Abstract

We present an experimental realization of differential spectral responsivity measurement by using a light-emitting diode (LED)-based integrating sphere source. The spectral irradiance responsivity is measured by a Lambertian-like radiation field with a diameter of 40mm at the peak wavelengths of the 35 selectable LEDs covering a range from 280 to 1550nm. The systematic errors and uncertainties due to lock-in detection, spatial irradiance distribution, and reflection from the test detector are experimentally corrected or considered. In addition, we implemented a numerical procedure to correct the error due to the broad spectral bandwidth of the LEDs. The overall uncertainty of the DSR measurement is evaluated to be 2.2% (k=2) for Si detectors. To demonstrate its application, we present the measurement results of two Si photovoltaic detectors at different bias irradiance levels up to 120mW/cm2.

© 2010 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. “Determination of the spectral responsivity of optical radiation detectors,” International Commission on Illumination (CIE) publication no. 64 (1984).
  2. A.C.Parr, R.U.Datla, and J.L.Gardner, eds., Optical Radiometry (Elsevier, 2005).
  3. E. L. Dereniak and D. G. Growe, Optical Radiation Detectors (Wiley, 1984).
  4. “Measurement principles for terrestrial photovoltaic solar devices with reference irradiation data,” International Electrotechnical Commission Standard 904-3 (1989).
  5. J. Metzdorf, “Calibration of solar cells. 1: The differential spectral responsivity method,” Appl. Opt. 26, 1701–1708 (1987).
    [CrossRef] [PubMed]
  6. J. Metzdorf, W. Möller, T. Wittchen, and D. Hünerhoff, “Principle and application of differential spectroradiometry,” Metrologia 28, 247–250 (1991).
    [CrossRef]
  7. “Standard test method for spectral responsivity measurements of photovoltaic devices,” ASTME1021-06 (2006).
  8. C. R. Osterwald, , S. Anevsky, A. K. Barua, P. Chaudhuri, J. Dubard, K. Emery, B. Hansen, D. King, J. Metzdorf, F. Nagamine, R. Shimokawa, Y. X. Wang, T. Wittchen, W. Zaaiman, A. Zastrow, and J. Zhang, “The World Photovoltaic Scale: an international reference cell calibration program,” Prog. Photovoltaics 7, 287–297 (1999).
    [CrossRef]
  9. J. Metzdorf, S. Winter, and T. Wittchen, “Radiometry in photovoltaics: calibration of reference solar cells and evaluation of reference values,” Metrologia 37, 573–578 (2000).
    [CrossRef]
  10. S. Winter, “Analyse und Verbesserung der rückführbaren Kalibrierung von Solarzellen,” Dissertation of Technische, Universität Braunschweig, Germany (2003), http://www.digibib.tu-bs.de/?docid=00001572.
  11. S. W. Brown, G. P. Eppeldauer, and K. R. Lykke, “Facility for spectral irradiance and radiance responsivity calibrations using uniform sources,” Appl. Opt. 45, 8218–8237 (2006).
    [CrossRef] [PubMed]
  12. I. Fryc, S. W. Brown, G. P. Eppeldauer, and Y. Ohno, “LED-based spectrally tunable source for radiometric, photometric, and colorimetric applications,” Opt. Eng. 44, 111309 (2005).
    [CrossRef]
  13. D.-J. Shin, C.-W. Park, S. S. Kolesnikova, and B. B. Khlevnoy, “Final report on bilateral comparison APMP.PR-K1.a.1-2008 between KRISS (Korea) and VNIIOFI (Russia): spectral irradiance from 250nm to 2500nm,” Metrologia 47, 02005 (2010).
    [CrossRef]
  14. “Guide to the expression of uncertainty in measurement,” International Organization for Standardization/International Electrotechnical Commission Guide 98:1995 (1995).
  15. S. Park, D.-H. Lee, Y.-W. Kim, and S.-N. Park, “Uncertainty evaluation for the spectroradiometric measurement of the averaged light-emitting diode intensity,” Appl. Opt. 46, 2851–3858 (2007).
    [CrossRef] [PubMed]
  16. R. Goebel and M. Stock, “Report on the comparison CCPR-K2.b of spectral responsivity measurements in the range 300nm to 1000nm,” Metrologia 41, 02004 (2004).
    [CrossRef]
  17. J. Hwang, D.-H. Lee, S. Park, Y.-W. Kim, and S.-N. Park, “Measurement uncertainty evaluation for emission color and luminance of displays,” Appl. Opt. 48, 99–105 (2008).
    [CrossRef] [PubMed]
  18. A. C. Hardy and F. M. Young, “The correction of slit-width errors,” J. Opt. Soc. Am. 39, 265–270 (1949).
    [CrossRef]
  19. E. I. Sterns and R. E. Sterns, “An example of a method for correcting radiance data for bandpass error,” Color Res. Appl. 13, 257–259 (1988).
    [CrossRef]
  20. J. L. Gardner, “Bandwidth correction for LED chromaticity,” Color Res. Appl. 31, 374–380 (2006).
  21. Y. Ohno, “A flexible bandwidth correction method for spectrometers,” in Proceedings of the 10th Congress of the International Color Association, J. L. Nieves and J. Hernández-Andrés, eds. (Comité Español del Color, 2005), pp. 697–700.
  22. “Practical methods for the measurement of reflectance and transmittance,” International Commission on Illumination (CIE) publication no. 130 (1998).
  23. J. Nelson, The Physics of Solar Cells (Imperial College, 2003).

