Abstract

We calculate the light scattering properties of the partially charged dust particles with the Mie theory for electromagnetic waves with different frequencies, and the attenuation coefficients of an electromagnetic wave propagating in a sandstorm are also calculated. The results show that the electric charges distributed on the sand surface have a significant effect on the attenuation of the electromagnetic wave, especially for a frequency lower than 40GHz, and attenuation coefficients increase with the magnitude of charges carried by the dust particles (expressed by the charge-to-mass ratio in this paper). For the higher frequency electromagnetic wave, such as visible light, the effect of charges carried by sand particles on its attenuation is very little, which can be ignored.

© 2010 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Z. Elabdin, M. R. Islam, O. O. Khalifa, and H. E. A. Raouf, “Mathematical model for the prediction of microwave signal attenuation due to dust storm,” PIER M 6, 139–153(2009).
    [CrossRef]
  2. H. E. Redmond, K. D. Dial, and J. E. Thompson, “Light scattering and absorption by wind blown dust: theory, measurement, and recent data,” Aeolian Res. 3, 5–26 (2009).
    [CrossRef]
  3. J. W. Ryde, “Echo intensities and attenuation due to clouds, rain, hail, sand and dust storms at centimetre wavelengths,” Report no. 7831 (Research Laboratories of General Electric Company, Ltd., 1941), pp. 22–24.
  4. H. T. Al-Hafid, S. C. Gupta, M. Al-Mashhadani, and K. Buni, “Study of microwave propagation under adverse dust storm conditions,” in Third World Telecommunication Forum (1979), pp. 2.3.7.1–2.3.7.3.
  5. H. T. Al-Hafid, S. C. Gupta, and K. Buni, “Effect of adverse sand-storm media on microwave propagation,” in Proceedings of the National Radio Science Meeting (URSI, 1979), p. 256.
  6. H. T. Al-Hafid, S. C. Gupta, and M. Ibrahim, “Propagation of microwave under adverse sand storm conditions of Iraq,” in Proceedings of the North American Radio Science Meeting (URSI, 1981), p. 274.
  7. X. Chen, “Observe the influence of sand dust storm on radio communication in Gulf war,” Electric Wave Antenna 6, 2 (1991).
  8. I. Y. Ahmed and L. J. Auchterlonie, “Microwave measurements on dust, using an open resonator,” Electron Lett. 12, 445–446 (1976).
    [CrossRef]
  9. I. Y. Ahmed, “The effects of sand and dust storms on microwave propagation,” Arab States Broadcast Union Tech. Rev. 1, 23–29 (1977).
  10. S. I. Ghobrial, “Effects of sandstorms on microwave propagation,” in IEEE National Telecommunications Conference (IEEE, 1980), pp. 4351–4354.
  11. T. S. Chu, “Effect of sandstorms on microwave propagation,” Bell Syst. Tech. J. 58, 549–555 (1979).
  12. A. J. Ansari and B. G. Evans, “Microwave propagation in sand and dust storms,” IEE Proc. F Commun. Radar Signal Proc. 129, 315–322 (1982).
    [CrossRef]
  13. S. Haddad, M. J. H. Salman, and R. K. Jha, “Effect of dust/sand storms on some aspects of microwave propagation,” in Proceedings of the Ursi Commission F Symposium (ESA, 1983), pp. 153–161.
  14. B. R. Vishvakarma and C. S. Rai, “Limitations of Rayleigh scattering in the prediction of millimeter wave attenuation in sand and dust storms,” in Proceedings of the IEEE International Symposium on Geoscience and Remote Sensing (IEEE, 1993), Vol. 1, pp. 267–269 .
  15. G. Comparetto, “The impact of dust and foliage on signal attenuation in millimeter wave regime,” J. Space Comm. 11, 13–20 (1993).
  16. J. M. Xiao and X. M. Wu, “Microwave and millimeter wave propagation in sand and dust storms,” in Proceedings of the International Symposium on Radio Propagation (1993), pp. 113–116.
  17. S. Dong, X. Lan, X. Sun, and Y. Yan, “Measurement of sand-powders and analogical analysis on sandstorm at W band,” Proc. SPIE 2211, 83–86 (1994).
    [CrossRef]
  18. S. Singh, C. S. Rai, and B. R. Vishvakarma, “Millimeter wave attenuation in storm layer with spherical and non-spherical dust particles,” J. Inst. Eng. ER 76, 57–61 (1995).
  19. Y. X. Xu, Y. Du, J. Y. Huang, and X. G. Guan, “Effect of sand and dust storms on Ka-band electromagnetic wave propagation along earth-space paths,” Chin. J. Radio Sci. 18, 328–331(2003).
  20. Y. Zhou, Q. He, and X. Zheng, “Attenuation of electromagnetic wave propagation in sandstorms incorporating charged sand particles,” Eur. Phys. J. E 17, 181–187 (2005).
    [CrossRef] [PubMed]
  21. Q. S. He, Y. H. Zhou, and X. J. Zheng, “Effects of charged sand on electromagnetic wave propagation and its scattering field,” Sci. China Ser. G Phys. Mech. Astron. 49, 77–87(2006).
    [CrossRef]
  22. A. Ishimaru, Wave Propagation and Scattering in Random Media (Academic, 1978), pp. 19–20.
  23. J. Ge, J. Huang, F. Weng, and W. Sun, “Effects of dust storms on microwave radiation based on satellite observation and model simulation over the Taklamakan desert,” Atmos. Chem. Phys. Discuss. 8, 4903–4909 (2008).
    [CrossRef]
  24. R. E. Warren, R. G. Vanderbeek, A. Ben-David, and J. L. Ahl, “Simultaneous estimation of aerosol cloud concentration and spectral backscatter from multiple-wavelength lidar data,” Appl. Opt. 47, 4309–4320 (2008).
    [CrossRef] [PubMed]
  25. A. K. Jagodnicka, T. Stacewicz, G. Karasinski, M. Posyniak, and S. P. Malinowski, “Particle size distribution retrieval from multi-wavelength lidar signals for droplet aerosol,” Appl. Opt. 48, B8–B16 (2009).
    [CrossRef] [PubMed]
  26. S. A. Lysenko and M. M. Kugeiko, “Method for the determination of the concentration of the respirable atmospheric aerosol fraction from the data of three-frequency lidar sensing,” Atm. Ocean. Opt. 23, 222–228 (2010).
    [CrossRef]
  27. T. Pahtz, H. J. Herrmann, and T. Shinbrot, “Why do particle clouds generate electric charges?” Nat. Phys. 6, 364–368(2010).
    [CrossRef]
  28. C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, 1983), pp. 82–103.
  29. J. Klačka and M. Kocifaj, “Scattering of electromagnetic waves by charged spheres and some physical consequences,” J. Quant. Spectrosc. Radiat. Transfer 106, 170–183 (2007) .
    [CrossRef]
  30. C. F. Bohren and A. J. Hunt, “Scattering of electromagnetic waves by a charged sphere,” Can. J. Phys. 55, 1930–1935 (1977).
    [CrossRef]
  31. D. L. Book, NRL Plasma Formulary (Naval Research Laboratory, 1978).
  32. K. Shouwan and C. Yanping, Manual Plasma Physics (Science, 1981).
  33. R. Greeley and R. Leach, “A preliminary assessment of the effects of electrostatics on Aeolian processes,” in Reports of Planetary Geology Program, 1977–1978, Technical memorandum 79729 (NASA, 1978), pp. 236–237.
  34. D. S. Schmidt and R. S. Schmidt, “Electrostatic force on saltating sand,” J. Geophys. Res. 103, 8997–9001(1998).
    [CrossRef]
  35. X. J. Zheng, N. Huang, and Y. H. Zhou, “Laboratory measurement of electrification of wind-blown sands and simulation of its effect on sand saltation movement,” J. Geophys. Res. 108, 4322–4330 (2003).
    [CrossRef]
  36. J. Merrison, J. Jensen, K. Kinch, R. Mugford, and P. Nornberg, “The electrical properties of Mars analogue dust,” Planet. Space Sci. 52, 279–290 (2004).
    [CrossRef]
  37. J. J. Qu, M. H. Yan, G. R. Dong, H. F. Zhang, R. P. Zu, W. Q. Tuo, A. G. Zhao, Z. H. Xiao, F. Li, and B. Yang, “Wind tunnel simulation experiment and investigation on the electrification of sandstorms,” Sci. China Ser. D Earth Sci. 47, 529–539(2004).
    [CrossRef]
  38. T. Cheng, D. Lu, H. Chen, and Y. Xu, “Physical characteristics of dust aerosol over Hunshan Dake sandland in Northern China,” Atmos. Environ. 39, 1237–1243 (2005).
    [CrossRef]

