Abstract

The photodoping phenomenon of Ag is one of the light-induced phenomena in GeS2 amorphous chalcogenide films. It has potential as a process for fabricating photonic structures, such as waveguides and micro-optics, but its fabrication method is still under research. A dual functional laser scanning system integrating microfabrication and microscope systems was developed. In situ nanoscale fabrication by a UV laser effective for photodoping, and observation by a VIS wavelength laser, which does not affect the material, were demonstrated under same setup in one system. Several fine doped patterns were fabricated and the optical performances were evaluated. These results give the feasibility of forming various photonic structures.

© 2010 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. T. Kostyshin, E. V. Mikhailovskaya, and P. F. Romanenko, “Photographic sensitivity Effect in thin semiconducting films on metal substrates,” Sov. Phys. Solid State 8, 451–452 (1966).
  2. A. V. Kolobov and S. R. Elliott, “Photodoping of amorphous chalcogenides by metals,” Adv. Phys. 40, 625–684 (1991).
    [CrossRef]
  3. H. Sakuma, I. Shimizu, H. Kokada, and E. Inoue, “A new method for producing low-electrical-resistivity patterns in insulating chalcogenide glasses,” Bull. Chem. Soc. Jpn. 44, 1723 (1971).
    [CrossRef]
  4. J. Dersner and G. B. Stringfellow, “Electronic processes in the photo-crystallization of vitreous selenium,” J. Phys. Chem. Solids 29, 303–311 (1968).
    [CrossRef]
  5. L. Shimizu, H. Sakuma, H. Kokoda, and E. Inoue, “The photo-doping of metals into solids for new-type imaging systems,” Bull. Chem. Soc. Jpn. 44, 1173 (1971).
    [CrossRef]
  6. T. Wagner, M. Frumar, and L. Benes, “Photoenhanced dissolution and diffusion of Ag in As2Sx layers,” J. Non-Cryst. Solids 90, 517–520 (1987).
    [CrossRef]
  7. J. S. Berkes, S. W. Ing, Jr., and W. J. Hillegas, “Photodecomposition of amorphous As2Se3 and As2S3,” J. Appl. Phys. 42, 4908–4916 (1971).
    [CrossRef]
  8. K. Tanaka, M. Kikuchi, and H. Mizuno, “Kinetics of photo-induced edge shift in optical transmission of amorphous As2S3 film,” Solid State Commun. 12, 195–198 (1973).
    [CrossRef]
  9. J. Lee, T. Ogawa, H. Kudo, and T. Arai, “Volume expansion and Ag doping amounts in the photodoping process in amorphous As2S3,” Jpn. J. Appl. Phys. 33, 5865–5869 (1994).
    [CrossRef]
  10. Y. Murakami, T. Ogawa, M. Wakaki, and S. Kawabata, “In-situ ellipsometric observations of thickness change in the layers of Ag/a-AS2S3 film system with progression of photodoping,” Jpn. J. Appl. Phys. 39, 509–510 (2000).
    [CrossRef]
  11. H. Ashley and G. T. Sincerbox, “Holographic data storage,” IBM J. Res. Dev. 44, 341–368 (2000).
    [CrossRef]
  12. L. Y. Ju, K. H. Nam, H. Choi, and H. B. Chung, “Developing recordable medium with amorphous chalcogenide material for HDDS,” IEICE Technical Report ED2007-95, SDM2007-100 (2007), pp. 197–200.
  13. P. Davidovits and A. M. D. Egger, “Scanning laser microscope for biological investigations,” Appl. Opt. 10, 1615–1619 (1971).
    [CrossRef] [PubMed]
  14. T. Wilson and C. R. J. Sheppard, Theory and Practice of Scanning Optical Microscopy (Academic, 1984).
  15. Y. Kanai, Y. Kanzaki, M. Wakaki, and N. Takeyama, “Design and development of multi functional confocal laser scanning microscope with UV/VIS laser source,” Proc. SPIE 5878, 58781D (2005).
    [CrossRef]
  16. Y. Kanai, Y. Kanzaki, and M. Wakaki, “Development of multi functional confocal laser scanning microscope with UV/VIS laser source,” Proc. School Eng. Tokai University 46 (2), 23–28 (2006).
  17. T. Wagner, M. Frumar, and V. Suskova, “Photoenhanced dissolution and lateral diffusion of Ag in amorphous As-S layers,” J. Non-Cryst. Solids 128197–207 (1991).
    [CrossRef]
  18. I. Shimizu, H. Sakuma, H. Kokado, and E. Inoue, “Metal-chalcogenides systems as imaging materials,” Photogr. Soc. Eng. 16, 291–295 (1972).
  19. A. Yoshikawa, O. Ochi, H. Nagai, and Y. Mizushima, “Dry development of Se‐Ge inorganic photoresist,” Appl. Phys. Lett. 36, 107–109 (1980).
    [CrossRef]
  20. Y. Murakami, Y. Sata, and M. Wakaki, “Research of Ag photodoping phenomenon in GeS2 chalcogenide glass film,” Proc. School Eng. Tokai University 48, 33–40 (2008).
  21. Y. Murakami, M. Wakaki, and S. Kawabata, “In-situ observation of photodoping phenomena in chalcogenide glass by spectroscopic ellipsometry,” Phys. Stat. Sol. C 5, 1283–1286(2008).
    [CrossRef]

