Abstract

.We measured the hydrostatic pressure dependence of the birefringence and birefringent dispersion of a Sagnac interferometric sensor incorporating a length of highly birefringent photonic crystal fiber using Fourier analysis. Sensitivity of both the phase and chirp spectra to hydrostatic pressure is demonstrated. Using this analysis, phase-based measurements showed a good linearity with an effective sensitivity of 9.45nm/MPa and an accuracy of ±7.8kPa using wavelength-encoded data and an effective sensitivity of 55.7cm1/MPa and an accuracy of ±4.4kPa using wavenumber-encoded data. Chirp-based measurements, though nonlinear in response, showed an improvement in accuracy at certain pressure ranges with an accuracy of ±5.5kPa for the full range of measured pressures using wavelength-encoded data and dropping to within ±2.5kPa in the range of 0.17 to 0.4MPa using wavenumber-encoded data. Improvements of the accuracy demonstrated the usefulness of implementing chirp-based analysis for sensing purposes.

© 2010 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. Russell, “Photonic crystal fibers,” Science 299, 358–362(2003).
    [CrossRef] [PubMed]
  2. J. C. Knight, “Photonic crystal fibres,” Nature 424, 847–851 (2003).
    [CrossRef] [PubMed]
  3. T. A. Birks, J. C. Knight, and P. St. J. Russell, “Endlessly single-mode photonic crystal fiber,” Opt. Lett. 22, 961–963 (1997).
    [CrossRef] [PubMed]
  4. T. M. Monroe, W. Belardi, K. Furusawa, J. C. Baggett, N. G. R. Broderick, and D. J. Richardson, “Sensing with microstructured optical fibres,” Meas. Sci. Technol. 12, 854–858 (2001).
    [CrossRef]
  5. M. Szpulak, T. Martynkien, and W. Urbanczyk, “Effects of hydrostatic pressure on phase and group modal birefringence in microstructured holey fibers,” Appl. Opt. 43, 4739–4744(2004).
    [CrossRef] [PubMed]
  6. A. Ortigosa-Blanch, J. C. Knight, W. J. Wadsworth, J. Arriaga, B. J. Mangan, T. A. Birks, and P. St. J. Russell, “Highly birefringent photonic crystal fibers,” Opt. Lett. 25, 1325–1327(2000).
    [CrossRef]
  7. D. H. Kim and J. U. Kang, “Sagnac loop interferometer based on polarization maintaining photonic crystal fiber with reduced temperature sensitivity,” Opt. Express 12, 4490–4495(2004).
    [CrossRef] [PubMed]
  8. D. B. Mortimore, “Fiber loop reflectors,” J. Lightwave Technol. 6, 1217–1224 (1988).
    [CrossRef]
  9. S. M. Musa, “Real-time signal processing and hardware development for a wavelength modulated optical fiber sensor system,” Ph.D. dissertation (Virginia Polytechnic Institute and State University, 1997).
  10. P. Childs, “An FBG sensing system utilizing both WDM and a novel harmonic division scheme,” J. Lightwave Technol. 23, 348–354 (2005)..
    [CrossRef]
  11. P. Childs, “Erratum to ‘An FBG sensing system utilizing both WDM and a novel harmonic division scheme’,” J. Lightwave Technol. 23, 931 (2005).
    [CrossRef]
  12. M. L. V. Tse, H. Y. Tam, L. B. Fu, B. K. Thomas, L. Dong, C. Lu, and P. K. A. Wai, “Fusion splicing holey fibers and single-mode fibers: a simple method to reduce loss and increase strength,” IEEE Photon. Technol. Lett. 21, 164–167 (2009).
    [CrossRef]
  13. X. Fang and R. O. Claus, “Polarization-independent all-fiber wavelength-division multiplexer based on a Sagnac interferometer,” Opt. Lett. 20, 2146–2148 (1995).
    [CrossRef] [PubMed]
  14. H. Y. Fu, H. Y. Tam, L. Y. Shao, X. Dong, P. K. A. Wai, C. Lu, and S. K. Khijwania, “Pressure sensor realized with polarization-maintaining photonic crystal fiber-based Sagnac interferometer,” Appl. Opt. 47, 2835–2839 (2008).
    [CrossRef] [PubMed]
  15. H. Y. Fu, A. C. L. Wong, P. A. Childs, H. Y. Tam, Y. B. Liao, C. Lu, and P. K. A. Wai, “Multiplexing of polarization-maintaining photonic crystal fiber based Sagnac interferometric sensors,” Opt. Express 17, 18501–18512 (2009).
    [CrossRef]

2009 (2)

M. L. V. Tse, H. Y. Tam, L. B. Fu, B. K. Thomas, L. Dong, C. Lu, and P. K. A. Wai, “Fusion splicing holey fibers and single-mode fibers: a simple method to reduce loss and increase strength,” IEEE Photon. Technol. Lett. 21, 164–167 (2009).
[CrossRef]