2010

S. A. Lysenko and M. M. Kugeiko, “Method for the determination of the concentration of the respirable atmospheric aerosol fraction from the data of three-frequency lidar sensing,” Atm. Ocean. Opt. 23, 222–228 (2010).
[CrossRef]

T. Pahtz, H. J. Herrmann, and T. Shinbrot, “Why do particle clouds generate electric charges?” Nat. Phys. 6, 364–368(2010).
[CrossRef]

2009

Z. Elabdin, M. R. Islam, O. O. Khalifa, and H. E. A. Raouf, “Mathematical model for the prediction of microwave signal attenuation due to dust storm,” PIER M 6, 139–153(2009).
[CrossRef]

H. E. Redmond, K. D. Dial, and J. E. Thompson, “Light scattering and absorption by wind blown dust: theory, measurement, and recent data,” Aeolian Res. 3, 5–26 (2009).
[CrossRef]

A. K. Jagodnicka, T. Stacewicz, G. Karasinski, M. Posyniak, and S. P. Malinowski, “Particle size distribution retrieval from multi-wavelength lidar signals for droplet aerosol,” Appl. Opt. 48, B8–B16 (2009).
[CrossRef] [PubMed]

2008

J. Ge, J. Huang, F. Weng, and W. Sun, “Effects of dust storms on microwave radiation based on satellite observation and model simulation over the Taklamakan desert,” Atmos. Chem. Phys. Discuss. 8, 4903–4909 (2008).
[CrossRef]

R. E. Warren, R. G. Vanderbeek, A. Ben-David, and J. L. Ahl, “Simultaneous estimation of aerosol cloud concentration and spectral backscatter from multiple-wavelength lidar data,” Appl. Opt. 47, 4309–4320 (2008).
[CrossRef] [PubMed]

2007

J. Klačka and M. Kocifaj, “Scattering of electromagnetic waves by charged spheres and some physical consequences,” J. Quant. Spectrosc. Radiat. Transfer 106, 170–183 (2007) .
[CrossRef]

2006

Q. S. He, Y. H. Zhou, and X. J. Zheng, “Effects of charged sand on electromagnetic wave propagation and its scattering field,” Sci. China Ser. G Phys. Mech. Astron. 49, 77–87(2006).
[CrossRef]

2005

T. Cheng, D. Lu, H. Chen, and Y. Xu, “Physical characteristics of dust aerosol over Hunshan Dake sandland in Northern China,” Atmos. Environ. 39, 1237–1243 (2005).
[CrossRef]

Y. Zhou, Q. He, and X. Zheng, “Attenuation of electromagnetic wave propagation in sandstorms incorporating charged sand particles,” Eur. Phys. J. E 17, 181–187 (2005).
[CrossRef] [PubMed]

2004

J. Merrison, J. Jensen, K. Kinch, R. Mugford, and P. Nornberg, “The electrical properties of Mars analogue dust,” Planet. Space Sci. 52, 279–290 (2004).
[CrossRef]

J. J. Qu, M. H. Yan, G. R. Dong, H. F. Zhang, R. P. Zu, W. Q. Tuo, A. G. Zhao, Z. H. Xiao, F. Li, and B. Yang, “Wind tunnel simulation experiment and investigation on the electrification of sandstorms,” Sci. China Ser. D Earth Sci. 47, 529–539(2004).
[CrossRef]

2003

X. J. Zheng, N. Huang, and Y. H. Zhou, “Laboratory measurement of electrification of wind-blown sands and simulation of its effect on sand saltation movement,” J. Geophys. Res. 108, 4322–4330 (2003).
[CrossRef]

Y. X. Xu, Y. Du, J. Y. Huang, and X. G. Guan, “Effect of sand and dust storms on Ka-band electromagnetic wave propagation along earth-space paths,” Chin. J. Radio Sci. 18, 328–331(2003).

