Abstract

Short pulses can induce high nonlinear excitation, and thus they should be favorable for use in multiphoton microscopy. However, the large spectral dispersion can easily destroy the advantages of the ultrashort pulse if there is no compensation. The group delay dispersion (GDD), third-order dispersion, and their effects on the intensity and bandwidth of second-harmonic generation (SHG) signal were analyzed. We found that the prism pair used for compensating the GDD of the two-photon microscope actually introduces significant negative high-order dispersion (HOD), which dramatically narrowed down the two-photon absorption probability for ultrashort pulses. We also investigated the SHG signal after GDD and HOD compensation for different pulse durations. Without HOD compensation, the SHG efficiency dropped significantly for a pulse duration below 20fs. We experimentally compared the SHG and two-photon excited fluorescence (TPEF) signal intensity for 11 fs versus 50fs pulses, a pulse duration close to that commonly used in conventional multiphoton microscopy. The result suggested that after adaptive phase compensation, the 11fs pulse can yield a 3.2- to 6.0-fold TPEF intensity and a 5.1-fold SHG intensity, compared to 50fs pulses.

© 2010 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. Göppert-Mayer, “Über Elementarakte mit zwei Quantensprüngen,” Ann. Phys. 401, 273–294 (1931).
    [Crossref]
  2. W. Peticolas, J. Goldsborough, and K. Rieckhoff, “Double photon excitation in organic crystals,” Phys. Rev. Lett. 10, 43–45 (1963).
    [Crossref]
  3. W. Denk, J. H. Strickler, and W. W. Webb, “Two-photon laser scanning fluorescence microscopy,” Science 248, 73–76 (1990).
    [Crossref] [PubMed]
  4. R. L. Fork, O. E. Martinez, and J. P. Gordon, “Negative dispersion using pairs of prisms,” Opt. Lett. 9, 150–152 (1984).
    [Crossref] [PubMed]
  5. M. Müller, J. Squier, R. Wolleschensky, U. Simon, and G. J. Brakenhoff, “Dispersion pre-compensation of 15 femtosecond optical pulses for high-numerical-aperture objectives,” J. Microsc. 191, 141–150 (1998).
    [Crossref] [PubMed]
  6. A. M. Larson and A. T. Yeh, “Delivery of sub-10fs pulses for nonlinear optical microscopy by polarization-maintaining single mode optical fiber,” Opt. Express 16, 14723–14730 (2008).
    [Crossref] [PubMed]
  7. B. Proctor and F. Wise, “Quartz prism sequence for reduction of cubic phase in a mode-locked Ti:Al2O3 laser,” Opt. Lett. 17, 1295–1297 (1992).
    [Crossref] [PubMed]
  8. R. Sherriff, “Analytic expressions for group-delay dispersion and cubic dispersion in arbitrary prism sequences,” J. Opt. Soc. Am. B 15, 1224–1230 (1998).
    [Crossref]
  9. D. Meshulach and Y. Silberberg, “Coherent quantum control of two-photon transitions by a femtosecond laser pulse,” Nature 396, 239–242 (1998).
    [Crossref]
  10. P. Xi, Y. Andegeko, L. R. Weisel, V. V. Lozovoy, and M. Dantus, “Greater signal, increased depth, and less photobleaching in two-photon microscopy with 10fs pulses,” Opt. Commun. 281, 1841–1849 (2008).
    [Crossref]
  11. R. Fork, C. Cruz, P. Becker, and C. Shank, “Compression of optical pulses to six femtoseconds by using cubic phase compensation,” Opt. Lett. 12, 483–485 (1987).
    [Crossref] [PubMed]
  12. A. M. Larson and A. T. Yeh, “Ex vivo characterization of sub-10fs pulses,” Opt. Lett. 31, 1681–1683 (2006).
    [Crossref] [PubMed]
  13. P. Xi, Y. Andegeko, D. Pestov, V. V. Lovozoy, and M. Dantus, “Two-photon imaging using adaptive phase compensated ultrashort laser pulses,” J. Biomed. Opt. 14, 014002(2009).
    [Crossref] [PubMed]
  14. C. Xu and W. W. Webb, “Measurement of two-photon excitation cross sections of molecular fluorophores with data from 690 to 1050nm,” J. Opt. Soc. Am. B 13, 481–491 (1996).
    [Crossref]
  15. S. Tang, T. B. Krasieva, Z. Chen, G. Tempea, and B. J. Tromberg, “Effect of pulse duration on two-photon excited fluorescence and second harmonic generation in nonlinear optical microscopy,” J. Biomed. Opt. 11, 020501 (2006).
    [Crossref] [PubMed]
  16. S. Pang, A. T. Yeh, C. Wang, and K. E. Meissner, “Beyond the 1/Tp limit: two-photon-excited fluorescence using pulses as short as sub-10fs (journal paper),” J. Biomed. Opt. 14, 054041(2009).
    [Crossref] [PubMed]
  17. X. Liang, W. Hu, and L. Fu, “Pulse compression in two-photon excitation fluorescence microscopy,” Opt. Express 18, 14893–14904 (2010).
    [Crossref] [PubMed]
  18. R. Wolleschensky, T. Feurer, R. Sauerbrey, and U. Simon, “Characterization and optimization of a laser-scanning microscope in the femtosecond regime,” Appl. Phys. B 67, 87–94 (1998).
    [Crossref]
  19. J. B. Guild, C. Xu, and W. W. Webb, “Measurement of group delay dispersion of high numerical aperture objective lenses using two-photon excited fluorescence,” Appl. Opt. 36, 397–401 (1997).
    [Crossref] [PubMed]
  20. A. Diaspro, P. Bianchini, G. Vicidomini, M. Faretta, P. Ramoino, and C. Usai, “Multi-photon excitation microscopy,” BioMed. Eng. OnLine 5, 36 (2006).
    [Crossref] [PubMed]
  21. X. Zhang, High-Repetition Rate Femtosecond Optical Parametric Oscillators Based on KTP and PPLN (University of Marburg, 2002).
  22. V. V. Lozovoy and M. Dantus, “Systematic control of nonlinear optical processes using optimally shaped femtosecond pulses,” Chem. Phys. Chem. 6, 1970–2000 (2005).
    [Crossref] [PubMed]