H. Y. Fu, A. C. L. Wong, P. A. Childs, H. Y. Tam, Y. B. Liao, C. Lu, and P. K. A. Wai, “Multiplexing of polarization-maintaining photonic crystal fiber based Sagnac interferometric sensors,” Opt. Express 17, 18501–18512 (2009).
[CrossRef]

2008 (1)

2005 (2)

P. Childs, “An FBG sensing system utilizing both WDM and a novel harmonic division scheme,” J. Lightwave Technol. 23, 348–354 (2005)..
[CrossRef]

P. Childs, “Erratum to ‘An FBG sensing system utilizing both WDM and a novel harmonic division scheme’,” J. Lightwave Technol. 23, 931 (2005).
[CrossRef]

2004 (2)

2003 (2)

P. Russell, “Photonic crystal fibers,” Science 299, 358–362(2003).
[CrossRef] [PubMed]

J. C. Knight, “Photonic crystal fibres,” Nature 424, 847–851 (2003).
[CrossRef] [PubMed]

2001 (1)

T. M. Monroe, W. Belardi, K. Furusawa, J. C. Baggett, N. G. R. Broderick, and D. J. Richardson, “Sensing with microstructured optical fibres,” Meas. Sci. Technol. 12, 854–858 (2001).
[CrossRef]

2000 (1)

1997 (1)

1995 (1)

1988 (1)

D. B. Mortimore, “Fiber loop reflectors,” J. Lightwave Technol. 6, 1217–1224 (1988).
[CrossRef]

Arriaga, J.

Baggett, J. C.

T. M. Monroe, W. Belardi, K. Furusawa, J. C. Baggett, N. G. R. Broderick, and D. J. Richardson, “Sensing with microstructured optical fibres,” Meas. Sci. Technol. 12, 854–858 (2001).
[CrossRef]

Belardi, W.

T. M. Monroe, W. Belardi, K. Furusawa, J. C. Baggett, N. G. R. Broderick, and D. J. Richardson, “Sensing with microstructured optical fibres,” Meas. Sci. Technol. 12, 854–858 (2001).
[CrossRef]

Birks, T. A.

Broderick, N. G. R.

T. M. Monroe, W. Belardi, K. Furusawa, J. C. Baggett, N. G. R. Broderick, and D. J. Richardson, “Sensing with microstructured optical fibres,” Meas. Sci. Technol. 12, 854–858 (2001).
[CrossRef]

Childs, P.

P. Childs, “An FBG sensing system utilizing both WDM and a novel harmonic division scheme,” J. Lightwave Technol. 23, 348–354 (2005)..
[CrossRef]

P. Childs, “Erratum to ‘An FBG sensing system utilizing both WDM and a novel harmonic division scheme’,” J. Lightwave Technol. 23, 931 (2005).
[CrossRef]

Childs, P. A.

Claus, R. O.

Dong, L.

M. L. V. Tse, H. Y. Tam, L. B. Fu, B. K. Thomas, L. Dong, C. Lu, and P. K. A. Wai, “Fusion splicing holey fibers and single-mode fibers: a simple method to reduce loss and increase strength,” IEEE Photon. Technol. Lett. 21, 164–167 (2009).
[CrossRef]

Dong, X.

Fang, X.

Fu, H. Y.

Fu, L. B.

M. L. V. Tse, H. Y. Tam, L. B. Fu, B. K. Thomas, L. Dong, C. Lu, and P. K. A. Wai, “Fusion splicing holey fibers and single-mode fibers: a simple method to reduce loss and increase strength,” IEEE Photon. Technol. Lett. 21, 164–167 (2009).
[CrossRef]

Furusawa, K.

T. M. Monroe, W. Belardi, K. Furusawa, J. C. Baggett, N. G. R. Broderick, and D. J. Richardson, “Sensing with microstructured optical fibres,” Meas. Sci. Technol. 12, 854–858 (2001).
[CrossRef]

Kang, J. U.

Khijwania, S. K.

Kim, D. H.

Knight, J. C.

Liao, Y. B.

Lu, C.

Mangan, B. J.

Martynkien, T.

Monroe, T. M.

T. M. Monroe, W. Belardi, K. Furusawa, J. C. Baggett, N. G. R. Broderick, and D. J. Richardson, “Sensing with microstructured optical fibres,” Meas. Sci. Technol. 12, 854–858 (2001).
[CrossRef]

Mortimore, D. B.

D. B. Mortimore, “Fiber loop reflectors,” J. Lightwave Technol. 6, 1217–1224 (1988).
[CrossRef]

Musa, S. M.

S. M. Musa, “Real-time signal processing and hardware development for a wavelength modulated optical fiber sensor system,” Ph.D. dissertation (Virginia Polytechnic Institute and State University, 1997).

Ortigosa-Blanch, A.

Richardson, D. J.

T. M. Monroe, W. Belardi, K. Furusawa, J. C. Baggett, N. G. R. Broderick, and D. J. Richardson, “Sensing with microstructured optical fibres,” Meas. Sci. Technol. 12, 854–858 (2001).
[CrossRef]

Russell, P.

P. Russell, “Photonic crystal fibers,” Science 299, 358–362(2003).
[CrossRef] [PubMed]

Russell, P. St. J.