1998

D. S. Schmidt and R. S. Schmidt, “Electrostatic force on saltating sand,” J. Geophys. Res. 103, 8997–9001(1998).
[CrossRef]

1995

S. Singh, C. S. Rai, and B. R. Vishvakarma, “Millimeter wave attenuation in storm layer with spherical and non-spherical dust particles,” J. Inst. Eng. ER 76, 57–61 (1995).

1994

S. Dong, X. Lan, X. Sun, and Y. Yan, “Measurement of sand-powders and analogical analysis on sandstorm at W band,” Proc. SPIE 2211, 83–86 (1994).
[CrossRef]

1993

G. Comparetto, “The impact of dust and foliage on signal attenuation in millimeter wave regime,” J. Space Comm. 11, 13–20 (1993).

1991

X. Chen, “Observe the influence of sand dust storm on radio communication in Gulf war,” Electric Wave Antenna 6, 2 (1991).

1982

A. J. Ansari and B. G. Evans, “Microwave propagation in sand and dust storms,” IEE Proc. F Commun. Radar Signal Proc. 129, 315–322 (1982).
[CrossRef]

1979

T. S. Chu, “Effect of sandstorms on microwave propagation,” Bell Syst. Tech. J. 58, 549–555 (1979).

1977

I. Y. Ahmed, “The effects of sand and dust storms on microwave propagation,” Arab States Broadcast Union Tech. Rev. 1, 23–29 (1977).

C. F. Bohren and A. J. Hunt, “Scattering of electromagnetic waves by a charged sphere,” Can. J. Phys. 55, 1930–1935 (1977).
[CrossRef]

1976

I. Y. Ahmed and L. J. Auchterlonie, “Microwave measurements on dust, using an open resonator,” Electron Lett. 12, 445–446 (1976).
[CrossRef]

Ahl, J. L.

Ahmed, I. Y.

I. Y. Ahmed, “The effects of sand and dust storms on microwave propagation,” Arab States Broadcast Union Tech. Rev. 1, 23–29 (1977).

I. Y. Ahmed and L. J. Auchterlonie, “Microwave measurements on dust, using an open resonator,” Electron Lett. 12, 445–446 (1976).
[CrossRef]

Al-Hafid, H. T.

H. T. Al-Hafid, S. C. Gupta, and K. Buni, “Effect of adverse sand-storm media on microwave propagation,” in Proceedings of the National Radio Science Meeting (URSI, 1979), p. 256.

H. T. Al-Hafid, S. C. Gupta, and M. Ibrahim, “Propagation of microwave under adverse sand storm conditions of Iraq,” in Proceedings of the North American Radio Science Meeting (URSI, 1981), p. 274.

H. T. Al-Hafid, S. C. Gupta, M. Al-Mashhadani, and K. Buni, “Study of microwave propagation under adverse dust storm conditions,” in Third World Telecommunication Forum (1979), pp. 2.3.7.1–2.3.7.3.

Al-Mashhadani, M.

H. T. Al-Hafid, S. C. Gupta, M. Al-Mashhadani, and K. Buni, “Study of microwave propagation under adverse dust storm conditions,” in Third World Telecommunication Forum (1979), pp. 2.3.7.1–2.3.7.3.

Ansari, A. J.

A. J. Ansari and B. G. Evans, “Microwave propagation in sand and dust storms,” IEE Proc. F Commun. Radar Signal Proc. 129, 315–322 (1982).
[CrossRef]

Auchterlonie, L. J.

I. Y. Ahmed and L. J. Auchterlonie, “Microwave measurements on dust, using an open resonator,” Electron Lett. 12, 445–446 (1976).
[CrossRef]

Ben-David, A.

Bohren, C. F.

C. F. Bohren and A. J. Hunt, “Scattering of electromagnetic waves by a charged sphere,” Can. J. Phys. 55, 1930–1935 (1977).
[CrossRef]

C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, 1983), pp. 82–103.

Book, D. L.

D. L. Book, NRL Plasma Formulary (Naval Research Laboratory, 1978).

Buni, K.

H. T. Al-Hafid, S. C. Gupta, M. Al-Mashhadani, and K. Buni, “Study of microwave propagation under adverse dust storm conditions,” in Third World Telecommunication Forum (1979), pp. 2.3.7.1–2.3.7.3.

H. T. Al-Hafid, S. C. Gupta, and K. Buni, “Effect of adverse sand-storm media on microwave propagation,” in Proceedings of the National Radio Science Meeting (URSI, 1979), p. 256.

Chen, H.

T. Cheng, D. Lu, H. Chen, and Y. Xu, “Physical characteristics of dust aerosol over Hunshan Dake sandland in Northern China,” Atmos. Environ. 39, 1237–1243 (2005).
[CrossRef]

Chen, X.

X. Chen, “Observe the influence of sand dust storm on radio communication in Gulf war,” Electric Wave Antenna 6, 2 (1991).

Cheng, T.

T. Cheng, D. Lu, H. Chen, and Y. Xu, “Physical characteristics of dust aerosol over Hunshan Dake sandland in Northern China,” Atmos. Environ. 39, 1237–1243 (2005).
[CrossRef]

Chu, T. S.

T. S. Chu, “Effect of sandstorms on microwave propagation,” Bell Syst. Tech. J. 58, 549–555 (1979).

Comparetto, G.

G. Comparetto, “The impact of dust and foliage on signal attenuation in millimeter wave regime,” J. Space Comm. 11, 13–20 (1993).

Dial, K. D.

H. E. Redmond, K. D. Dial, and J. E. Thompson, “Light scattering and absorption by wind blown dust: theory, measurement, and recent data,” Aeolian Res. 3, 5–26 (2009).
[CrossRef]

Dong, G. R.

J. J. Qu, M. H. Yan, G. R. Dong, H. F. Zhang, R. P. Zu, W. Q. Tuo, A. G. Zhao, Z. H. Xiao, F. Li, and B. Yang, “Wind tunnel simulation experiment and investigation on the electrification of sandstorms,” Sci. China Ser. D Earth Sci. 47, 529–539(2004).
[CrossRef]

Dong, S.