2010 (1)

2009 (2)

P. Xi, Y. Andegeko, D. Pestov, V. V. Lovozoy, and M. Dantus, “Two-photon imaging using adaptive phase compensated ultrashort laser pulses,” J. Biomed. Opt. 14, 014002(2009).
[Crossref] [PubMed]

S. Pang, A. T. Yeh, C. Wang, and K. E. Meissner, “Beyond the 1/Tp limit: two-photon-excited fluorescence using pulses as short as sub-10fs (journal paper),” J. Biomed. Opt. 14, 054041(2009).
[Crossref] [PubMed]

2008 (2)

P. Xi, Y. Andegeko, L. R. Weisel, V. V. Lozovoy, and M. Dantus, “Greater signal, increased depth, and less photobleaching in two-photon microscopy with 10fs pulses,” Opt. Commun. 281, 1841–1849 (2008).
[Crossref]

A. M. Larson and A. T. Yeh, “Delivery of sub-10fs pulses for nonlinear optical microscopy by polarization-maintaining single mode optical fiber,” Opt. Express 16, 14723–14730 (2008).
[Crossref] [PubMed]

2006 (3)

A. M. Larson and A. T. Yeh, “Ex vivo characterization of sub-10fs pulses,” Opt. Lett. 31, 1681–1683 (2006).
[Crossref] [PubMed]

S. Tang, T. B. Krasieva, Z. Chen, G. Tempea, and B. J. Tromberg, “Effect of pulse duration on two-photon excited fluorescence and second harmonic generation in nonlinear optical microscopy,” J. Biomed. Opt. 11, 020501 (2006).
[Crossref] [PubMed]

A. Diaspro, P. Bianchini, G. Vicidomini, M. Faretta, P. Ramoino, and C. Usai, “Multi-photon excitation microscopy,” BioMed. Eng. OnLine 5, 36 (2006).
[Crossref] [PubMed]

2005 (1)

V. V. Lozovoy and M. Dantus, “Systematic control of nonlinear optical processes using optimally shaped femtosecond pulses,” Chem. Phys. Chem. 6, 1970–2000 (2005).
[Crossref] [PubMed]

1998 (4)

R. Wolleschensky, T. Feurer, R. Sauerbrey, and U. Simon, “Characterization and optimization of a laser-scanning microscope in the femtosecond regime,” Appl. Phys. B 67, 87–94 (1998).
[Crossref]

