Abstract

To the best of our knowledge, proposed for the first time is the design of an optically broadband variable photonic delay line (VPDL) using an electronically controlled variable focus lens (ECVFL), mirror motion, and beam-conditioned free-space laser beam propagation. This loss-minimized fiber-coupled VPDL design using micro-optic components has the ability to simultaneously provide optical attenuation controls and analog-mode high-resolution (subpicoseconds) continuous delays over a moderate (e.g., <5ns) range of time delays. An example VPDL design using a liquid-based ECVFL demonstrates up to a 1ns time-delay range with >10dB optical attenuation controls. The proposed VPDL is deployed to demonstrate a two-tap RF notch filter with tuned notches at 854.04 and 855.19MHz with 22.6dB notch depth control via VPDL attenuation control operations. The proposed VPDL is useful in signal conditioning applications requiring fiber-coupled broadband light time delay and attenuation controls.

© 2010 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. N.A.Riza, ed., Selected Papers on Photonic Control Systems for Phased Array Antennas, Vol. MS136 of SPIE Milestone Series (SPIE, 1997).
  2. R. A. Minasian, “Photonic signal processing of microwave signals,” IEEE Trans. Microwave Theory Tech. 54, 832–846(2006).
    [CrossRef]
  3. A. J. Seeds and K. J. Williams, “Microwave photonics,” J. Lightwave Technol. 24, 4628–4641 (2006).
    [CrossRef]
  4. J. Capmany and D. Novak, “Microwave photonics combines two worlds,” Nat. Photon. 1, 319–330 (2007).
    [CrossRef]
  5. J. P. Yao, “Microwave photonics,” J. Lightwave Technol. 27, 314–335 (2009).
    [CrossRef]
  6. N. Madamopoulos and N. A. Riza, “Demonstration of an all-digital 7bit 33-channel photonic delay line for phased-array radars,” Appl. Opt. 39, 4168–4181 (2000).
    [CrossRef]
  7. D. Dolfi, P. Joffre, J. Antoine, J. P. Huignard, D. Philippet, and P. Granger, “Experimental demonstration of a phased-array antenna optically controlled with phase and time delays,” Appl. Opt. 35, 5293–5300 (1996).
    [CrossRef] [PubMed]
  8. X. S. Yao and L. Maleki, “A novel 2-D programmable photonic time delay device for millimeter wave signal processing applications,” IEEE Photon. Technol. Lett. 6, 1463–1465(1994).
    [CrossRef]
  9. A. P. Goutzoulis, D. K. Davies, and J. M. Zomp, “Prototype binary fiber optic delay line,” Opt. Eng. 28, 1193–1202(1989).
  10. R. A. Soref, “Fiber grating prism for true time delay beam steering,” Fiber Integr. Opt. 15, 325–333 (1996).
    [CrossRef]
  11. R. D. Esman, Y. Frankel, J. L. Dexter, L. Goldberg, M. G. Parent, D. Stilwell, and D. G. Cooper, “Fiber-optic prism true time delay antenna feed,” IEEE Photon. Technol. Lett. 5, 1347–1349 (1993).
    [CrossRef]
  12. R. A. Minasian, “Photonic signal processing of high-speed signals using fiber gratings,” Opt. Fiber Technol. 6, 91–108(2000).
    [CrossRef]
  13. J. Capmany, D. Pastor, and B. Ortega, “New and flexible fiber-optic delay-line filters using chirped Bragg gratings and laser arrays,” IEEE Trans. Microwave Theor. Tech. 47, 1321–1326 (1999).
    [CrossRef]
  14. V. Polo, B. Vidal, J. L. Corral, and J. Marti, “Novel tunable photonic microwave filter based on laser arrays and N×N AWG-based delay lines,” IEEE Photon. Technol. Lett. 15, 584–586 (2003).
    [CrossRef]
  15. N. A. Riza, M. A. Arain, and S. A. Khan, “Hybrid analog-digital variable fiber-optic delay line,” J. Lightwave Technol. 22, 619–624 (2004).
    [CrossRef]
  16. N. A. Riza, “Switchless hybrid analog-digital variable optical delay line for radio frequency signal processing,” Opt. Eng. 48, 035005 (2009).
    [CrossRef]
  17. P. Q. Thai, A. Alphones, and D. R. Lim, “Limitations by group delay ripple on optical beam-forming with chirped fiber grating,” J. Lightwave Technol. 27, 5619–5625 (2009).
    [CrossRef]