2010 (1)

D.-J. Shin, C.-W. Park, S. S. Kolesnikova, and B. B. Khlevnoy, “Final report on bilateral comparison APMP.PR-K1.a.1-2008 between KRISS (Korea) and VNIIOFI (Russia): spectral irradiance from 250nm to 2500nm,” Metrologia 47, 02005 (2010).
[CrossRef]

2008 (1)

2007 (1)

2006 (1)

2005 (1)

I. Fryc, S. W. Brown, G. P. Eppeldauer, and Y. Ohno, “LED-based spectrally tunable source for radiometric, photometric, and colorimetric applications,” Opt. Eng. 44, 111309 (2005).
[CrossRef]

2004 (1)

R. Goebel and M. Stock, “Report on the comparison CCPR-K2.b of spectral responsivity measurements in the range 300nm to 1000nm,” Metrologia 41, 02004 (2004).
[CrossRef]

2000 (1)

J. Metzdorf, S. Winter, and T. Wittchen, “Radiometry in photovoltaics: calibration of reference solar cells and evaluation of reference values,” Metrologia 37, 573–578 (2000).
[CrossRef]

1999 (1)

C. R. Osterwald, , S. Anevsky, A. K. Barua, P. Chaudhuri, J. Dubard, K. Emery, B. Hansen, D. King, J. Metzdorf, F. Nagamine, R. Shimokawa, Y. X. Wang, T. Wittchen, W. Zaaiman, A. Zastrow, and J. Zhang, “The World Photovoltaic Scale: an international reference cell calibration program,” Prog. Photovoltaics 7, 287–297 (1999).
[CrossRef]

1991 (1)

J. Metzdorf, W. Möller, T. Wittchen, and D. Hünerhoff, “Principle and application of differential spectroradiometry,” Metrologia 28, 247–250 (1991).
[CrossRef]

1988 (1)

E. I. Sterns and R. E. Sterns, “An example of a method for correcting radiance data for bandpass error,” Color Res. Appl. 13, 257–259 (1988).
[CrossRef]

1987 (1)

1949 (1)

Anevsky, S.

C. R. Osterwald, , S. Anevsky, A. K. Barua, P. Chaudhuri, J. Dubard, K. Emery, B. Hansen, D. King, J. Metzdorf, F. Nagamine, R. Shimokawa, Y. X. Wang, T. Wittchen, W. Zaaiman, A. Zastrow, and J. Zhang, “The World Photovoltaic Scale: an international reference cell calibration program,” Prog. Photovoltaics 7, 287–297 (1999).
[CrossRef]

Barua, A. K.

C. R. Osterwald, , S. Anevsky, A. K. Barua, P. Chaudhuri, J. Dubard, K. Emery, B. Hansen, D. King, J. Metzdorf, F. Nagamine, R. Shimokawa, Y. X. Wang, T. Wittchen, W. Zaaiman, A. Zastrow, and J. Zhang, “The World Photovoltaic Scale: an international reference cell calibration program,” Prog. Photovoltaics 7, 287–297 (1999).
[CrossRef]

Brown, S. W.