M. Müller, J. Squier, R. Wolleschensky, U. Simon, and G. J. Brakenhoff, “Dispersion pre-compensation of 15 femtosecond optical pulses for high-numerical-aperture objectives,” J. Microsc. 191, 141–150 (1998).
[Crossref] [PubMed]

R. Sherriff, “Analytic expressions for group-delay dispersion and cubic dispersion in arbitrary prism sequences,” J. Opt. Soc. Am. B 15, 1224–1230 (1998).
[Crossref]

D. Meshulach and Y. Silberberg, “Coherent quantum control of two-photon transitions by a femtosecond laser pulse,” Nature 396, 239–242 (1998).
[Crossref]

1997 (1)

1996 (1)

1992 (1)

1990 (1)

W. Denk, J. H. Strickler, and W. W. Webb, “Two-photon laser scanning fluorescence microscopy,” Science 248, 73–76 (1990).
[Crossref] [PubMed]

1987 (1)

1984 (1)

1963 (1)

W. Peticolas, J. Goldsborough, and K. Rieckhoff, “Double photon excitation in organic crystals,” Phys. Rev. Lett. 10, 43–45 (1963).
[Crossref]

1931 (1)

M. Göppert-Mayer, “Über Elementarakte mit zwei Quantensprüngen,” Ann. Phys. 401, 273–294 (1931).
[Crossref]

Andegeko, Y.

P. Xi, Y. Andegeko, D. Pestov, V. V. Lovozoy, and M. Dantus, “Two-photon imaging using adaptive phase compensated ultrashort laser pulses,” J. Biomed. Opt. 14, 014002(2009).
[Crossref] [PubMed]

P. Xi, Y. Andegeko, L. R. Weisel, V. V. Lozovoy, and M. Dantus, “Greater signal, increased depth, and less photobleaching in two-photon microscopy with 10fs pulses,” Opt. Commun. 281, 1841–1849 (2008).
[Crossref]

Becker, P.

Bianchini, P.

A. Diaspro, P. Bianchini, G. Vicidomini, M. Faretta, P. Ramoino, and C. Usai, “Multi-photon excitation microscopy,” BioMed. Eng. OnLine 5, 36 (2006).
[Crossref] [PubMed]

Brakenhoff, G. J.

M. Müller, J. Squier, R. Wolleschensky, U. Simon, and G. J. Brakenhoff, “Dispersion pre-compensation of 15 femtosecond optical pulses for high-numerical-aperture objectives,” J. Microsc. 191, 141–150 (1998).
[Crossref] [PubMed]

Chen, Z.

S. Tang, T. B. Krasieva, Z. Chen, G. Tempea, and B. J. Tromberg, “Effect of pulse duration on two-photon excited fluorescence and second harmonic generation in nonlinear optical microscopy,” J. Biomed. Opt. 11, 020501 (2006).
[Crossref] [PubMed]

Cruz, C.

Dantus, M.

P. Xi, Y. Andegeko, D. Pestov, V. V. Lovozoy, and M. Dantus, “Two-photon imaging using adaptive phase compensated ultrashort laser pulses,” J. Biomed. Opt. 14, 014002(2009).
[Crossref] [PubMed]

P. Xi, Y. Andegeko, L. R. Weisel, V. V. Lozovoy, and M. Dantus, “Greater signal, increased depth, and less photobleaching in two-photon microscopy with 10fs pulses,” Opt. Commun. 281, 1841–1849 (2008).
[Crossref]

V. V. Lozovoy and M. Dantus, “Systematic control of nonlinear optical processes using optimally shaped femtosecond pulses,” Chem. Phys. Chem. 6, 1970–2000 (2005).
[Crossref] [PubMed]

Denk, W.

W. Denk, J. H. Strickler, and W. W. Webb, “Two-photon laser scanning fluorescence microscopy,” Science 248, 73–76 (1990).
[Crossref] [PubMed]

Diaspro, A.

A. Diaspro, P. Bianchini, G. Vicidomini, M. Faretta, P. Ramoino, and C. Usai, “Multi-photon excitation microscopy,” BioMed. Eng. OnLine 5, 36 (2006).
[Crossref] [PubMed]

Faretta, M.