  18. B. M. Jung and J. P. Yao, “A two-dimensional optical true time-delay beamformer consisting of a fiber Bragg grating prism and switch-based fiber-optic delay lines,” IEEE Photon. Technol. Lett. 21, 627–629 (2009).
    [CrossRef]
  19. G. Lenz, B. J. Eggleton, C. K. Madsen, and R. E. Slusher, “Optical delay lines based on optical filters,” IEEE J. Quantum Electron. 37, 525–532 (2001).
    [CrossRef]
  20. A. Meijerink, C. G. H. Roeloffzen, R. Meijerink, L. Zhuang, D. A. I. Marpaung, M. J. Bentum, M. Burla, J. Verpoorte, P. Jorna, A. Hulzinga, and W. van Etten, “Novel ring resonator-based integrated photonic beamformer for broadband phased array receive antennas—part I: design and performance analysis,” J. Lightwave Technol. 28, 3–18 (2010).
    [CrossRef]
  21. G. J. Tearney, B. E. Bouma, and J. G. Fujimoto, “High-speed phase- and group-delay scanning with a grating-based phase control delay line,” Opt. Lett. 22, 1811–1813 (1997).
    [CrossRef]
  22. “OZ optics,” Canada ODL-100, ODL-200 Datasheets (2010).
  23. S. Yuan and N. A. Riza, “General formula for coupling loss characterization of single mode fiber collimators by use of gradient-index rod lenses,” Appl. Opt. 38, 3214–3222 (1999).
    [CrossRef]
  24. S. Yuan and N. A. Riza, “General formula for coupling loss characterization of single mode fiber collimators by use of gradient-index rod lenses: errata,” Appl. Opt. 38, 6292 (1999).
    [CrossRef]
  25. M. van Buren and N. A. Riza, “Foundations for low-loss fiber gradient-index lens pair coupling with the self-imaging mechanism,” Appl. Opt. 42, 550–565 (2003).
    [CrossRef] [PubMed]
  26. N. A. Riza and M. C. DeJule, “Three terminal adaptive nematic liquid crystal lens device,” Opt. Lett. 19, 1013–1015 (1994).
    [CrossRef] [PubMed]
  27. N. A. Riza and M. C. DeJule, “A novel programmable liquid crystal lens device for adaptive optical interconnect and beamforming applications,” presented at the International Conference on Optical Computing, Edinburgh, Scotland, 22–25 August 1994.
  28. N. A. Riza and S. Yuan, “Demonstration of a liquid crystal adaptive alignment tweeker for high speed infrared band fiber-fed freespace systems,” Opt. Eng. 37, 1876–1880 (1998).
    [CrossRef]
  29. S. A. Reza and N. A. Riza, “A liquid lens-based broadband variable fiber optical attenuator,” Opt. Commun. 282, 1298–1303(2009).
    [CrossRef]
  30. S. A. Reza and N. A. Riza, “High dynamic range variable fiber optical attenuator using digital micromirrors and opto-fluidics,” IEEE Photon. Technol. Lett. 21, 845–847 (2009).
    [CrossRef]
  31. N. A. Riza and P. J. Marraccini, “Broadband 2×2 free-space optical switch using electrically controlled liquid lenses,” Opt. Commun. 283, 1711–1714 (2010).
    [CrossRef]
  32. N. A. Riza and S. A. Reza, “Non-contact distance sensor using spatial signal processing,” Opt. Lett. 34, 434–436 (2009).
    [CrossRef] [PubMed]
  33. M. Sheikh and N. A. Riza, “Motion-free hybrid design laser beam propagation analyzer using a digital micro-mirror device and a variable focus liquid lens,” Appl. Opt. 49, D6–D11 (2010).
    [CrossRef] [PubMed]
  34. N. A. Riza and S. A. Reza, “Smart agile lens remote optical sensor for three-dimensional object shape measurements,” Appl. Opt. 49, 1139–1150 (2010).
    [CrossRef] [PubMed]
  35. S. A. Reza and N. A. Riza, “Agile lensing-based non-contact liquid level optical sensor for extreme environments,” Opt. Commun. 283, 3391–3397 (2010).
    [CrossRef]
  36. H. Kogelnik and T. Li, “Laser beams and resonators,” Appl. Opt. 5, 1550–1567 (1966).
    [CrossRef] [PubMed]
  37. Piezo actuators, PI Catalog, 2010 (www.pi-usa.us).
  38. T.-R.Hsu, ed., MEMS Packaging (INSPEC, IEE, 2004).
    [CrossRef]
  39. N. A. Riza and F. N. Ghauri, “High resolution tunable microwave filter using hybrid analog-digital controls via an acousto-optic tunable filter and digital micromirror device,” J. Lightwave Technol. 26, 3056–3061 (2008).
    [CrossRef]