2008

Y. Murakami, Y. Sata, and M. Wakaki, “Research of Ag photodoping phenomenon in GeS2 chalcogenide glass film,” Proc. School Eng. Tokai University 48, 33–40 (2008).

Y. Murakami, M. Wakaki, and S. Kawabata, “In-situ observation of photodoping phenomena in chalcogenide glass by spectroscopic ellipsometry,” Phys. Stat. Sol. C 5, 1283–1286(2008).
[CrossRef]

2006

Y. Kanai, Y. Kanzaki, and M. Wakaki, “Development of multi functional confocal laser scanning microscope with UV/VIS laser source,” Proc. School Eng. Tokai University 46 (2), 23–28 (2006).

2005

Y. Kanai, Y. Kanzaki, M. Wakaki, and N. Takeyama, “Design and development of multi functional confocal laser scanning microscope with UV/VIS laser source,” Proc. SPIE 5878, 58781D (2005).
[CrossRef]

2000

Y. Murakami, T. Ogawa, M. Wakaki, and S. Kawabata, “In-situ ellipsometric observations of thickness change in the layers of Ag/a-AS2S3 film system with progression of photodoping,” Jpn. J. Appl. Phys. 39, 509–510 (2000).
[CrossRef]

H. Ashley and G. T. Sincerbox, “Holographic data storage,” IBM J. Res. Dev. 44, 341–368 (2000).
[CrossRef]

1994

J. Lee, T. Ogawa, H. Kudo, and T. Arai, “Volume expansion and Ag doping amounts in the photodoping process in amorphous As2S3,” Jpn. J. Appl. Phys. 33, 5865–5869 (1994).
[CrossRef]

1991

A. V. Kolobov and S. R. Elliott, “Photodoping of amorphous chalcogenides by metals,” Adv. Phys. 40, 625–684 (1991).
[CrossRef]

T. Wagner, M. Frumar, and V. Suskova, “Photoenhanced dissolution and lateral diffusion of Ag in amorphous As-S layers,” J. Non-Cryst. Solids 128197–207 (1991).
[CrossRef]

1987

T. Wagner, M. Frumar, and L. Benes, “Photoenhanced dissolution and diffusion of Ag in As2Sx layers,” J. Non-Cryst. Solids 90, 517–520 (1987).
[CrossRef]

1980

A. Yoshikawa, O. Ochi, H. Nagai, and Y. Mizushima, “Dry development of Se‐Ge inorganic photoresist,” Appl. Phys. Lett. 36, 107–109 (1980).
[CrossRef]

1973

K. Tanaka, M. Kikuchi, and H. Mizuno, “Kinetics of photo-induced edge shift in optical transmission of amorphous As2S3 film,” Solid State Commun. 12, 195–198 (1973).
[CrossRef]

1972

I. Shimizu, H. Sakuma, H. Kokado, and E. Inoue, “Metal-chalcogenides systems as imaging materials,” Photogr. Soc. Eng. 16, 291–295 (1972).