S. Dong, X. Lan, X. Sun, and Y. Yan, “Measurement of sand-powders and analogical analysis on sandstorm at W band,” Proc. SPIE 2211, 83–86 (1994).
[CrossRef]

Du, Y.

Y. X. Xu, Y. Du, J. Y. Huang, and X. G. Guan, “Effect of sand and dust storms on Ka-band electromagnetic wave propagation along earth-space paths,” Chin. J. Radio Sci. 18, 328–331(2003).

Elabdin, Z.

Z. Elabdin, M. R. Islam, O. O. Khalifa, and H. E. A. Raouf, “Mathematical model for the prediction of microwave signal attenuation due to dust storm,” PIER M 6, 139–153(2009).
[CrossRef]

Evans, B. G.

A. J. Ansari and B. G. Evans, “Microwave propagation in sand and dust storms,” IEE Proc. F Commun. Radar Signal Proc. 129, 315–322 (1982).
[CrossRef]

Ge, J.

J. Ge, J. Huang, F. Weng, and W. Sun, “Effects of dust storms on microwave radiation based on satellite observation and model simulation over the Taklamakan desert,” Atmos. Chem. Phys. Discuss. 8, 4903–4909 (2008).
[CrossRef]

Ghobrial, S. I.

S. I. Ghobrial, “Effects of sandstorms on microwave propagation,” in IEEE National Telecommunications Conference (IEEE, 1980), pp. 4351–4354.

Greeley, R.

R. Greeley and R. Leach, “A preliminary assessment of the effects of electrostatics on Aeolian processes,” in Reports of Planetary Geology Program, 1977–1978, Technical memorandum 79729 (NASA, 1978), pp. 236–237.

Guan, X. G.

Y. X. Xu, Y. Du, J. Y. Huang, and X. G. Guan, “Effect of sand and dust storms on Ka-band electromagnetic wave propagation along earth-space paths,” Chin. J. Radio Sci. 18, 328–331(2003).

Gupta, S. C.

H. T. Al-Hafid, S. C. Gupta, M. Al-Mashhadani, and K. Buni, “Study of microwave propagation under adverse dust storm conditions,” in Third World Telecommunication Forum (1979), pp. 2.3.7.1–2.3.7.3.

H. T. Al-Hafid, S. C. Gupta, and M. Ibrahim, “Propagation of microwave under adverse sand storm conditions of Iraq,” in Proceedings of the North American Radio Science Meeting (URSI, 1981), p. 274.

H. T. Al-Hafid, S. C. Gupta, and K. Buni, “Effect of adverse sand-storm media on microwave propagation,” in Proceedings of the National Radio Science Meeting (URSI, 1979), p. 256.

Haddad, S.

S. Haddad, M. J. H. Salman, and R. K. Jha, “Effect of dust/sand storms on some aspects of microwave propagation,” in Proceedings of the Ursi Commission F Symposium (ESA, 1983), pp. 153–161.

He, Q.

Y. Zhou, Q. He, and X. Zheng, “Attenuation of electromagnetic wave propagation in sandstorms incorporating charged sand particles,” Eur. Phys. J. E 17, 181–187 (2005).
[CrossRef] [PubMed]

He, Q. S.

Q. S. He, Y. H. Zhou, and X. J. Zheng, “Effects of charged sand on electromagnetic wave propagation and its scattering field,” Sci. China Ser. G Phys. Mech. Astron. 49, 77–87(2006).
[CrossRef]

Herrmann, H. J.

T. Pahtz, H. J. Herrmann, and T. Shinbrot, “Why do particle clouds generate electric charges?” Nat. Phys. 6, 364–368(2010).
[CrossRef]

Huang, J.

J. Ge, J. Huang, F. Weng, and W. Sun, “Effects of dust storms on microwave radiation based on satellite observation and model simulation over the Taklamakan desert,” Atmos. Chem. Phys. Discuss. 8, 4903–4909 (2008).
[CrossRef]

Huang, J. Y.

Y. X. Xu, Y. Du, J. Y. Huang, and X. G. Guan, “Effect of sand and dust storms on Ka-band electromagnetic wave propagation along earth-space paths,” Chin. J. Radio Sci. 18, 328–331(2003).

Huang, N.

X. J. Zheng, N. Huang, and Y. H. Zhou, “Laboratory measurement of electrification of wind-blown sands and simulation of its effect on sand saltation movement,” J. Geophys. Res. 108, 4322–4330 (2003).
[CrossRef]

Huffman, D. R.

C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, 1983), pp. 82–103.

Hunt, A. J.

C. F. Bohren and A. J. Hunt, “Scattering of electromagnetic waves by a charged sphere,” Can. J. Phys. 55, 1930–1935 (1977).
[CrossRef]

Ibrahim, M.

H. T. Al-Hafid, S. C. Gupta, and M. Ibrahim, “Propagation of microwave under adverse sand storm conditions of Iraq,” in Proceedings of the North American Radio Science Meeting (URSI, 1981), p. 274.

Ishimaru, A.

A. Ishimaru, Wave Propagation and Scattering in Random Media (Academic, 1978), pp. 19–20.

Islam, M. R.

Z. Elabdin, M. R. Islam, O. O. Khalifa, and H. E. A. Raouf, “Mathematical model for the prediction of microwave signal attenuation due to dust storm,” PIER M 6, 139–153(2009).
[CrossRef]

Jagodnicka, A. K.

Jensen, J.

J. Merrison, J. Jensen, K. Kinch, R. Mugford, and P. Nornberg, “The electrical properties of Mars analogue dust,” Planet. Space Sci. 52, 279–290 (2004).
[CrossRef]

Jha, R. K.

S. Haddad, M. J. H. Salman, and R. K. Jha, “Effect of dust/sand storms on some aspects of microwave propagation,” in Proceedings of the Ursi Commission F Symposium (ESA, 1983), pp. 153–161.

Karasinski, G.

Khalifa, O. O.