2010 (5)

2009 (7)

N. A. Riza and S. A. Reza, “Non-contact distance sensor using spatial signal processing,” Opt. Lett. 34, 434–436 (2009).
[CrossRef] [PubMed]

J. P. Yao, “Microwave photonics,” J. Lightwave Technol. 27, 314–335 (2009).
[CrossRef]

P. Q. Thai, A. Alphones, and D. R. Lim, “Limitations by group delay ripple on optical beam-forming with chirped fiber grating,” J. Lightwave Technol. 27, 5619–5625 (2009).
[CrossRef]

B. M. Jung and J. P. Yao, “A two-dimensional optical true time-delay beamformer consisting of a fiber Bragg grating prism and switch-based fiber-optic delay lines,” IEEE Photon. Technol. Lett. 21, 627–629 (2009).
[CrossRef]

N. A. Riza, “Switchless hybrid analog-digital variable optical delay line for radio frequency signal processing,” Opt. Eng. 48, 035005 (2009).
[CrossRef]

S. A. Reza and N. A. Riza, “A liquid lens-based broadband variable fiber optical attenuator,” Opt. Commun. 282, 1298–1303(2009).
[CrossRef]

S. A. Reza and N. A. Riza, “High dynamic range variable fiber optical attenuator using digital micromirrors and opto-fluidics,” IEEE Photon. Technol. Lett. 21, 845–847 (2009).
[CrossRef]

2008 (1)

2007 (1)

J. Capmany and D. Novak, “Microwave photonics combines two worlds,” Nat. Photon. 1, 319–330 (2007).
[CrossRef]

2006 (2)

A. J. Seeds and K. J. Williams, “Microwave photonics,” J. Lightwave Technol. 24, 4628–4641 (2006).
[CrossRef]

R. A. Minasian, “Photonic signal processing of microwave signals,” IEEE Trans. Microwave Theory Tech. 54, 832–846(2006).
[CrossRef]

2004 (1)

2003 (2)

M. van Buren and N. A. Riza, “Foundations for low-loss fiber gradient-index lens pair coupling with the self-imaging mechanism,” Appl. Opt. 42, 550–565 (2003).
[CrossRef] [PubMed]

V. Polo, B. Vidal, J. L. Corral, and J. Marti, “Novel tunable photonic microwave filter based on laser arrays and N×N AWG-based delay lines,” IEEE Photon. Technol. Lett. 15, 584–586 (2003).
[CrossRef]

2001 (1)

G. Lenz, B. J. Eggleton, C. K. Madsen, and R. E. Slusher, “Optical delay lines based on optical filters,” IEEE J. Quantum Electron. 37, 525–532 (2001).
[CrossRef]

2000 (2)

R. A. Minasian, “Photonic signal processing of high-speed signals using fiber gratings,” Opt. Fiber Technol. 6, 91–108(2000).
[CrossRef]

N. Madamopoulos and N. A. Riza, “Demonstration of an all-digital 7bit 33-channel photonic delay line for phased-array radars,” Appl. Opt. 39, 4168–4181 (2000).
[CrossRef]

1999 (3)

1998 (1)

N. A. Riza and S. Yuan, “Demonstration of a liquid crystal adaptive alignment tweeker for high speed infrared band fiber-fed freespace systems,” Opt. Eng. 37, 1876–1880 (1998).
[CrossRef]

1997 (1)

1996 (2)

1994 (2)

X. S. Yao and L. Maleki, “A novel 2-D programmable photonic time delay device for millimeter wave signal processing applications,” IEEE Photon. Technol. Lett. 6, 1463–1465(1994).
[CrossRef]

N. A. Riza and M. C. DeJule, “Three terminal adaptive nematic liquid crystal lens device,” Opt. Lett. 19, 1013–1015 (1994).
[CrossRef] [PubMed]

1993 (1)

R. D. Esman, Y. Frankel, J. L. Dexter, L. Goldberg, M. G. Parent, D. Stilwell, and D. G. Cooper, “Fiber-optic prism true time delay antenna feed,” IEEE Photon. Technol. Lett. 5, 1347–1349 (1993).
[CrossRef]

1989 (1)

A. P. Goutzoulis, D. K. Davies, and J. M. Zomp, “Prototype binary fiber optic delay line,” Opt. Eng. 28, 1193–1202(1989).