1971

P. Davidovits and A. M. D. Egger, “Scanning laser microscope for biological investigations,” Appl. Opt. 10, 1615–1619 (1971).
[CrossRef] [PubMed]

J. S. Berkes, S. W. Ing, Jr., and W. J. Hillegas, “Photodecomposition of amorphous As2Se3 and As2S3,” J. Appl. Phys. 42, 4908–4916 (1971).
[CrossRef]

H. Sakuma, I. Shimizu, H. Kokada, and E. Inoue, “A new method for producing low-electrical-resistivity patterns in insulating chalcogenide glasses,” Bull. Chem. Soc. Jpn. 44, 1723 (1971).
[CrossRef]

L. Shimizu, H. Sakuma, H. Kokoda, and E. Inoue, “The photo-doping of metals into solids for new-type imaging systems,” Bull. Chem. Soc. Jpn. 44, 1173 (1971).
[CrossRef]

1968

J. Dersner and G. B. Stringfellow, “Electronic processes in the photo-crystallization of vitreous selenium,” J. Phys. Chem. Solids 29, 303–311 (1968).
[CrossRef]

1966

M. T. Kostyshin, E. V. Mikhailovskaya, and P. F. Romanenko, “Photographic sensitivity Effect in thin semiconducting films on metal substrates,” Sov. Phys. Solid State 8, 451–452 (1966).

Arai, T.

J. Lee, T. Ogawa, H. Kudo, and T. Arai, “Volume expansion and Ag doping amounts in the photodoping process in amorphous As2S3,” Jpn. J. Appl. Phys. 33, 5865–5869 (1994).
[CrossRef]

Ashley, H.

H. Ashley and G. T. Sincerbox, “Holographic data storage,” IBM J. Res. Dev. 44, 341–368 (2000).
[CrossRef]

Benes, L.

T. Wagner, M. Frumar, and L. Benes, “Photoenhanced dissolution and diffusion of Ag in As2Sx layers,” J. Non-Cryst. Solids 90, 517–520 (1987).
[CrossRef]

Berkes, J. S.

J. S. Berkes, S. W. Ing, Jr., and W. J. Hillegas, “Photodecomposition of amorphous As2Se3 and As2S3,” J. Appl. Phys. 42, 4908–4916 (1971).
[CrossRef]

Choi, H.

L. Y. Ju, K. H. Nam, H. Choi, and H. B. Chung, “Developing recordable medium with amorphous chalcogenide material for HDDS,” IEICE Technical Report ED2007-95, SDM2007-100 (2007), pp. 197–200.

Chung, H. B.

L. Y. Ju, K. H. Nam, H. Choi, and H. B. Chung, “Developing recordable medium with amorphous chalcogenide material for HDDS,” IEICE Technical Report ED2007-95, SDM2007-100 (2007), pp. 197–200.

Davidovits, P.

Dersner, J.

J. Dersner and G. B. Stringfellow, “Electronic processes in the photo-crystallization of vitreous selenium,” J. Phys. Chem. Solids 29, 303–311 (1968).
[CrossRef]

Egger, A. M. D.

Elliott, S. R.

A. V. Kolobov and S. R. Elliott, “Photodoping of amorphous chalcogenides by metals,” Adv. Phys. 40, 625–684 (1991).
[CrossRef]

Frumar, M.

T. Wagner, M. Frumar, and V. Suskova, “Photoenhanced dissolution and lateral diffusion of Ag in amorphous As-S layers,” J. Non-Cryst. Solids 128197–207 (1991).
[CrossRef]

T. Wagner, M. Frumar, and L. Benes, “Photoenhanced dissolution and diffusion of Ag in As2Sx layers,” J. Non-Cryst. Solids 90, 517–520 (1987).
[CrossRef]

Hillegas, W. J.

J. S. Berkes, S. W. Ing, Jr., and W. J. Hillegas, “Photodecomposition of amorphous As2Se3 and As2S3,” J. Appl. Phys. 42, 4908–4916 (1971).
[CrossRef]

Ing, S. W.

J. S. Berkes, S. W. Ing, Jr., and W. J. Hillegas, “Photodecomposition of amorphous As2Se3 and As2S3,” J. Appl. Phys. 42, 4908–4916 (1971).
[CrossRef]

Inoue, E.

I. Shimizu, H. Sakuma, H. Kokado, and E. Inoue, “Metal-chalcogenides systems as imaging materials,” Photogr. Soc. Eng. 16, 291–295 (1972).