A. Diaspro, P. Bianchini, G. Vicidomini, M. Faretta, P. Ramoino, and C. Usai, “Multi-photon excitation microscopy,” BioMed. Eng. OnLine 5, 36 (2006).
[Crossref] [PubMed]

Feurer, T.

R. Wolleschensky, T. Feurer, R. Sauerbrey, and U. Simon, “Characterization and optimization of a laser-scanning microscope in the femtosecond regime,” Appl. Phys. B 67, 87–94 (1998).
[Crossref]

Fork, R.

Fork, R. L.

Fu, L.

Goldsborough, J.

W. Peticolas, J. Goldsborough, and K. Rieckhoff, “Double photon excitation in organic crystals,” Phys. Rev. Lett. 10, 43–45 (1963).
[Crossref]

Göppert-Mayer, M.

M. Göppert-Mayer, “Über Elementarakte mit zwei Quantensprüngen,” Ann. Phys. 401, 273–294 (1931).
[Crossref]

Gordon, J. P.

Guild, J. B.

Hu, W.

Krasieva, T. B.

S. Tang, T. B. Krasieva, Z. Chen, G. Tempea, and B. J. Tromberg, “Effect of pulse duration on two-photon excited fluorescence and second harmonic generation in nonlinear optical microscopy,” J. Biomed. Opt. 11, 020501 (2006).
[Crossref] [PubMed]

Larson, A. M.

Liang, X.

Lovozoy, V. V.

P. Xi, Y. Andegeko, D. Pestov, V. V. Lovozoy, and M. Dantus, “Two-photon imaging using adaptive phase compensated ultrashort laser pulses,” J. Biomed. Opt. 14, 014002(2009).
[Crossref] [PubMed]

Lozovoy, V. V.

P. Xi, Y. Andegeko, L. R. Weisel, V. V. Lozovoy, and M. Dantus, “Greater signal, increased depth, and less photobleaching in two-photon microscopy with 10fs pulses,” Opt. Commun. 281, 1841–1849 (2008).
[Crossref]

V. V. Lozovoy and M. Dantus, “Systematic control of nonlinear optical processes using optimally shaped femtosecond pulses,” Chem. Phys. Chem. 6, 1970–2000 (2005).
[Crossref] [PubMed]

Martinez, O. E.

Meissner, K. E.

S. Pang, A. T. Yeh, C. Wang, and K. E. Meissner, “Beyond the 1/Tp limit: two-photon-excited fluorescence using pulses as short as sub-10fs (journal paper),” J. Biomed. Opt. 14, 054041(2009).
[Crossref] [PubMed]

Meshulach, D.

D. Meshulach and Y. Silberberg, “Coherent quantum control of two-photon transitions by a femtosecond laser pulse,” Nature 396, 239–242 (1998).
[Crossref]

Müller, M.

M. Müller, J. Squier, R. Wolleschensky, U. Simon, and G. J. Brakenhoff, “Dispersion pre-compensation of 15 femtosecond optical pulses for high-numerical-aperture objectives,” J. Microsc. 191, 141–150 (1998).
[Crossref] [PubMed]

Pang, S.

S. Pang, A. T. Yeh, C. Wang, and K. E. Meissner, “Beyond the 1/Tp limit: two-photon-excited fluorescence using pulses as short as sub-10fs (journal paper),” J. Biomed. Opt. 14, 054041(2009).
[Crossref] [PubMed]

Pestov, D.

P. Xi, Y. Andegeko, D. Pestov, V. V. Lovozoy, and M. Dantus, “Two-photon imaging using adaptive phase compensated ultrashort laser pulses,” J. Biomed. Opt. 14, 014002(2009).
[Crossref] [PubMed]

Peticolas, W.

W. Peticolas, J. Goldsborough, and K. Rieckhoff, “Double photon excitation in organic crystals,” Phys. Rev. Lett. 10, 43–45 (1963).
[Crossref]

Proctor, B.

Ramoino, P.

A. Diaspro, P. Bianchini, G. Vicidomini, M. Faretta, P. Ramoino, and C. Usai, “Multi-photon excitation microscopy,” BioMed. Eng. OnLine 5, 36 (2006).
[Crossref] [PubMed]

Rieckhoff, K.

W. Peticolas, J. Goldsborough, and K. Rieckhoff, “Double photon excitation in organic crystals,” Phys. Rev. Lett. 10, 43–45 (1963).
[Crossref]

Sauerbrey, R.