1966 (1)

Alphones, A.

Antoine, J.

Arain, M. A.

Bentum, M. J.

Bouma, B. E.

Burla, M.

Capmany, J.

J. Capmany and D. Novak, “Microwave photonics combines two worlds,” Nat. Photon. 1, 319–330 (2007).
[CrossRef]

J. Capmany, D. Pastor, and B. Ortega, “New and flexible fiber-optic delay-line filters using chirped Bragg gratings and laser arrays,” IEEE Trans. Microwave Theor. Tech. 47, 1321–1326 (1999).
[CrossRef]

Cooper, D. G.

R. D. Esman, Y. Frankel, J. L. Dexter, L. Goldberg, M. G. Parent, D. Stilwell, and D. G. Cooper, “Fiber-optic prism true time delay antenna feed,” IEEE Photon. Technol. Lett. 5, 1347–1349 (1993).
[CrossRef]

Corral, J. L.

V. Polo, B. Vidal, J. L. Corral, and J. Marti, “Novel tunable photonic microwave filter based on laser arrays and N×N AWG-based delay lines,” IEEE Photon. Technol. Lett. 15, 584–586 (2003).
[CrossRef]

Davies, D. K.

A. P. Goutzoulis, D. K. Davies, and J. M. Zomp, “Prototype binary fiber optic delay line,” Opt. Eng. 28, 1193–1202(1989).

DeJule, M. C.

N. A. Riza and M. C. DeJule, “Three terminal adaptive nematic liquid crystal lens device,” Opt. Lett. 19, 1013–1015 (1994).
[CrossRef] [PubMed]

N. A. Riza and M. C. DeJule, “A novel programmable liquid crystal lens device for adaptive optical interconnect and beamforming applications,” presented at the International Conference on Optical Computing, Edinburgh, Scotland, 22–25 August 1994.

Dexter, J. L.

R. D. Esman, Y. Frankel, J. L. Dexter, L. Goldberg, M. G. Parent, D. Stilwell, and D. G. Cooper, “Fiber-optic prism true time delay antenna feed,” IEEE Photon. Technol. Lett. 5, 1347–1349 (1993).
[CrossRef]

Dolfi, D.

Eggleton, B. J.

G. Lenz, B. J. Eggleton, C. K. Madsen, and R. E. Slusher, “Optical delay lines based on optical filters,” IEEE J. Quantum Electron. 37, 525–532 (2001).
[CrossRef]

Esman, R. D.

R. D. Esman, Y. Frankel, J. L. Dexter, L. Goldberg, M. G. Parent, D. Stilwell, and D. G. Cooper, “Fiber-optic prism true time delay antenna feed,” IEEE Photon. Technol. Lett. 5, 1347–1349 (1993).
[CrossRef]

Frankel, Y.

R. D. Esman, Y. Frankel, J. L. Dexter, L. Goldberg, M. G. Parent, D. Stilwell, and D. G. Cooper, “Fiber-optic prism true time delay antenna feed,” IEEE Photon. Technol. Lett. 5, 1347–1349 (1993).
[CrossRef]

Fujimoto, J. G.

Ghauri, F. N.

Goldberg, L.

R. D. Esman, Y. Frankel, J. L. Dexter, L. Goldberg, M. G. Parent, D. Stilwell, and D. G. Cooper, “Fiber-optic prism true time delay antenna feed,” IEEE Photon. Technol. Lett. 5, 1347–1349 (1993).
[CrossRef]

Goutzoulis, A. P.

A. P. Goutzoulis, D. K. Davies, and J. M. Zomp, “Prototype binary fiber optic delay line,” Opt. Eng. 28, 1193–1202(1989).

Granger, P.

Huignard, J. P.

Hulzinga, A.

Joffre, P.

Jorna, P.

Jung, B. M.

B. M. Jung and J. P. Yao, “A two-dimensional optical true time-delay beamformer consisting of a fiber Bragg grating prism and switch-based fiber-optic delay lines,” IEEE Photon. Technol. Lett. 21, 627–629 (2009).
[CrossRef]

Khan, S. A.

Kogelnik, H.

Lenz, G.