S. W. Brown, G. P. Eppeldauer, and K. R. Lykke, “Facility for spectral irradiance and radiance responsivity calibrations using uniform sources,” Appl. Opt. 45, 8218–8237 (2006).
[CrossRef] [PubMed]

I. Fryc, S. W. Brown, G. P. Eppeldauer, and Y. Ohno, “LED-based spectrally tunable source for radiometric, photometric, and colorimetric applications,” Opt. Eng. 44, 111309 (2005).
[CrossRef]

Chaudhuri, P.

C. R. Osterwald, , S. Anevsky, A. K. Barua, P. Chaudhuri, J. Dubard, K. Emery, B. Hansen, D. King, J. Metzdorf, F. Nagamine, R. Shimokawa, Y. X. Wang, T. Wittchen, W. Zaaiman, A. Zastrow, and J. Zhang, “The World Photovoltaic Scale: an international reference cell calibration program,” Prog. Photovoltaics 7, 287–297 (1999).
[CrossRef]

Dereniak, E. L.

E. L. Dereniak and D. G. Growe, Optical Radiation Detectors (Wiley, 1984).

Dubard, J.

C. R. Osterwald, , S. Anevsky, A. K. Barua, P. Chaudhuri, J. Dubard, K. Emery, B. Hansen, D. King, J. Metzdorf, F. Nagamine, R. Shimokawa, Y. X. Wang, T. Wittchen, W. Zaaiman, A. Zastrow, and J. Zhang, “The World Photovoltaic Scale: an international reference cell calibration program,” Prog. Photovoltaics 7, 287–297 (1999).
[CrossRef]

Emery, K.

C. R. Osterwald, , S. Anevsky, A. K. Barua, P. Chaudhuri, J. Dubard, K. Emery, B. Hansen, D. King, J. Metzdorf, F. Nagamine, R. Shimokawa, Y. X. Wang, T. Wittchen, W. Zaaiman, A. Zastrow, and J. Zhang, “The World Photovoltaic Scale: an international reference cell calibration program,” Prog. Photovoltaics 7, 287–297 (1999).
[CrossRef]

Eppeldauer, G. P.

S. W. Brown, G. P. Eppeldauer, and K. R. Lykke, “Facility for spectral irradiance and radiance responsivity calibrations using uniform sources,” Appl. Opt. 45, 8218–8237 (2006).
[CrossRef] [PubMed]

I. Fryc, S. W. Brown, G. P. Eppeldauer, and Y. Ohno, “LED-based spectrally tunable source for radiometric, photometric, and colorimetric applications,” Opt. Eng. 44, 111309 (2005).
[CrossRef]

Fryc, I.

I. Fryc, S. W. Brown, G. P. Eppeldauer, and Y. Ohno, “LED-based spectrally tunable source for radiometric, photometric, and colorimetric applications,” Opt. Eng. 44, 111309 (2005).
[CrossRef]

Gardner, J. L.

J. L. Gardner, “Bandwidth correction for LED chromaticity,” Color Res. Appl. 31, 374–380 (2006).

Goebel, R.

R. Goebel and M. Stock, “Report on the comparison CCPR-K2.b of spectral responsivity measurements in the range 300nm to 1000nm,” Metrologia 41, 02004 (2004).
[CrossRef]

Growe, D. G.

E. L. Dereniak and D. G. Growe, Optical Radiation Detectors (Wiley, 1984).

Hansen, B.

C. R. Osterwald, , S. Anevsky, A. K. Barua, P. Chaudhuri, J. Dubard, K. Emery, B. Hansen, D. King, J. Metzdorf, F. Nagamine, R. Shimokawa, Y. X. Wang, T. Wittchen, W. Zaaiman, A. Zastrow, and J. Zhang, “The World Photovoltaic Scale: an international reference cell calibration program,” Prog. Photovoltaics 7, 287–297 (1999).
[CrossRef]

Hardy, A. C.

Hünerhoff, D.

J. Metzdorf, W. Möller, T. Wittchen, and D. Hünerhoff, “Principle and application of differential spectroradiometry,” Metrologia 28, 247–250 (1991).
[CrossRef]

Hwang, J.

Khlevnoy, B. B.

D.-J. Shin, C.-W. Park, S. S. Kolesnikova, and B. B. Khlevnoy, “Final report on bilateral comparison APMP.PR-K1.a.1-2008 between KRISS (Korea) and VNIIOFI (Russia): spectral irradiance from 250nm to 2500nm,” Metrologia 47, 02005 (2010).
[CrossRef]

Kim, Y.-W.