Shao, L. Y.

Szpulak, M.

Tam, H. Y.

Thomas, B. K.

M. L. V. Tse, H. Y. Tam, L. B. Fu, B. K. Thomas, L. Dong, C. Lu, and P. K. A. Wai, “Fusion splicing holey fibers and single-mode fibers: a simple method to reduce loss and increase strength,” IEEE Photon. Technol. Lett. 21, 164–167 (2009).
[CrossRef]

Tse, M. L. V.

M. L. V. Tse, H. Y. Tam, L. B. Fu, B. K. Thomas, L. Dong, C. Lu, and P. K. A. Wai, “Fusion splicing holey fibers and single-mode fibers: a simple method to reduce loss and increase strength,” IEEE Photon. Technol. Lett. 21, 164–167 (2009).
[CrossRef]

Urbanczyk, W.

Wadsworth, W. J.

Wai, P. K. A.

Wong, A. C. L.

Appl. Opt. (2)

IEEE Photon. Technol. Lett. (1)

M. L. V. Tse, H. Y. Tam, L. B. Fu, B. K. Thomas, L. Dong, C. Lu, and P. K. A. Wai, “Fusion splicing holey fibers and single-mode fibers: a simple method to reduce loss and increase strength,” IEEE Photon. Technol. Lett. 21, 164–167 (2009).
[CrossRef]

J. Lightwave Technol. (3)

D. B. Mortimore, “Fiber loop reflectors,” J. Lightwave Technol. 6, 1217–1224 (1988).
[CrossRef]

P. Childs, “An FBG sensing system utilizing both WDM and a novel harmonic division scheme,” J. Lightwave Technol. 23, 348–354 (2005)..
[CrossRef]

P. Childs, “Erratum to ‘An FBG sensing system utilizing both WDM and a novel harmonic division scheme’,” J. Lightwave Technol. 23, 931 (2005).
[CrossRef]

Meas. Sci. Technol. (1)

T. M. Monroe, W. Belardi, K. Furusawa, J. C. Baggett, N. G. R. Broderick, and D. J. Richardson, “Sensing with microstructured optical fibres,” Meas. Sci. Technol. 12, 854–858 (2001).
[CrossRef]

Nature (1)

J. C. Knight, “Photonic crystal fibres,” Nature 424, 847–851 (2003).
[CrossRef] [PubMed]

Opt. Express (2)

Opt. Lett. (3)

Science (1)

P. Russell, “Photonic crystal fibers,” Science 299, 358–362(2003).
[CrossRef] [PubMed]

Other (1)

S. M. Musa, “Real-time signal processing and hardware development for a wavelength modulated optical fiber sensor system,” Ph.D. dissertation (Virginia Polytechnic Institute and State University, 1997).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1

Cross section of the polarization-maintaining PCF used as a pressure sensor [14].

Fig. 2
Fig. 2

Transmission spectrum of the polarization-maintaining PCF-based Sagnac interferometer at 0.4 MPa pressure.

Fig. 3
Fig. 3

M λ , magnitude of the Fourier transform of the sensor spectrum over the wavelength at 0.4 MPa of pressure.

Fig. 4
Fig. 4

Φ λ , Phase of the Fourier transform of the sensor spectra over the wavelength (inset, pressure in MPa).

Fig. 5
Fig. 5

M β , magnitude of the Fourier transform of the sensor spectrum over the wavenumber at 0.4 MPa of pressure.

Fig. 6
Fig. 6

Φ β , phase of the Fourier transform of the sensor spectra over the wavenumber (the inset is the pressure in MPa).

Fig. 7
Fig. 7

Variation of the parameter λ 0 with respect to pressure.

Fig. 8
Fig. 8

Variation of the parameter k 2 , λ with respect to pressure.

Fig. 9
Fig. 9

Variation of the parameter β 0 with respect to pressure.

Fig. 10
Fig. 10

Variation of the parameter k 2 , β with respect to pressure.

Equations (10)

Equations on this page are rendered with MathJax. Learn more.

ψ D = ϕ 0 , D + j = 1 k j , D ( D D 0 ) j .
ψ = 2 π λ B L ,
k j + 1 , β = L j ! d j d β j B ( β ) | β = β 0 ,
k j + 1 , λ = 2 π L j ! d j d λ j B ( β ) λ | λ = λ 0 .
G = B λ d B d λ = λ 2 k 2 , λ 2 π L ,
F ( cos ψ D ) = 1 2 e 2 π i D 0 s [ e i ϕ 0 , D δ ( s k 1 , D 2 π ) * π k 2 , D e i ( π 2 s 2 k 2 , D π 4 ) * 2 π 3 k 3 , D 3 Ai ( 2 π s 3 k 3 , D 3 ) * + h.c. ] ,
D 0 = 1 2 π d Φ D d s ¯ ,
k 1 , D = 2 π M D s M D ,
k 2 , D = 2 π 2 [ d 2 Φ D d s 2 ¯ ] 1 .
| Δ D 0 | < | Δ k 1 , D 2 k 2 , D + O ( k 4 , D ) | ,

Metrics