G. Lenz, B. J. Eggleton, C. K. Madsen, and R. E. Slusher, “Optical delay lines based on optical filters,” IEEE J. Quantum Electron. 37, 525–532 (2001).
[CrossRef]

Li, T.

Lim, D. R.

Madamopoulos, N.

Madsen, C. K.

G. Lenz, B. J. Eggleton, C. K. Madsen, and R. E. Slusher, “Optical delay lines based on optical filters,” IEEE J. Quantum Electron. 37, 525–532 (2001).
[CrossRef]

Maleki, L.

X. S. Yao and L. Maleki, “A novel 2-D programmable photonic time delay device for millimeter wave signal processing applications,” IEEE Photon. Technol. Lett. 6, 1463–1465(1994).
[CrossRef]

Marpaung, D. A. I.

Marraccini, P. J.

N. A. Riza and P. J. Marraccini, “Broadband 2×2 free-space optical switch using electrically controlled liquid lenses,” Opt. Commun. 283, 1711–1714 (2010).
[CrossRef]

Marti, J.

V. Polo, B. Vidal, J. L. Corral, and J. Marti, “Novel tunable photonic microwave filter based on laser arrays and N×N AWG-based delay lines,” IEEE Photon. Technol. Lett. 15, 584–586 (2003).
[CrossRef]

Meijerink, A.

Meijerink, R.

Minasian, R. A.

R. A. Minasian, “Photonic signal processing of microwave signals,” IEEE Trans. Microwave Theory Tech. 54, 832–846(2006).
[CrossRef]

R. A. Minasian, “Photonic signal processing of high-speed signals using fiber gratings,” Opt. Fiber Technol. 6, 91–108(2000).
[CrossRef]

Novak, D.

J. Capmany and D. Novak, “Microwave photonics combines two worlds,” Nat. Photon. 1, 319–330 (2007).
[CrossRef]

Ortega, B.

J. Capmany, D. Pastor, and B. Ortega, “New and flexible fiber-optic delay-line filters using chirped Bragg gratings and laser arrays,” IEEE Trans. Microwave Theor. Tech. 47, 1321–1326 (1999).
[CrossRef]

Parent, M. G.

R. D. Esman, Y. Frankel, J. L. Dexter, L. Goldberg, M. G. Parent, D. Stilwell, and D. G. Cooper, “Fiber-optic prism true time delay antenna feed,” IEEE Photon. Technol. Lett. 5, 1347–1349 (1993).
[CrossRef]

Pastor, D.

J. Capmany, D. Pastor, and B. Ortega, “New and flexible fiber-optic delay-line filters using chirped Bragg gratings and laser arrays,” IEEE Trans. Microwave Theor. Tech. 47, 1321–1326 (1999).
[CrossRef]

Philippet, D.

Polo, V.

V. Polo, B. Vidal, J. L. Corral, and J. Marti, “Novel tunable photonic microwave filter based on laser arrays and N×N AWG-based delay lines,” IEEE Photon. Technol. Lett. 15, 584–586 (2003).
[CrossRef]

Reza, S. A.

S. A. Reza and N. A. Riza, “Agile lensing-based non-contact liquid level optical sensor for extreme environments,” Opt. Commun. 283, 3391–3397 (2010).
[CrossRef]

N. A. Riza and S. A. Reza, “Smart agile lens remote optical sensor for three-dimensional object shape measurements,” Appl. Opt. 49, 1139–1150 (2010).
[CrossRef] [PubMed]

S. A. Reza and N. A. Riza, “High dynamic range variable fiber optical attenuator using digital micromirrors and opto-fluidics,” IEEE Photon. Technol. Lett. 21, 845–847 (2009).
[CrossRef]

S. A. Reza and N. A. Riza, “A liquid lens-based broadband variable fiber optical attenuator,” Opt. Commun. 282, 1298–1303(2009).
[CrossRef]

N. A. Riza and S. A. Reza, “Non-contact distance sensor using spatial signal processing,” Opt. Lett. 34, 434–436 (2009).
[CrossRef] [PubMed]

Riza, N. A.