Z. Elabdin, M. R. Islam, O. O. Khalifa, and H. E. A. Raouf, “Mathematical model for the prediction of microwave signal attenuation due to dust storm,” PIER M 6, 139–153(2009).
[CrossRef]

Kinch, K.

J. Merrison, J. Jensen, K. Kinch, R. Mugford, and P. Nornberg, “The electrical properties of Mars analogue dust,” Planet. Space Sci. 52, 279–290 (2004).
[CrossRef]

Klacka, J.

J. Klačka and M. Kocifaj, “Scattering of electromagnetic waves by charged spheres and some physical consequences,” J. Quant. Spectrosc. Radiat. Transfer 106, 170–183 (2007) .
[CrossRef]

Kocifaj, M.

J. Klačka and M. Kocifaj, “Scattering of electromagnetic waves by charged spheres and some physical consequences,” J. Quant. Spectrosc. Radiat. Transfer 106, 170–183 (2007) .
[CrossRef]

Kugeiko, M. M.

S. A. Lysenko and M. M. Kugeiko, “Method for the determination of the concentration of the respirable atmospheric aerosol fraction from the data of three-frequency lidar sensing,” Atm. Ocean. Opt. 23, 222–228 (2010).
[CrossRef]

Lan, X.

S. Dong, X. Lan, X. Sun, and Y. Yan, “Measurement of sand-powders and analogical analysis on sandstorm at W band,” Proc. SPIE 2211, 83–86 (1994).
[CrossRef]

Leach, R.

R. Greeley and R. Leach, “A preliminary assessment of the effects of electrostatics on Aeolian processes,” in Reports of Planetary Geology Program, 1977–1978, Technical memorandum 79729 (NASA, 1978), pp. 236–237.

Li, F.

J. J. Qu, M. H. Yan, G. R. Dong, H. F. Zhang, R. P. Zu, W. Q. Tuo, A. G. Zhao, Z. H. Xiao, F. Li, and B. Yang, “Wind tunnel simulation experiment and investigation on the electrification of sandstorms,” Sci. China Ser. D Earth Sci. 47, 529–539(2004).
[CrossRef]

Lu, D.

T. Cheng, D. Lu, H. Chen, and Y. Xu, “Physical characteristics of dust aerosol over Hunshan Dake sandland in Northern China,” Atmos. Environ. 39, 1237–1243 (2005).
[CrossRef]

Lysenko, S. A.

S. A. Lysenko and M. M. Kugeiko, “Method for the determination of the concentration of the respirable atmospheric aerosol fraction from the data of three-frequency lidar sensing,” Atm. Ocean. Opt. 23, 222–228 (2010).
[CrossRef]

Malinowski, S. P.

Merrison, J.

J. Merrison, J. Jensen, K. Kinch, R. Mugford, and P. Nornberg, “The electrical properties of Mars analogue dust,” Planet. Space Sci. 52, 279–290 (2004).
[CrossRef]

Mugford, R.

J. Merrison, J. Jensen, K. Kinch, R. Mugford, and P. Nornberg, “The electrical properties of Mars analogue dust,” Planet. Space Sci. 52, 279–290 (2004).
[CrossRef]

Nornberg, P.

J. Merrison, J. Jensen, K. Kinch, R. Mugford, and P. Nornberg, “The electrical properties of Mars analogue dust,” Planet. Space Sci. 52, 279–290 (2004).
[CrossRef]

Pahtz, T.

T. Pahtz, H. J. Herrmann, and T. Shinbrot, “Why do particle clouds generate electric charges?” Nat. Phys. 6, 364–368(2010).
[CrossRef]

Posyniak, M.

Qu, J. J.

J. J. Qu, M. H. Yan, G. R. Dong, H. F. Zhang, R. P. Zu, W. Q. Tuo, A. G. Zhao, Z. H. Xiao, F. Li, and B. Yang, “Wind tunnel simulation experiment and investigation on the electrification of sandstorms,” Sci. China Ser. D Earth Sci. 47, 529–539(2004).
[CrossRef]

Rai, C. S.

S. Singh, C. S. Rai, and B. R. Vishvakarma, “Millimeter wave attenuation in storm layer with spherical and non-spherical dust particles,” J. Inst. Eng. ER 76, 57–61 (1995).

B. R. Vishvakarma and C. S. Rai, “Limitations of Rayleigh scattering in the prediction of millimeter wave attenuation in sand and dust storms,” in Proceedings of the IEEE International Symposium on Geoscience and Remote Sensing (IEEE, 1993), Vol. 1, pp. 267–269 .

Raouf, H. E. A.

Z. Elabdin, M. R. Islam, O. O. Khalifa, and H. E. A. Raouf, “Mathematical model for the prediction of microwave signal attenuation due to dust storm,” PIER M 6, 139–153(2009).
[CrossRef]

Redmond, H. E.

H. E. Redmond, K. D. Dial, and J. E. Thompson, “Light scattering and absorption by wind blown dust: theory, measurement, and recent data,” Aeolian Res. 3, 5–26 (2009).
[CrossRef]

Ryde, J. W.

J. W. Ryde, “Echo intensities and attenuation due to clouds, rain, hail, sand and dust storms at centimetre wavelengths,” Report no. 7831 (Research Laboratories of General Electric Company, Ltd., 1941), pp. 22–24.

Salman, M. J. H.

S. Haddad, M. J. H. Salman, and R. K. Jha, “Effect of dust/sand storms on some aspects of microwave propagation,” in Proceedings of the Ursi Commission F Symposium (ESA, 1983), pp. 153–161.

Schmidt, D. S.

D. S. Schmidt and R. S. Schmidt, “Electrostatic force on saltating sand,” J. Geophys. Res. 103, 8997–9001(1998).
[CrossRef]

Schmidt, R. S.

D. S. Schmidt and R. S. Schmidt, “Electrostatic force on saltating sand,” J. Geophys. Res. 103, 8997–9001(1998).
[CrossRef]

Shinbrot, T.

T. Pahtz, H. J. Herrmann, and T. Shinbrot, “Why do particle clouds generate electric charges?” Nat. Phys. 6, 364–368(2010).
[CrossRef]

Shouwan, K.

K. Shouwan and C. Yanping, Manual Plasma Physics (Science, 1981).

Singh, S.