R. Wolleschensky, T. Feurer, R. Sauerbrey, and U. Simon, “Characterization and optimization of a laser-scanning microscope in the femtosecond regime,” Appl. Phys. B 67, 87–94 (1998).
[Crossref]

Shank, C.

Sherriff, R.

Silberberg, Y.

D. Meshulach and Y. Silberberg, “Coherent quantum control of two-photon transitions by a femtosecond laser pulse,” Nature 396, 239–242 (1998).
[Crossref]

Simon, U.

M. Müller, J. Squier, R. Wolleschensky, U. Simon, and G. J. Brakenhoff, “Dispersion pre-compensation of 15 femtosecond optical pulses for high-numerical-aperture objectives,” J. Microsc. 191, 141–150 (1998).
[Crossref] [PubMed]

R. Wolleschensky, T. Feurer, R. Sauerbrey, and U. Simon, “Characterization and optimization of a laser-scanning microscope in the femtosecond regime,” Appl. Phys. B 67, 87–94 (1998).
[Crossref]

Squier, J.

M. Müller, J. Squier, R. Wolleschensky, U. Simon, and G. J. Brakenhoff, “Dispersion pre-compensation of 15 femtosecond optical pulses for high-numerical-aperture objectives,” J. Microsc. 191, 141–150 (1998).
[Crossref] [PubMed]

Strickler, J. H.

W. Denk, J. H. Strickler, and W. W. Webb, “Two-photon laser scanning fluorescence microscopy,” Science 248, 73–76 (1990).
[Crossref] [PubMed]

Tang, S.

S. Tang, T. B. Krasieva, Z. Chen, G. Tempea, and B. J. Tromberg, “Effect of pulse duration on two-photon excited fluorescence and second harmonic generation in nonlinear optical microscopy,” J. Biomed. Opt. 11, 020501 (2006).
[Crossref] [PubMed]

Tempea, G.

S. Tang, T. B. Krasieva, Z. Chen, G. Tempea, and B. J. Tromberg, “Effect of pulse duration on two-photon excited fluorescence and second harmonic generation in nonlinear optical microscopy,” J. Biomed. Opt. 11, 020501 (2006).
[Crossref] [PubMed]

Tromberg, B. J.

S. Tang, T. B. Krasieva, Z. Chen, G. Tempea, and B. J. Tromberg, “Effect of pulse duration on two-photon excited fluorescence and second harmonic generation in nonlinear optical microscopy,” J. Biomed. Opt. 11, 020501 (2006).
[Crossref] [PubMed]

Usai, C.

A. Diaspro, P. Bianchini, G. Vicidomini, M. Faretta, P. Ramoino, and C. Usai, “Multi-photon excitation microscopy,” BioMed. Eng. OnLine 5, 36 (2006).
[Crossref] [PubMed]

Vicidomini, G.

A. Diaspro, P. Bianchini, G. Vicidomini, M. Faretta, P. Ramoino, and C. Usai, “Multi-photon excitation microscopy,” BioMed. Eng. OnLine 5, 36 (2006).
[Crossref] [PubMed]

Wang, C.

S. Pang, A. T. Yeh, C. Wang, and K. E. Meissner, “Beyond the 1/Tp limit: two-photon-excited fluorescence using pulses as short as sub-10fs (journal paper),” J. Biomed. Opt. 14, 054041(2009).
[Crossref] [PubMed]

Webb, W. W.

Weisel, L. R.

P. Xi, Y. Andegeko, L. R. Weisel, V. V. Lozovoy, and M. Dantus, “Greater signal, increased depth, and less photobleaching in two-photon microscopy with 10fs pulses,” Opt. Commun. 281, 1841–1849 (2008).
[Crossref]

Wise, F.

Wolleschensky, R.

R. Wolleschensky, T. Feurer, R. Sauerbrey, and U. Simon, “Characterization and optimization of a laser-scanning microscope in the femtosecond regime,” Appl. Phys. B 67, 87–94 (1998).
[Crossref]

M. Müller, J. Squier, R. Wolleschensky, U. Simon, and G. J. Brakenhoff, “Dispersion pre-compensation of 15 femtosecond optical pulses for high-numerical-aperture objectives,” J. Microsc. 191, 141–150 (1998).
[Crossref] [PubMed]

Xi, P.