S. A. Reza and N. A. Riza, “Agile lensing-based non-contact liquid level optical sensor for extreme environments,” Opt. Commun. 283, 3391–3397 (2010).
[CrossRef]

N. A. Riza and P. J. Marraccini, “Broadband 2×2 free-space optical switch using electrically controlled liquid lenses,” Opt. Commun. 283, 1711–1714 (2010).
[CrossRef]

M. Sheikh and N. A. Riza, “Motion-free hybrid design laser beam propagation analyzer using a digital micro-mirror device and a variable focus liquid lens,” Appl. Opt. 49, D6–D11 (2010).
[CrossRef] [PubMed]

N. A. Riza and S. A. Reza, “Smart agile lens remote optical sensor for three-dimensional object shape measurements,” Appl. Opt. 49, 1139–1150 (2010).
[CrossRef] [PubMed]

N. A. Riza, “Switchless hybrid analog-digital variable optical delay line for radio frequency signal processing,” Opt. Eng. 48, 035005 (2009).
[CrossRef]

S. A. Reza and N. A. Riza, “High dynamic range variable fiber optical attenuator using digital micromirrors and opto-fluidics,” IEEE Photon. Technol. Lett. 21, 845–847 (2009).
[CrossRef]

S. A. Reza and N. A. Riza, “A liquid lens-based broadband variable fiber optical attenuator,” Opt. Commun. 282, 1298–1303(2009).
[CrossRef]

N. A. Riza and S. A. Reza, “Non-contact distance sensor using spatial signal processing,” Opt. Lett. 34, 434–436 (2009).
[CrossRef] [PubMed]

N. A. Riza and F. N. Ghauri, “High resolution tunable microwave filter using hybrid analog-digital controls via an acousto-optic tunable filter and digital micromirror device,” J. Lightwave Technol. 26, 3056–3061 (2008).
[CrossRef]

N. A. Riza, M. A. Arain, and S. A. Khan, “Hybrid analog-digital variable fiber-optic delay line,” J. Lightwave Technol. 22, 619–624 (2004).
[CrossRef]

M. van Buren and N. A. Riza, “Foundations for low-loss fiber gradient-index lens pair coupling with the self-imaging mechanism,” Appl. Opt. 42, 550–565 (2003).
[CrossRef] [PubMed]

N. Madamopoulos and N. A. Riza, “Demonstration of an all-digital 7bit 33-channel photonic delay line for phased-array radars,” Appl. Opt. 39, 4168–4181 (2000).
[CrossRef]

S. Yuan and N. A. Riza, “General formula for coupling loss characterization of single mode fiber collimators by use of gradient-index rod lenses,” Appl. Opt. 38, 3214–3222 (1999).
[CrossRef]

S. Yuan and N. A. Riza, “General formula for coupling loss characterization of single mode fiber collimators by use of gradient-index rod lenses: errata,” Appl. Opt. 38, 6292 (1999).
[CrossRef]

N. A. Riza and S. Yuan, “Demonstration of a liquid crystal adaptive alignment tweeker for high speed infrared band fiber-fed freespace systems,” Opt. Eng. 37, 1876–1880 (1998).
[CrossRef]

N. A. Riza and M. C. DeJule, “Three terminal adaptive nematic liquid crystal lens device,” Opt. Lett. 19, 1013–1015 (1994).
[CrossRef] [PubMed]

N. A. Riza and M. C. DeJule, “A novel programmable liquid crystal lens device for adaptive optical interconnect and beamforming applications,” presented at the International Conference on Optical Computing, Edinburgh, Scotland, 22–25 August 1994.

Roeloffzen, C. G. H.

Seeds, A. J.

Sheikh, M.

Slusher, R. E.

G. Lenz, B. J. Eggleton, C. K. Madsen, and R. E. Slusher, “Optical delay lines based on optical filters,” IEEE J. Quantum Electron. 37, 525–532 (2001).
[CrossRef]

Soref, R. A.

R. A. Soref, “Fiber grating prism for true time delay beam steering,” Fiber Integr. Opt. 15, 325–333 (1996).
[CrossRef]

Stilwell, D.

R. D. Esman, Y. Frankel, J. L. Dexter, L. Goldberg, M. G. Parent, D. Stilwell, and D. G. Cooper, “Fiber-optic prism true time delay antenna feed,” IEEE Photon. Technol. Lett. 5, 1347–1349 (1993).
[CrossRef]

Tearney, G. J.

Thai, P. Q.

van Buren, M.

van Etten, W.

Verpoorte, J.

Vidal, B.

V. Polo, B. Vidal, J. L. Corral, and J. Marti, “Novel tunable photonic microwave filter based on laser arrays and N×N AWG-based delay lines,” IEEE Photon. Technol. Lett. 15, 584–586 (2003).
[CrossRef]

Williams, K. J.