S. Singh, C. S. Rai, and B. R. Vishvakarma, “Millimeter wave attenuation in storm layer with spherical and non-spherical dust particles,” J. Inst. Eng. ER 76, 57–61 (1995).

Stacewicz, T.

Sun, W.

J. Ge, J. Huang, F. Weng, and W. Sun, “Effects of dust storms on microwave radiation based on satellite observation and model simulation over the Taklamakan desert,” Atmos. Chem. Phys. Discuss. 8, 4903–4909 (2008).
[CrossRef]

Sun, X.

S. Dong, X. Lan, X. Sun, and Y. Yan, “Measurement of sand-powders and analogical analysis on sandstorm at W band,” Proc. SPIE 2211, 83–86 (1994).
[CrossRef]

Thompson, J. E.

H. E. Redmond, K. D. Dial, and J. E. Thompson, “Light scattering and absorption by wind blown dust: theory, measurement, and recent data,” Aeolian Res. 3, 5–26 (2009).
[CrossRef]

Tuo, W. Q.

J. J. Qu, M. H. Yan, G. R. Dong, H. F. Zhang, R. P. Zu, W. Q. Tuo, A. G. Zhao, Z. H. Xiao, F. Li, and B. Yang, “Wind tunnel simulation experiment and investigation on the electrification of sandstorms,” Sci. China Ser. D Earth Sci. 47, 529–539(2004).
[CrossRef]

Vanderbeek, R. G.

Vishvakarma, B. R.

S. Singh, C. S. Rai, and B. R. Vishvakarma, “Millimeter wave attenuation in storm layer with spherical and non-spherical dust particles,” J. Inst. Eng. ER 76, 57–61 (1995).

B. R. Vishvakarma and C. S. Rai, “Limitations of Rayleigh scattering in the prediction of millimeter wave attenuation in sand and dust storms,” in Proceedings of the IEEE International Symposium on Geoscience and Remote Sensing (IEEE, 1993), Vol. 1, pp. 267–269 .

Warren, R. E.

Weng, F.

J. Ge, J. Huang, F. Weng, and W. Sun, “Effects of dust storms on microwave radiation based on satellite observation and model simulation over the Taklamakan desert,” Atmos. Chem. Phys. Discuss. 8, 4903–4909 (2008).
[CrossRef]

Wu, X. M.

J. M. Xiao and X. M. Wu, “Microwave and millimeter wave propagation in sand and dust storms,” in Proceedings of the International Symposium on Radio Propagation (1993), pp. 113–116.

Xiao, J. M.

J. M. Xiao and X. M. Wu, “Microwave and millimeter wave propagation in sand and dust storms,” in Proceedings of the International Symposium on Radio Propagation (1993), pp. 113–116.

Xiao, Z. H.

J. J. Qu, M. H. Yan, G. R. Dong, H. F. Zhang, R. P. Zu, W. Q. Tuo, A. G. Zhao, Z. H. Xiao, F. Li, and B. Yang, “Wind tunnel simulation experiment and investigation on the electrification of sandstorms,” Sci. China Ser. D Earth Sci. 47, 529–539(2004).
[CrossRef]

Xu, Y.

T. Cheng, D. Lu, H. Chen, and Y. Xu, “Physical characteristics of dust aerosol over Hunshan Dake sandland in Northern China,” Atmos. Environ. 39, 1237–1243 (2005).
[CrossRef]

Xu, Y. X.

Y. X. Xu, Y. Du, J. Y. Huang, and X. G. Guan, “Effect of sand and dust storms on Ka-band electromagnetic wave propagation along earth-space paths,” Chin. J. Radio Sci. 18, 328–331(2003).

Yan, M. H.

J. J. Qu, M. H. Yan, G. R. Dong, H. F. Zhang, R. P. Zu, W. Q. Tuo, A. G. Zhao, Z. H. Xiao, F. Li, and B. Yang, “Wind tunnel simulation experiment and investigation on the electrification of sandstorms,” Sci. China Ser. D Earth Sci. 47, 529–539(2004).
[CrossRef]

Yan, Y.

S. Dong, X. Lan, X. Sun, and Y. Yan, “Measurement of sand-powders and analogical analysis on sandstorm at W band,” Proc. SPIE 2211, 83–86 (1994).
[CrossRef]

Yang, B.

J. J. Qu, M. H. Yan, G. R. Dong, H. F. Zhang, R. P. Zu, W. Q. Tuo, A. G. Zhao, Z. H. Xiao, F. Li, and B. Yang, “Wind tunnel simulation experiment and investigation on the electrification of sandstorms,” Sci. China Ser. D Earth Sci. 47, 529–539(2004).
[CrossRef]

Yanping, C.

K. Shouwan and C. Yanping, Manual Plasma Physics (Science, 1981).

Zhang, H. F.

J. J. Qu, M. H. Yan, G. R. Dong, H. F. Zhang, R. P. Zu, W. Q. Tuo, A. G. Zhao, Z. H. Xiao, F. Li, and B. Yang, “Wind tunnel simulation experiment and investigation on the electrification of sandstorms,” Sci. China Ser. D Earth Sci. 47, 529–539(2004).
[CrossRef]

Zhao, A. G.

J. J. Qu, M. H. Yan, G. R. Dong, H. F. Zhang, R. P. Zu, W. Q. Tuo, A. G. Zhao, Z. H. Xiao, F. Li, and B. Yang, “Wind tunnel simulation experiment and investigation on the electrification of sandstorms,” Sci. China Ser. D Earth Sci. 47, 529–539(2004).
[CrossRef]

Zheng, X.

Y. Zhou, Q. He, and X. Zheng, “Attenuation of electromagnetic wave propagation in sandstorms incorporating charged sand particles,” Eur. Phys. J. E 17, 181–187 (2005).
[CrossRef] [PubMed]

Zheng, X. J.

Q. S. He, Y. H. Zhou, and X. J. Zheng, “Effects of charged sand on electromagnetic wave propagation and its scattering field,” Sci. China Ser. G Phys. Mech. Astron. 49, 77–87(2006).
[CrossRef]

X. J. Zheng, N. Huang, and Y. H. Zhou, “Laboratory measurement of electrification of wind-blown sands and simulation of its effect on sand saltation movement,” J. Geophys. Res. 108, 4322–4330 (2003).
[CrossRef]

Zhou, Y.