P. Xi, Y. Andegeko, D. Pestov, V. V. Lovozoy, and M. Dantus, “Two-photon imaging using adaptive phase compensated ultrashort laser pulses,” J. Biomed. Opt. 14, 014002(2009).
[Crossref] [PubMed]

P. Xi, Y. Andegeko, L. R. Weisel, V. V. Lozovoy, and M. Dantus, “Greater signal, increased depth, and less photobleaching in two-photon microscopy with 10fs pulses,” Opt. Commun. 281, 1841–1849 (2008).
[Crossref]

Xu, C.

Yeh, A. T.

Zhang, X.

X. Zhang, High-Repetition Rate Femtosecond Optical Parametric Oscillators Based on KTP and PPLN (University of Marburg, 2002).

Ann. Phys. (1)

M. Göppert-Mayer, “Über Elementarakte mit zwei Quantensprüngen,” Ann. Phys. 401, 273–294 (1931).
[Crossref]

Appl. Opt. (1)

Appl. Phys. B (1)

R. Wolleschensky, T. Feurer, R. Sauerbrey, and U. Simon, “Characterization and optimization of a laser-scanning microscope in the femtosecond regime,” Appl. Phys. B 67, 87–94 (1998).
[Crossref]

BioMed. Eng. OnLine (1)

A. Diaspro, P. Bianchini, G. Vicidomini, M. Faretta, P. Ramoino, and C. Usai, “Multi-photon excitation microscopy,” BioMed. Eng. OnLine 5, 36 (2006).
[Crossref] [PubMed]

Chem. Phys. Chem. (1)

V. V. Lozovoy and M. Dantus, “Systematic control of nonlinear optical processes using optimally shaped femtosecond pulses,” Chem. Phys. Chem. 6, 1970–2000 (2005).
[Crossref] [PubMed]

J. Biomed. Opt. (3)

P. Xi, Y. Andegeko, D. Pestov, V. V. Lovozoy, and M. Dantus, “Two-photon imaging using adaptive phase compensated ultrashort laser pulses,” J. Biomed. Opt. 14, 014002(2009).
[Crossref] [PubMed]

S. Tang, T. B. Krasieva, Z. Chen, G. Tempea, and B. J. Tromberg, “Effect of pulse duration on two-photon excited fluorescence and second harmonic generation in nonlinear optical microscopy,” J. Biomed. Opt. 11, 020501 (2006).
[Crossref] [PubMed]

S. Pang, A. T. Yeh, C. Wang, and K. E. Meissner, “Beyond the 1/Tp limit: two-photon-excited fluorescence using pulses as short as sub-10fs (journal paper),” J. Biomed. Opt. 14, 054041(2009).
[Crossref] [PubMed]

J. Microsc. (1)

M. Müller, J. Squier, R. Wolleschensky, U. Simon, and G. J. Brakenhoff, “Dispersion pre-compensation of 15 femtosecond optical pulses for high-numerical-aperture objectives,” J. Microsc. 191, 141–150 (1998).
[Crossref] [PubMed]

J. Opt. Soc. Am. B (2)

Nature (1)

D. Meshulach and Y. Silberberg, “Coherent quantum control of two-photon transitions by a femtosecond laser pulse,” Nature 396, 239–242 (1998).
[Crossref]

Opt. Commun. (1)

P. Xi, Y. Andegeko, L. R. Weisel, V. V. Lozovoy, and M. Dantus, “Greater signal, increased depth, and less photobleaching in two-photon microscopy with 10fs pulses,” Opt. Commun. 281, 1841–1849 (2008).
[Crossref]

Opt. Express (2)

Opt. Lett. (4)

Phys. Rev. Lett. (1)

W. Peticolas, J. Goldsborough, and K. Rieckhoff, “Double photon excitation in organic crystals,” Phys. Rev. Lett. 10, 43–45 (1963).
[Crossref]

Science (1)

W. Denk, J. H. Strickler, and W. W. Webb, “Two-photon laser scanning fluorescence microscopy,” Science 248, 73–76 (1990).
[Crossref] [PubMed]

Other (1)

X. Zhang, High-Repetition Rate Femtosecond Optical Parametric Oscillators Based on KTP and PPLN (University of Marburg, 2002).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Broadening of femtosecond pulse centered at 800 nm after propagation through the GDD of 4000 fs 2 . The inset shows the SHG ratio of the TOD of a 2500 fs 3 chirped pulse versus the compensated pulse.