Yao, J. P.

B. M. Jung and J. P. Yao, “A two-dimensional optical true time-delay beamformer consisting of a fiber Bragg grating prism and switch-based fiber-optic delay lines,” IEEE Photon. Technol. Lett. 21, 627–629 (2009).
[CrossRef]

J. P. Yao, “Microwave photonics,” J. Lightwave Technol. 27, 314–335 (2009).
[CrossRef]

Yao, X. S.

X. S. Yao and L. Maleki, “A novel 2-D programmable photonic time delay device for millimeter wave signal processing applications,” IEEE Photon. Technol. Lett. 6, 1463–1465(1994).
[CrossRef]

Yuan, S.

Zhuang, L.

Zomp, J. M.

A. P. Goutzoulis, D. K. Davies, and J. M. Zomp, “Prototype binary fiber optic delay line,” Opt. Eng. 28, 1193–1202(1989).

Appl. Opt. (8)

Fiber Integr. Opt. (1)

R. A. Soref, “Fiber grating prism for true time delay beam steering,” Fiber Integr. Opt. 15, 325–333 (1996).
[CrossRef]

IEEE J. Quantum Electron. (1)

G. Lenz, B. J. Eggleton, C. K. Madsen, and R. E. Slusher, “Optical delay lines based on optical filters,” IEEE J. Quantum Electron. 37, 525–532 (2001).
[CrossRef]

IEEE Photon. Technol. Lett. (5)

V. Polo, B. Vidal, J. L. Corral, and J. Marti, “Novel tunable photonic microwave filter based on laser arrays and N×N AWG-based delay lines,” IEEE Photon. Technol. Lett. 15, 584–586 (2003).
[CrossRef]

B. M. Jung and J. P. Yao, “A two-dimensional optical true time-delay beamformer consisting of a fiber Bragg grating prism and switch-based fiber-optic delay lines,” IEEE Photon. Technol. Lett. 21, 627–629 (2009).
[CrossRef]

R. D. Esman, Y. Frankel, J. L. Dexter, L. Goldberg, M. G. Parent, D. Stilwell, and D. G. Cooper, “Fiber-optic prism true time delay antenna feed,” IEEE Photon. Technol. Lett. 5, 1347–1349 (1993).
[CrossRef]

X. S. Yao and L. Maleki, “A novel 2-D programmable photonic time delay device for millimeter wave signal processing applications,” IEEE Photon. Technol. Lett. 6, 1463–1465(1994).
[CrossRef]

S. A. Reza and N. A. Riza, “High dynamic range variable fiber optical attenuator using digital micromirrors and opto-fluidics,” IEEE Photon. Technol. Lett. 21, 845–847 (2009).
[CrossRef]

IEEE Trans. Microwave Theor. Tech. (1)

J. Capmany, D. Pastor, and B. Ortega, “New and flexible fiber-optic delay-line filters using chirped Bragg gratings and laser arrays,” IEEE Trans. Microwave Theor. Tech. 47, 1321–1326 (1999).
[CrossRef]

IEEE Trans. Microwave Theory Tech. (1)

R. A. Minasian, “Photonic signal processing of microwave signals,” IEEE Trans. Microwave Theory Tech. 54, 832–846(2006).
[CrossRef]

J. Lightwave Technol. (6)

Nat. Photon. (1)

J. Capmany and D. Novak, “Microwave photonics combines two worlds,” Nat. Photon. 1, 319–330 (2007).
[CrossRef]

Opt. Commun. (3)

S. A. Reza and N. A. Riza, “A liquid lens-based broadband variable fiber optical attenuator,” Opt. Commun. 282, 1298–1303(2009).
[CrossRef]

N. A. Riza and P. J. Marraccini, “Broadband 2×2 free-space optical switch using electrically controlled liquid lenses,” Opt. Commun. 283, 1711–1714 (2010).
[CrossRef]

S. A. Reza and N. A. Riza, “Agile lensing-based non-contact liquid level optical sensor for extreme environments,” Opt. Commun. 283, 3391–3397 (2010).
[CrossRef]

Opt. Eng. (3)

N. A. Riza and S. Yuan, “Demonstration of a liquid crystal adaptive alignment tweeker for high speed infrared band fiber-fed freespace systems,” Opt. Eng. 37, 1876–1880 (1998).
[CrossRef]

N. A. Riza, “Switchless hybrid analog-digital variable optical delay line for radio frequency signal processing,” Opt. Eng. 48, 035005 (2009).
[CrossRef]

A. P. Goutzoulis, D. K. Davies, and J. M. Zomp, “Prototype binary fiber optic delay line,” Opt. Eng. 28, 1193–1202(1989).