King, D.

C. R. Osterwald, , S. Anevsky, A. K. Barua, P. Chaudhuri, J. Dubard, K. Emery, B. Hansen, D. King, J. Metzdorf, F. Nagamine, R. Shimokawa, Y. X. Wang, T. Wittchen, W. Zaaiman, A. Zastrow, and J. Zhang, “The World Photovoltaic Scale: an international reference cell calibration program,” Prog. Photovoltaics 7, 287–297 (1999).
[CrossRef]

Kolesnikova, S. S.

D.-J. Shin, C.-W. Park, S. S. Kolesnikova, and B. B. Khlevnoy, “Final report on bilateral comparison APMP.PR-K1.a.1-2008 between KRISS (Korea) and VNIIOFI (Russia): spectral irradiance from 250nm to 2500nm,” Metrologia 47, 02005 (2010).
[CrossRef]

Lee, D.-H.

Lykke, K. R.

Metzdorf, J.

J. Metzdorf, S. Winter, and T. Wittchen, “Radiometry in photovoltaics: calibration of reference solar cells and evaluation of reference values,” Metrologia 37, 573–578 (2000).
[CrossRef]

C. R. Osterwald, , S. Anevsky, A. K. Barua, P. Chaudhuri, J. Dubard, K. Emery, B. Hansen, D. King, J. Metzdorf, F. Nagamine, R. Shimokawa, Y. X. Wang, T. Wittchen, W. Zaaiman, A. Zastrow, and J. Zhang, “The World Photovoltaic Scale: an international reference cell calibration program,” Prog. Photovoltaics 7, 287–297 (1999).
[CrossRef]

J. Metzdorf, W. Möller, T. Wittchen, and D. Hünerhoff, “Principle and application of differential spectroradiometry,” Metrologia 28, 247–250 (1991).
[CrossRef]

J. Metzdorf, “Calibration of solar cells. 1: The differential spectral responsivity method,” Appl. Opt. 26, 1701–1708 (1987).
[CrossRef] [PubMed]

Möller, W.

J. Metzdorf, W. Möller, T. Wittchen, and D. Hünerhoff, “Principle and application of differential spectroradiometry,” Metrologia 28, 247–250 (1991).
[CrossRef]

Nagamine, F.

C. R. Osterwald, , S. Anevsky, A. K. Barua, P. Chaudhuri, J. Dubard, K. Emery, B. Hansen, D. King, J. Metzdorf, F. Nagamine, R. Shimokawa, Y. X. Wang, T. Wittchen, W. Zaaiman, A. Zastrow, and J. Zhang, “The World Photovoltaic Scale: an international reference cell calibration program,” Prog. Photovoltaics 7, 287–297 (1999).
[CrossRef]

Nelson, J.

J. Nelson, The Physics of Solar Cells (Imperial College, 2003).

Ohno, Y.

I. Fryc, S. W. Brown, G. P. Eppeldauer, and Y. Ohno, “LED-based spectrally tunable source for radiometric, photometric, and colorimetric applications,” Opt. Eng. 44, 111309 (2005).
[CrossRef]

Y. Ohno, “A flexible bandwidth correction method for spectrometers,” in Proceedings of the 10th Congress of the International Color Association, J. L. Nieves and J. Hernández-Andrés, eds. (Comité Español del Color, 2005), pp. 697–700.

Osterwald, C. R.

C. R. Osterwald, , S. Anevsky, A. K. Barua, P. Chaudhuri, J. Dubard, K. Emery, B. Hansen, D. King, J. Metzdorf, F. Nagamine, R. Shimokawa, Y. X. Wang, T. Wittchen, W. Zaaiman, A. Zastrow, and J. Zhang, “The World Photovoltaic Scale: an international reference cell calibration program,” Prog. Photovoltaics 7, 287–297 (1999).
[CrossRef]

Park, C.-W.

D.-J. Shin, C.-W. Park, S. S. Kolesnikova, and B. B. Khlevnoy, “Final report on bilateral comparison APMP.PR-K1.a.1-2008 between KRISS (Korea) and VNIIOFI (Russia): spectral irradiance from 250nm to 2500nm,” Metrologia 47, 02005 (2010).
[CrossRef]

Park, S.

Park, S.-N.