Fig. 2
Fig. 2

Simulated intensity of the SHG signal generated by (a) short and (b) long pulses with a different amount of GDD and TOD.

Fig. 3
Fig. 3

Spectrum of the different pulses applied, with the measured phase for the 11 fs ultrashort pulse.

Fig. 4
Fig. 4

Measured and simulated intensity and FWHM of the SHG signal following the introduction of different (a), (c) GDDs and (b), (d) TODs into fully compensated wide [short pulse (a), (b)] and narrow [long pulse (c), (d)] spectra.

Fig. 5
Fig. 5

SHG signal under three laser pulse conditions revealed that the spectrum bandwidth and phase simultaneously affects the nonlinear process.

Fig. 6
Fig. 6

Two-photon image of mouse kidney tissue was excited with (a) 50 fs pulses, (b) 11 fs APC pulses, and (c) 11 fs GDD compensation pulses. The RGB channels are signals from Alexa-568, Alexa-488, and DAPI, respectively. Scale bar: 100 μm .

Tables (1)

Tables Icon

Table 1 Intensity of the SHG Signal and Relative Excitation Efficiency with Three Different Pulses a

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

n ( ω ) = 1 + i B i ( 1 C i ω 2 4 π 2 c 2 ) 1 ,
ϕ ( ω ) = ϕ ( ω 0 ) + d ϕ d ω | ω 0 ( ω ω 0 ) + 1 2 ! d 2 ϕ d ω 2 | ω 0 ( ω ω 0 ) 2 + 1 3 ! d 3 ϕ d ω 3 | ω 0 ( ω ω 0 ) 3 +
GDD material = λ 3 2 π c 2 ( d 2 n d λ 2 ) × L , TOD material = λ 4 4 π 2 c 3 ( 3 d 2 n d λ 2 + λ d 3 n d λ 3 ) × L .
ψ = 2 π λ L cos α = ω c L cos α .
GDD prism = d 2 ψ d ω 2 = L c { sin α [ 2 d α d ω + ω d 2 α d ω 2 ] + ω cos α ( d α d ω ) 2 } , TOD prism = d 3 ψ d ω 3 = L c { sin α [ 3 d 2 α d ω 2 + ω d 3 α d ω 3 ω ( d α d ω ) 3 ] + cos α [ 3 ( d α d ω ) 2 + 3 ω d α d ω d 2 α d ω 2 ] } ,
d α d ω = 2 d n d ω = 2 n i = 1 3 4 π 2 c 2 B i C i ω ( 4 π 2 c 2 C i ω 2 ) 2 , d 2 α d ω 2 = 2 d 2 n d ω 2 = 2 n [ i = 1 3 4 π 2 c 2 B i C i ( 4 π 2 c 2 + 3 C i ω 2 ) ( 4 π 2 c 2 C i ω 2 ) 3 ( d n d ω ) 2 ] .
GDD prism = ω L c ( d α d ω ) 2 = ω L c ( 2 n i = 1 3 4 π 2 c 2 B i C i ω ( 4 π 2 c 2 C i ω 2 ) 2 ) 2 , TOD prism = d 3 ψ d ω 3 = 12 L c n 2 { ( i = 1 3 4 π 2 c 2 B i C i ω ( 4 π 2 c 2 C i ω 2 ) 2 ) 2 + ω i = 1 3 4 π 2 c 2 B i C i ω ( 4 π 2 c 2 C i ω 2 ) 2 × [ i = 1 3 4 π 2 c 2 B i C i ( 4 π 2 c 2 + 3 C i ω 2 ) ( 4 π 2 c 2 C i ω 2 ) 3 ( d n d ω ) 2 ] } .
TOD prism = 3 GDD prism [ 1 ω + i = 1 3 4 π 2 c 2 B i C i ( 4 π 2 c 2 + 3 C i ω 2 ) ( 4 π 2 c 2 C i ω 2 ) 3 ( d n d ω ) 2 i = 1 3 4 π 2 c 2 B i C i ω ( 4 π 2 c 2 C i ω 2 ) 2 ] .
E ( 2 ω ) | E ( ω + Ω ) E ( ω Ω ) | exp { i [ ϕ ( ω + Ω ) + ϕ ( ω Ω ) ] } d Ω ,

Metrics