Y. Zhou, Q. He, and X. Zheng, “Attenuation of electromagnetic wave propagation in sandstorms incorporating charged sand particles,” Eur. Phys. J. E 17, 181–187 (2005).
[CrossRef] [PubMed]

Zhou, Y. H.

Q. S. He, Y. H. Zhou, and X. J. Zheng, “Effects of charged sand on electromagnetic wave propagation and its scattering field,” Sci. China Ser. G Phys. Mech. Astron. 49, 77–87(2006).
[CrossRef]

X. J. Zheng, N. Huang, and Y. H. Zhou, “Laboratory measurement of electrification of wind-blown sands and simulation of its effect on sand saltation movement,” J. Geophys. Res. 108, 4322–4330 (2003).
[CrossRef]

Zu, R. P.

J. J. Qu, M. H. Yan, G. R. Dong, H. F. Zhang, R. P. Zu, W. Q. Tuo, A. G. Zhao, Z. H. Xiao, F. Li, and B. Yang, “Wind tunnel simulation experiment and investigation on the electrification of sandstorms,” Sci. China Ser. D Earth Sci. 47, 529–539(2004).
[CrossRef]

Aeolian Res.

H. E. Redmond, K. D. Dial, and J. E. Thompson, “Light scattering and absorption by wind blown dust: theory, measurement, and recent data,” Aeolian Res. 3, 5–26 (2009).
[CrossRef]

Appl. Opt.

Arab States Broadcast Union Tech. Rev.

I. Y. Ahmed, “The effects of sand and dust storms on microwave propagation,” Arab States Broadcast Union Tech. Rev. 1, 23–29 (1977).

Atm. Ocean. Opt.

S. A. Lysenko and M. M. Kugeiko, “Method for the determination of the concentration of the respirable atmospheric aerosol fraction from the data of three-frequency lidar sensing,” Atm. Ocean. Opt. 23, 222–228 (2010).
[CrossRef]

Atmos. Chem. Phys. Discuss.

J. Ge, J. Huang, F. Weng, and W. Sun, “Effects of dust storms on microwave radiation based on satellite observation and model simulation over the Taklamakan desert,” Atmos. Chem. Phys. Discuss. 8, 4903–4909 (2008).
[CrossRef]

Atmos. Environ.

T. Cheng, D. Lu, H. Chen, and Y. Xu, “Physical characteristics of dust aerosol over Hunshan Dake sandland in Northern China,” Atmos. Environ. 39, 1237–1243 (2005).
[CrossRef]

Bell Syst. Tech. J.

T. S. Chu, “Effect of sandstorms on microwave propagation,” Bell Syst. Tech. J. 58, 549–555 (1979).

Can. J. Phys.

C. F. Bohren and A. J. Hunt, “Scattering of electromagnetic waves by a charged sphere,” Can. J. Phys. 55, 1930–1935 (1977).
[CrossRef]

Chin. J. Radio Sci.

Y. X. Xu, Y. Du, J. Y. Huang, and X. G. Guan, “Effect of sand and dust storms on Ka-band electromagnetic wave propagation along earth-space paths,” Chin. J. Radio Sci. 18, 328–331(2003).

Electric Wave Antenna

X. Chen, “Observe the influence of sand dust storm on radio communication in Gulf war,” Electric Wave Antenna 6, 2 (1991).

Electron Lett.

I. Y. Ahmed and L. J. Auchterlonie, “Microwave measurements on dust, using an open resonator,” Electron Lett. 12, 445–446 (1976).
[CrossRef]

Eur. Phys. J. E

Y. Zhou, Q. He, and X. Zheng, “Attenuation of electromagnetic wave propagation in sandstorms incorporating charged sand particles,” Eur. Phys. J. E 17, 181–187 (2005).
[CrossRef] [PubMed]

IEE Proc. F Commun. Radar Signal Proc.

A. J. Ansari and B. G. Evans, “Microwave propagation in sand and dust storms,” IEE Proc. F Commun. Radar Signal Proc. 129, 315–322 (1982).
[CrossRef]

J. Geophys. Res.

D. S. Schmidt and R. S. Schmidt, “Electrostatic force on saltating sand,” J. Geophys. Res. 103, 8997–9001(1998).
[CrossRef]

X. J. Zheng, N. Huang, and Y. H. Zhou, “Laboratory measurement of electrification of wind-blown sands and simulation of its effect on sand saltation movement,” J. Geophys. Res. 108, 4322–4330 (2003).
[CrossRef]

J. Inst. Eng. ER

S. Singh, C. S. Rai, and B. R. Vishvakarma, “Millimeter wave attenuation in storm layer with spherical and non-spherical dust particles,” J. Inst. Eng. ER 76, 57–61 (1995).

J. Quant. Spectrosc. Radiat. Transfer

J. Klačka and M. Kocifaj, “Scattering of electromagnetic waves by charged spheres and some physical consequences,” J. Quant. Spectrosc. Radiat. Transfer 106, 170–183 (2007) .
[CrossRef]

J. Space Comm.

G. Comparetto, “The impact of dust and foliage on signal attenuation in millimeter wave regime,” J. Space Comm. 11, 13–20 (1993).

Nat. Phys.

T. Pahtz, H. J. Herrmann, and T. Shinbrot, “Why do particle clouds generate electric charges?” Nat. Phys. 6, 364–368(2010).
[CrossRef]

PIER M

Z. Elabdin, M. R. Islam, O. O. Khalifa, and H. E. A. Raouf, “Mathematical model for the prediction of microwave signal attenuation due to dust storm,” PIER M 6, 139–153(2009).
[CrossRef]

Planet. Space Sci.

J. Merrison, J. Jensen, K. Kinch, R. Mugford, and P. Nornberg, “The electrical properties of Mars analogue dust,” Planet. Space Sci. 52, 279–290 (2004).
[CrossRef]

Proc. SPIE

S. Dong, X. Lan, X. Sun, and Y. Yan, “Measurement of sand-powders and analogical analysis on sandstorm at W band,” Proc. SPIE 2211, 83–86 (1994).
[CrossRef]

Sci. China Ser. D Earth Sci.