Shimokawa, R.

C. R. Osterwald, , S. Anevsky, A. K. Barua, P. Chaudhuri, J. Dubard, K. Emery, B. Hansen, D. King, J. Metzdorf, F. Nagamine, R. Shimokawa, Y. X. Wang, T. Wittchen, W. Zaaiman, A. Zastrow, and J. Zhang, “The World Photovoltaic Scale: an international reference cell calibration program,” Prog. Photovoltaics 7, 287–297 (1999).
[CrossRef]

Shin, D.-J.

D.-J. Shin, C.-W. Park, S. S. Kolesnikova, and B. B. Khlevnoy, “Final report on bilateral comparison APMP.PR-K1.a.1-2008 between KRISS (Korea) and VNIIOFI (Russia): spectral irradiance from 250nm to 2500nm,” Metrologia 47, 02005 (2010).
[CrossRef]

Sterns, E. I.

E. I. Sterns and R. E. Sterns, “An example of a method for correcting radiance data for bandpass error,” Color Res. Appl. 13, 257–259 (1988).
[CrossRef]

Sterns, R. E.

E. I. Sterns and R. E. Sterns, “An example of a method for correcting radiance data for bandpass error,” Color Res. Appl. 13, 257–259 (1988).
[CrossRef]

Stock, M.

R. Goebel and M. Stock, “Report on the comparison CCPR-K2.b of spectral responsivity measurements in the range 300nm to 1000nm,” Metrologia 41, 02004 (2004).
[CrossRef]

Wang, Y. X.

C. R. Osterwald, , S. Anevsky, A. K. Barua, P. Chaudhuri, J. Dubard, K. Emery, B. Hansen, D. King, J. Metzdorf, F. Nagamine, R. Shimokawa, Y. X. Wang, T. Wittchen, W. Zaaiman, A. Zastrow, and J. Zhang, “The World Photovoltaic Scale: an international reference cell calibration program,” Prog. Photovoltaics 7, 287–297 (1999).
[CrossRef]

Winter, S.

J. Metzdorf, S. Winter, and T. Wittchen, “Radiometry in photovoltaics: calibration of reference solar cells and evaluation of reference values,” Metrologia 37, 573–578 (2000).
[CrossRef]

S. Winter, “Analyse und Verbesserung der rückführbaren Kalibrierung von Solarzellen,” Dissertation of Technische, Universität Braunschweig, Germany (2003), http://www.digibib.tu-bs.de/?docid=00001572.

Wittchen, T.

J. Metzdorf, S. Winter, and T. Wittchen, “Radiometry in photovoltaics: calibration of reference solar cells and evaluation of reference values,” Metrologia 37, 573–578 (2000).
[CrossRef]

C. R. Osterwald, , S. Anevsky, A. K. Barua, P. Chaudhuri, J. Dubard, K. Emery, B. Hansen, D. King, J. Metzdorf, F. Nagamine, R. Shimokawa, Y. X. Wang, T. Wittchen, W. Zaaiman, A. Zastrow, and J. Zhang, “The World Photovoltaic Scale: an international reference cell calibration program,” Prog. Photovoltaics 7, 287–297 (1999).
[CrossRef]

J. Metzdorf, W. Möller, T. Wittchen, and D. Hünerhoff, “Principle and application of differential spectroradiometry,” Metrologia 28, 247–250 (1991).
[CrossRef]

Young, F. M.

Zaaiman, W.

C. R. Osterwald, , S. Anevsky, A. K. Barua, P. Chaudhuri, J. Dubard, K. Emery, B. Hansen, D. King, J. Metzdorf, F. Nagamine, R. Shimokawa, Y. X. Wang, T. Wittchen, W. Zaaiman, A. Zastrow, and J. Zhang, “The World Photovoltaic Scale: an international reference cell calibration program,” Prog. Photovoltaics 7, 287–297 (1999).
[CrossRef]

Zastrow, A.

C. R. Osterwald, , S. Anevsky, A. K. Barua, P. Chaudhuri, J. Dubard, K. Emery, B. Hansen, D. King, J. Metzdorf, F. Nagamine, R. Shimokawa, Y. X. Wang, T. Wittchen, W. Zaaiman, A. Zastrow, and J. Zhang, “The World Photovoltaic Scale: an international reference cell calibration program,” Prog. Photovoltaics 7, 287–297 (1999).
[CrossRef]

Zhang, J.

