: high-resolution probes for imaging biological systems,” J. Am. Chem. Soc. 120, 603–604 (1998).
[CrossRef]

J. Lightwave Technol. (1)

J. Opt. Soc. Am. B (1)

Nat. Photon. (4)

D. K. Gramotnev, and S. I. Bozhevolnyi, “Plasmonics beyond the diffraction limit,” Nat. Photon. 4, 83–91 (2010).
[CrossRef]

G. S. Wiederhecher, C. M. B. Cordeiro, F. Couny, F. Benabid, S. A. Maier, J. C. Knight, C. H. B. Cruz, and H. L. Fragnito, “Field enhancement within an optical fibre with a subwavelength air core,” Nat. Photon. 1, 115–118 (2007).
[CrossRef]

R. F. Oulton, V. J. Sorger, D. A. Genov, D. F. P. Pile, and X. Zhang, “A hybrid plasmonic waveguide for subwavelength confinement and long-range propagation,” Nat. Photon. 2, 496–500 (2008).
[CrossRef]

S. Lal, S. Link, and N. J. Halas, “Nano-optics from sensing to waveguiding,” Nat. Photon. 1, 641–648 (2007).
[CrossRef]

Nature (4)

D. G. Grier, “A revolution in optical manipulation,” Nature 424, 810–816 (2003).
[CrossRef] [PubMed]

L. Tong, R. R. Gattass, J. B. Ashcom, S. He, J. Lou, M. Shen, I. Maxwell, and E. Mazur, “Subwavelength-diameter silica wires for low-loss optical wave guiding,” Nature 426, 816–819(2003).
[CrossRef] [PubMed]

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 440, 508–511 (2006).
[CrossRef]

S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, J. Y. Laluet, and T. W. Ebbesen, “Channel plasmon subwavelength waveguide components including interferometers and ring resonators,” Nature 424, 847–851 (2003).
[CrossRef]

Opt. Express (3)

Opt. Lett. (5)

Opt. Spectrosc. (1)

A. M. Zheltikov, “The physical limit for the waveguide enhancement of nonlinear-optical processes,” Opt. Spectrosc. 95, 410–415 (2003).
[CrossRef]

Phys. Rev. A (1)

A. Degiron, S. Y. Cho, C. Harrison, N. M. Jokerst, C. Dellagiacoma, O. J. F. Martin, and D. R. Smith, “Experimental comparison between conventional and hybrid long-range surface,” Phys. Rev. A 77, 021804 (2008).
[CrossRef]

Proc. Natl. Acad. Sci. USA (1)

A. Ashkin, “Optical trapping and manipulation of neutral particles using lasers,” Proc. Natl. Acad. Sci. USA 94, 4853–4860(1997).
[CrossRef] [PubMed]

Other (1)

P. G. Agrawal, Nonlinear Fiber Optics (Academic, 2001).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Normalized mode area of the silica wire (solid curve) and the silicon wire (dashed curve) for different diameters of the silica/silicon wire. Inset shows the cross section of the silica/silicon wire waveguide.

Fig. 2
Fig. 2

Cross section of the proposed cylindrical hybrid plasmonic waveguide with a metal core surrounded by a silica layer and a silicon layer.

Fig. 3
Fig. 3

Calculated electric field distribution in the cross section of the proposed hybrid plasmonic waveguide with h m = 100 nm , h SiO 2 = 50 nm , and h Si = 200 nm . The top part of the figure shows the electric field distribution in the x direction, and one sees the electric field in the 50 nm silica layer is greatly enhanced.

Fig. 4
Fig. 4

Normalized mode area of the proposed cylindrical hybrid plasmonic waveguides versus the radius of the metal core ( h m ) when other parameters of the proposed waveguides are h Si = 200 nm , h SiO 2 = 50 nm for the black curve (squares); h Si = 200 nm , h SiO 2 = 20 nm for the red curve (circles); and h Si = 200 nm , h SiO 2 = 5 nm for the green curve (triangles). Insets show the electric field distributions of the hybrid plasmonic waveguides with h m = 20 nm , h SiO 2 = 5 nm , h Si = 200 nm ; h m = 20 nm , h SiO 2 = 20 nm , h Si = 200 nm ; h m = 50 nm , h SiO 2 = 5 nm , h Si = 200 nm ; and h m = 50 nm , h SiO 2 = 50 nm , h Si = 200 nm .

Fig. 5
Fig. 5

(a) Real part of the effective refractive index ( n eff _ r ) and (b) the propagation distance ( L prop ) of the proposed cylindrical hybrid plasmonic waveguides versus the radius of the metal core ( h m ) when other parameters of the cylindrical hybrid plasmonic waveguides are h Si = 200 nm , h SiO 2 = 50 nm for the black curve (squares); h Si = 200 nm , h SiO 2 = 20 nm for the red curve (circles); and h Si = 200 nm , h SiO 2 = 5 nm for the green curve (triangles).

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

A mod = [ I ( r ) d r ] 2 / I 2 ( r ) d r ,

Metrics