H. Sakuma, I. Shimizu, H. Kokada, and E. Inoue, “A new method for producing low-electrical-resistivity patterns in insulating chalcogenide glasses,” Bull. Chem. Soc. Jpn. 44, 1723 (1971).
[CrossRef]

L. Shimizu, H. Sakuma, H. Kokoda, and E. Inoue, “The photo-doping of metals into solids for new-type imaging systems,” Bull. Chem. Soc. Jpn. 44, 1173 (1971).
[CrossRef]

Ju, L. Y.

L. Y. Ju, K. H. Nam, H. Choi, and H. B. Chung, “Developing recordable medium with amorphous chalcogenide material for HDDS,” IEICE Technical Report ED2007-95, SDM2007-100 (2007), pp. 197–200.

Kanai, Y.

Y. Kanai, Y. Kanzaki, and M. Wakaki, “Development of multi functional confocal laser scanning microscope with UV/VIS laser source,” Proc. School Eng. Tokai University 46 (2), 23–28 (2006).

Y. Kanai, Y. Kanzaki, M. Wakaki, and N. Takeyama, “Design and development of multi functional confocal laser scanning microscope with UV/VIS laser source,” Proc. SPIE 5878, 58781D (2005).
[CrossRef]

Kanzaki, Y.

Y. Kanai, Y. Kanzaki, and M. Wakaki, “Development of multi functional confocal laser scanning microscope with UV/VIS laser source,” Proc. School Eng. Tokai University 46 (2), 23–28 (2006).

Y. Kanai, Y. Kanzaki, M. Wakaki, and N. Takeyama, “Design and development of multi functional confocal laser scanning microscope with UV/VIS laser source,” Proc. SPIE 5878, 58781D (2005).
[CrossRef]

Kawabata, S.

Y. Murakami, M. Wakaki, and S. Kawabata, “In-situ observation of photodoping phenomena in chalcogenide glass by spectroscopic ellipsometry,” Phys. Stat. Sol. C 5, 1283–1286(2008).
[CrossRef]

Y. Murakami, T. Ogawa, M. Wakaki, and S. Kawabata, “In-situ ellipsometric observations of thickness change in the layers of Ag/a-AS2S3 film system with progression of photodoping,” Jpn. J. Appl. Phys. 39, 509–510 (2000).
[CrossRef]

Kikuchi, M.

K. Tanaka, M. Kikuchi, and H. Mizuno, “Kinetics of photo-induced edge shift in optical transmission of amorphous As2S3 film,” Solid State Commun. 12, 195–198 (1973).
[CrossRef]

Kokada, H.

H. Sakuma, I. Shimizu, H. Kokada, and E. Inoue, “A new method for producing low-electrical-resistivity patterns in insulating chalcogenide glasses,” Bull. Chem. Soc. Jpn. 44, 1723 (1971).
[CrossRef]

Kokado, H.

I. Shimizu, H. Sakuma, H. Kokado, and E. Inoue, “Metal-chalcogenides systems as imaging materials,” Photogr. Soc. Eng. 16, 291–295 (1972).

Kokoda, H.

L. Shimizu, H. Sakuma, H. Kokoda, and E. Inoue, “The photo-doping of metals into solids for new-type imaging systems,” Bull. Chem. Soc. Jpn. 44, 1173 (1971).
[CrossRef]

Kolobov, A. V.

A. V. Kolobov and S. R. Elliott, “Photodoping of amorphous chalcogenides by metals,” Adv. Phys. 40, 625–684 (1991).
[CrossRef]

Kostyshin, M. T.

M. T. Kostyshin, E. V. Mikhailovskaya, and P. F. Romanenko, “Photographic sensitivity Effect in thin semiconducting films on metal substrates,” Sov. Phys. Solid State 8, 451–452 (1966).

Kudo, H.

J. Lee, T. Ogawa, H. Kudo, and T. Arai, “Volume expansion and Ag doping amounts in the photodoping process in amorphous As2S3,” Jpn. J. Appl. Phys. 33, 5865–5869 (1994).
[CrossRef]

Lee, J.

J. Lee, T. Ogawa, H. Kudo, and T. Arai, “Volume expansion and Ag doping amounts in the photodoping process in amorphous As2S3,” Jpn. J. Appl. Phys. 33, 5865–5869 (1994).
[CrossRef]

Mikhailovskaya, E. V.