C. R. Osterwald, , S. Anevsky, A. K. Barua, P. Chaudhuri, J. Dubard, K. Emery, B. Hansen, D. King, J. Metzdorf, F. Nagamine, R. Shimokawa, Y. X. Wang, T. Wittchen, W. Zaaiman, A. Zastrow, and J. Zhang, “The World Photovoltaic Scale: an international reference cell calibration program,” Prog. Photovoltaics 7, 287–297 (1999).
[CrossRef]

Appl. Opt. (4)

Color Res. Appl. (1)

E. I. Sterns and R. E. Sterns, “An example of a method for correcting radiance data for bandpass error,” Color Res. Appl. 13, 257–259 (1988).
[CrossRef]

J. Opt. Soc. Am. (1)

Metrologia (4)

R. Goebel and M. Stock, “Report on the comparison CCPR-K2.b of spectral responsivity measurements in the range 300nm to 1000nm,” Metrologia 41, 02004 (2004).
[CrossRef]

D.-J. Shin, C.-W. Park, S. S. Kolesnikova, and B. B. Khlevnoy, “Final report on bilateral comparison APMP.PR-K1.a.1-2008 between KRISS (Korea) and VNIIOFI (Russia): spectral irradiance from 250nm to 2500nm,” Metrologia 47, 02005 (2010).
[CrossRef]

J. Metzdorf, W. Möller, T. Wittchen, and D. Hünerhoff, “Principle and application of differential spectroradiometry,” Metrologia 28, 247–250 (1991).
[CrossRef]

J. Metzdorf, S. Winter, and T. Wittchen, “Radiometry in photovoltaics: calibration of reference solar cells and evaluation of reference values,” Metrologia 37, 573–578 (2000).
[CrossRef]

Opt. Eng. (1)

I. Fryc, S. W. Brown, G. P. Eppeldauer, and Y. Ohno, “LED-based spectrally tunable source for radiometric, photometric, and colorimetric applications,” Opt. Eng. 44, 111309 (2005).
[CrossRef]

Prog. Photovoltaics (1)

C. R. Osterwald, , S. Anevsky, A. K. Barua, P. Chaudhuri, J. Dubard, K. Emery, B. Hansen, D. King, J. Metzdorf, F. Nagamine, R. Shimokawa, Y. X. Wang, T. Wittchen, W. Zaaiman, A. Zastrow, and J. Zhang, “The World Photovoltaic Scale: an international reference cell calibration program,” Prog. Photovoltaics 7, 287–297 (1999).
[CrossRef]

Other (11)

J. L. Gardner, “Bandwidth correction for LED chromaticity,” Color Res. Appl. 31, 374–380 (2006).

Y. Ohno, “A flexible bandwidth correction method for spectrometers,” in Proceedings of the 10th Congress of the International Color Association, J. L. Nieves and J. Hernández-Andrés, eds. (Comité Español del Color, 2005), pp. 697–700.

“Practical methods for the measurement of reflectance and transmittance,” International Commission on Illumination (CIE) publication no. 130 (1998).

J. Nelson, The Physics of Solar Cells (Imperial College, 2003).

“Guide to the expression of uncertainty in measurement,” International Organization for Standardization/International Electrotechnical Commission Guide 98:1995 (1995).

S. Winter, “Analyse und Verbesserung der rückführbaren Kalibrierung von Solarzellen,” Dissertation of Technische, Universität Braunschweig, Germany (2003), http://www.digibib.tu-bs.de/?docid=00001572.

“Standard test method for spectral responsivity measurements of photovoltaic devices,” ASTME1021-06 (2006).

“Determination of the spectral responsivity of optical radiation detectors,” International Commission on Illumination (CIE) publication no. 64 (1984).

A.C.Parr, R.U.Datla, and J.L.Gardner, eds., Optical Radiometry (Elsevier, 2005).

E. L. Dereniak and D. G. Growe, Optical Radiation Detectors (Wiley, 1984).

“Measurement principles for terrestrial photovoltaic solar devices with reference irradiation data,” International Electrotechnical Commission Standard 904-3 (1989).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1

Schematic diagram of the DSR measurement system with the tunable LED-based integrating sphere source: (a) top view of the whole setup, (b) detailed view of the integrating sphere, and (c) block diagram of the instrumentation.