J. J. Qu, M. H. Yan, G. R. Dong, H. F. Zhang, R. P. Zu, W. Q. Tuo, A. G. Zhao, Z. H. Xiao, F. Li, and B. Yang, “Wind tunnel simulation experiment and investigation on the electrification of sandstorms,” Sci. China Ser. D Earth Sci. 47, 529–539(2004).
[CrossRef]

Sci. China Ser. G Phys. Mech. Astron.

Q. S. He, Y. H. Zhou, and X. J. Zheng, “Effects of charged sand on electromagnetic wave propagation and its scattering field,” Sci. China Ser. G Phys. Mech. Astron. 49, 77–87(2006).
[CrossRef]

Other

A. Ishimaru, Wave Propagation and Scattering in Random Media (Academic, 1978), pp. 19–20.

C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, 1983), pp. 82–103.

D. L. Book, NRL Plasma Formulary (Naval Research Laboratory, 1978).

K. Shouwan and C. Yanping, Manual Plasma Physics (Science, 1981).

R. Greeley and R. Leach, “A preliminary assessment of the effects of electrostatics on Aeolian processes,” in Reports of Planetary Geology Program, 1977–1978, Technical memorandum 79729 (NASA, 1978), pp. 236–237.

J. M. Xiao and X. M. Wu, “Microwave and millimeter wave propagation in sand and dust storms,” in Proceedings of the International Symposium on Radio Propagation (1993), pp. 113–116.

S. Haddad, M. J. H. Salman, and R. K. Jha, “Effect of dust/sand storms on some aspects of microwave propagation,” in Proceedings of the Ursi Commission F Symposium (ESA, 1983), pp. 153–161.

B. R. Vishvakarma and C. S. Rai, “Limitations of Rayleigh scattering in the prediction of millimeter wave attenuation in sand and dust storms,” in Proceedings of the IEEE International Symposium on Geoscience and Remote Sensing (IEEE, 1993), Vol. 1, pp. 267–269 .

S. I. Ghobrial, “Effects of sandstorms on microwave propagation,” in IEEE National Telecommunications Conference (IEEE, 1980), pp. 4351–4354.

J. W. Ryde, “Echo intensities and attenuation due to clouds, rain, hail, sand and dust storms at centimetre wavelengths,” Report no. 7831 (Research Laboratories of General Electric Company, Ltd., 1941), pp. 22–24.

H. T. Al-Hafid, S. C. Gupta, M. Al-Mashhadani, and K. Buni, “Study of microwave propagation under adverse dust storm conditions,” in Third World Telecommunication Forum (1979), pp. 2.3.7.1–2.3.7.3.

H. T. Al-Hafid, S. C. Gupta, and K. Buni, “Effect of adverse sand-storm media on microwave propagation,” in Proceedings of the National Radio Science Meeting (URSI, 1979), p. 256.

H. T. Al-Hafid, S. C. Gupta, and M. Ibrahim, “Propagation of microwave under adverse sand storm conditions of Iraq,” in Proceedings of the North American Radio Science Meeting (URSI, 1981), p. 274.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Schematic of a sand/dust particle carrying charges distributed on a spherical cap with the charge distributed angle θ 0 and surface charge density σ, which is illuminated by a microwave, and k i , E, and H are the direction of wave propagation, the electric field, and the magnetic field, respectively.

Fig. 2
Fig. 2

Attenuation coefficient varies with the charge distributed angle under a given surface charge density, in which σ is the surface charge density.

Fig. 3
Fig. 3

Maximum attenuation coefficient versus the charge-to-mass ratio for a different particle size under a given frequency (a) 9.4 and (b) 89 GHz .

Fig. 4
Fig. 4

Maximum attenuation coefficient varies with the frequency of the electromagnetic wave, and the inset displays the results when the microwave frequency is lower than 40 GHz .

Equations (20)

Equations on this page are rendered with MathJax. Learn more.

E i = n = 1 E n ( M o n 1 i N e n 1 ) ,
H i = k μ 0 ω n = 1 E n ( M o n 1 + i N e n 1 ) .
E int = n = 1 E n ( c n M o n ( 1 ) i d n N e n ( 1 ) ) ,
H int = k 1 μ 1 ω n = 1 E n ( d n M e n ( 1 ) + i c n N o n ( 1 ) ) ,
E s = n = 1 E n ( b n M o n ( 3 ) + i a n N e n ( 3 ) ) ,
H s = k μ 0 ω n = 1 E n ( a n M e n ( 3 ) + i b n N o n ( 3 ) ) .
( ε 0 E 2 ε 1 E 1 ) · n = σ ,
( μ 0 H 2 μ 1 H 1 ) · n = 0 ,
n × ( E 2 E 1 ) = 0 ,
n × ( H 2 H 1 ) = K ,
σ s E 1 · n · K = σ t .
j n ( m x ) c n + h n 1 ( x ) b n = j n ( x ) ,
[ m x j n ( m x ) ] d n + m [ x h n 1 ( x ) ] a n = m [ x j n ( x ) ] ,
{ [ m x j n ( m x ) ] c n + [ x h n 1 ( x ) ] b n [ x j n ( x ) ] } Π = i ω σ s μ 1 R j n ( m x ) Π 0 c n + Γ σ s m ω μ 1 [ m x j n ( m x ) ] d n ,
{ m x j n ( m x ) d n + x h n 1 ( x ) a n x j n ( x ) } Π = Γ σ s R ω μ 1 j n ( m x ) c n i ω σ s μ 1 R [ m x j n ( m x ) ] m x d n Π 0 ,
Π = 0 π P n ( cos θ ) 1 sin θ P n ( cos θ ) 1 sin θ sin θ d θ ,
Π 0 = 0 θ 0 P n ( cos θ ) 1 sin θ P n ( cos θ ) 1 sin θ sin θ d θ ,
Γ = 0 θ 0 P n ( cos θ ) 1 sin θ d P n ( cos θ ) 1 d θ sin θ d θ .
C ext = S R e { E i × H s * + E s × H i * } · e r d S | E i | 2 ε 0 / μ 0 .
A = 0 C ext ( r ) n ( r ) d r .

Metrics