Opt. Fiber Technol. (1)

R. A. Minasian, “Photonic signal processing of high-speed signals using fiber gratings,” Opt. Fiber Technol. 6, 91–108(2000).
[CrossRef]

Opt. Lett. (3)

Other (5)

Piezo actuators, PI Catalog, 2010 (www.pi-usa.us).

T.-R.Hsu, ed., MEMS Packaging (INSPEC, IEE, 2004).
[CrossRef]

“OZ optics,” Canada ODL-100, ODL-200 Datasheets (2010).

N. A. Riza and M. C. DeJule, “A novel programmable liquid crystal lens device for adaptive optical interconnect and beamforming applications,” presented at the International Conference on Optical Computing, Edinburgh, Scotland, 22–25 August 1994.

N.A.Riza, ed., Selected Papers on Photonic Control Systems for Phased Array Antennas, Vol. MS136 of SPIE Milestone Series (SPIE, 1997).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Proposed optically broadband VPDL using an ECVFL.

Fig. 2
Fig. 2

The top curve shows the maximum optical power processed via the ECVFL-based VPDL for the specified mirror (delay) location with the ECVFL set at F = F ideal for ideal low-loss SMF-lens coupling. The bottom curve is produced when the ECVFL focal length is set to F = 0 (i.e., unaided beam control) for the given mirror/delay location, indicating the > 10 dB higher coupling loss in the VPDL. (a) At the zero delay mirror position, a 11.21 dB improvement, (b) with a 5 cm delay, a 12.52 dB improvement, and (c) with a 10 cm delay, a 13.73 dB improvement in optical coupling achieved over the ECVFL state F = 0 .

Fig. 3
Fig. 3

Oscilloscope traces showing a 500 MHz RF signal delayed via the proposed ECVFL-based VPDL with relative delays of (a) 1 / 3 ns , (b) 2 / 3 ns , and (c) 1 ns . Bottom trace is the reference RF signal. Time scale is 0.5 ns / div .

Fig. 4
Fig. 4

Broadband optical response of the ECVFL-based VPDL with mirror position at D = 15 cm and F = F ideal .

Fig. 5
Fig. 5

Proposed optically broadband VPDL using an a deformable mirror (DM) that acts both as a moving mirror for time-delay control and a reflective ECVFL for beam focus controls.

Fig. 6
Fig. 6

RF network analyzer response of the demonstrated two-tap RF notch filter using the proposed VPDL as one arm of the tap delay. (a) Shown is RF notch frequency tuning (scale of 2 MHz / div ) from 854.04 to 855.19 MHz via fine mirror motion of 13 mm in the VPDL. (b) Shown is a 22.6 dB change in notch depth at 855.19 MHz (scale of 1 MHz / div ) implemented by change of ECVFL focal length that leads to the required optimal RF tap signal attenuation control.

Equations (14)

Equations on this page are rendered with MathJax. Learn more.

Δ T = 2 D 1 v Air ,
E ( r , z ) exp ( j k r 2 / 2 q ( z ) ) ,
1 q ( z ) = 1 R ( z ) j λ π w 2 ( z ) .
q 1 = π w Min 1 2 λ j .
q 2 = A q 1 + B C q 1 + D .
[ A B C D ] = [ 1 d 2 0 1 ] × [ 1 0 1 F 1 ] × [ 1 d 1 0 1 ] ,
[ A B C D ] = [ 1 d 2 0 1 ] × [ 1 d 1 1 F 1 d 1 F ] ,
[ A B C D ] = [ 1 d 2 0 1 ] × [ M 1 M 2 M 3 M 4 ] ,
[ A B C D ] = [ M 1 + d 2 M 3 M 2 + d 2 M 4 M 3 M 4 ] ,
1 q 2 = 1 R 2 j λ π w 2 ( d 2 ) = C q 1 + D A q 1 + B .
Re ( 1 q 2 ) = 0.
d 2 = M 2 M 4 M 1 M 3 ( π w Min 1 2 λ ) 2 M 4 2 + M 3 2 ( π w Min 1 2 λ ) 2 .
R = d 2 Ma x d 2 Min ,
R T = 2 ( d 2 Ma x d 2 Min ) v Air .

Metrics