Fig. 2
Fig. 2

Spectral irradiance of the LED-based integrating sphere source measured at the measurement plane of the DUT with a spectroradiometer. The different colors of the curves correspond to the different LEDs, which are selected and lit one by one without modulation.

Fig. 3
Fig. 3

Irradiance of the DC bias light as a function of the distance between the DUT and the bias source. The squares indicate the measured values and the line is a fit result of the function inversely proportional to the square of the distance.

Fig. 4
Fig. 4

Responsivity of the Si REF of the DSR measurement system at different peak wavelengths of the LEDs as a result of the two calibration methods: (a) source-based calibration using a spectro-radiometer (red squares) and (b) detector-based calibration using a Si photodiode with a precision aperture (blue circles). The error bars indicate the 5% uncertainty of the source-based calibration result corresponding to the measurement uncertainty of the spectroradiometer used.

Fig. 5
Fig. 5

Comparison of the spectral irradiance responsivity results for a Si photodiode irradiance meter: (a) plot of the three data sets: “narrowband reference” data measured with a narrowband spectral power responsivity comparator (red curve), “broadband measurement” data measured with the DSR system using broadband LEDs (blue squares), and “bandwidth-corrected” data of the DSR result (red circles); (b) plot of the relative difference of the “broadband measurement” data (blue squares) and the “bandwidth-corrected” data (red circles) from the narrowband reference data.

Fig. 6
Fig. 6

Comparison of the normalized spectral responsivity results for a photometer: (a) plot of the three data sets: “narrow-band reference” data measured with a narrow-band spectral power responsivity comparator (red curve), “broadband measurement” data measured with the DSR system using broadband LEDs (blue squares), and “bandwidth-corrected” data of the DSR result (red circles); (b) plot of the relative difference of the “broadband measurement” data (blue squares) and the “bandwidth- corrected” data (red circles) from the narrowband reference data.

Fig. 7
Fig. 7

Spatial distribution of the irradiance of the LED-based integrating sphere source measured by scanning the reference irradiance meter on the horizontal axis on the measurement plane. The symbols indicate the measurement data, while the lines smoothly connect the data only for better visualization. The measurement results of all the LEDs in the Si-sensitive wavelength range are superposed on one plot with different colors.

Fig. 8
Fig. 8

Relative change of the REF signal when the reference irradiance meter is positioned at different distances from the integrating sphere output port. The symbols indicate the measurement data, while the curves smoothly connect the data only for better visualization. The measurement results of all the LEDs in the Si-sensitive wavelength range are superposed on one plot with different colors.

Fig. 9
Fig. 9

DSR measurement result of a planar Si photodiode with an active area size of 1 cm × 1 cm . The filled symbols with different colors indicate the bandwidth-corrected values at different bias, while the cross symbols with the corresponding colors indicate the broadband responsivity values without correction.

Fig. 10
Fig. 10

DSR measurement result of a WPVS reference solar cell with an active area size of 2 cm × 2 cm . The filled symbols with different colors indicate the bandwidth-corrected values at different bias, while the cross symbols with the corresponding colors indicate the broadband responsivity values without correction.

Tables (1)

Tables Icon

Table 1 Uncertainty Budget of the DSR Measurement for a Bare Si Photovoltaic Detector (DoF, Degree of Freedom)

Equations (10)

Equations on this page are rendered with MathJax. Learn more.

S R ( λ p ) = y R E .
S D ( λ p ) = y D E = y D y R · S R ( λ p ) .
E = E ( λ ) d λ .
i ph = S ( λ ) E ( λ ) d λ = S ( λ p ) E ( λ p ) s ( λ ) e ( λ ) d λ .
S R ( λ p ) = y R E = y R E ( λ p ) e ( λ ) d λ = y R i ph · S ( λ p ) · s ( λ ) e ( λ ) d λ e ( λ ) d λ y R i ph · S ( λ p ) · f BW .
y D y R = ( y D y R ) AC · C AC ,
y D y R = ( y D y R ) BB · C BW .
S ( λ ) = c 0 + c 1 λ + c 2 λ 2 + c 3 λ 3 + c 4 λ 4 .
y D y R = ( y D , a 2 y R , a 1 ) · C SP .
S D ( λ p ) = ( y D , a 2 y R , a 1 ) AC , BB · S R ( λ p ) · C AC · C BW · C SP .

Metrics