M. T. Kostyshin, E. V. Mikhailovskaya, and P. F. Romanenko, “Photographic sensitivity Effect in thin semiconducting films on metal substrates,” Sov. Phys. Solid State 8, 451–452 (1966).

Mizuno, H.

K. Tanaka, M. Kikuchi, and H. Mizuno, “Kinetics of photo-induced edge shift in optical transmission of amorphous As2S3 film,” Solid State Commun. 12, 195–198 (1973).
[CrossRef]

Mizushima, Y.

A. Yoshikawa, O. Ochi, H. Nagai, and Y. Mizushima, “Dry development of Se‐Ge inorganic photoresist,” Appl. Phys. Lett. 36, 107–109 (1980).
[CrossRef]

Murakami, Y.

Y. Murakami, M. Wakaki, and S. Kawabata, “In-situ observation of photodoping phenomena in chalcogenide glass by spectroscopic ellipsometry,” Phys. Stat. Sol. C 5, 1283–1286(2008).
[CrossRef]

Y. Murakami, Y. Sata, and M. Wakaki, “Research of Ag photodoping phenomenon in GeS2 chalcogenide glass film,” Proc. School Eng. Tokai University 48, 33–40 (2008).

Y. Murakami, T. Ogawa, M. Wakaki, and S. Kawabata, “In-situ ellipsometric observations of thickness change in the layers of Ag/a-AS2S3 film system with progression of photodoping,” Jpn. J. Appl. Phys. 39, 509–510 (2000).
[CrossRef]

Nagai, H.

A. Yoshikawa, O. Ochi, H. Nagai, and Y. Mizushima, “Dry development of Se‐Ge inorganic photoresist,” Appl. Phys. Lett. 36, 107–109 (1980).
[CrossRef]

Nam, K. H.

L. Y. Ju, K. H. Nam, H. Choi, and H. B. Chung, “Developing recordable medium with amorphous chalcogenide material for HDDS,” IEICE Technical Report ED2007-95, SDM2007-100 (2007), pp. 197–200.

Ochi, O.

A. Yoshikawa, O. Ochi, H. Nagai, and Y. Mizushima, “Dry development of Se‐Ge inorganic photoresist,” Appl. Phys. Lett. 36, 107–109 (1980).
[CrossRef]

Ogawa, T.

Y. Murakami, T. Ogawa, M. Wakaki, and S. Kawabata, “In-situ ellipsometric observations of thickness change in the layers of Ag/a-AS2S3 film system with progression of photodoping,” Jpn. J. Appl. Phys. 39, 509–510 (2000).
[CrossRef]

J. Lee, T. Ogawa, H. Kudo, and T. Arai, “Volume expansion and Ag doping amounts in the photodoping process in amorphous As2S3,” Jpn. J. Appl. Phys. 33, 5865–5869 (1994).
[CrossRef]

Romanenko, P. F.

M. T. Kostyshin, E. V. Mikhailovskaya, and P. F. Romanenko, “Photographic sensitivity Effect in thin semiconducting films on metal substrates,” Sov. Phys. Solid State 8, 451–452 (1966).

Sakuma, H.

I. Shimizu, H. Sakuma, H. Kokado, and E. Inoue, “Metal-chalcogenides systems as imaging materials,” Photogr. Soc. Eng. 16, 291–295 (1972).

H. Sakuma, I. Shimizu, H. Kokada, and E. Inoue, “A new method for producing low-electrical-resistivity patterns in insulating chalcogenide glasses,” Bull. Chem. Soc. Jpn. 44, 1723 (1971).
[CrossRef]

L. Shimizu, H. Sakuma, H. Kokoda, and E. Inoue, “The photo-doping of metals into solids for new-type imaging systems,” Bull. Chem. Soc. Jpn. 44, 1173 (1971).
[CrossRef]

Sata, Y.

Y. Murakami, Y. Sata, and M. Wakaki, “Research of Ag photodoping phenomenon in GeS2 chalcogenide glass film,” Proc. School Eng. Tokai University 48, 33–40 (2008).

Sheppard, C. R. J.

T. Wilson and C. R. J. Sheppard, Theory and Practice of Scanning Optical Microscopy (Academic, 1984).

Shimizu, I.

I. Shimizu, H. Sakuma, H. Kokado, and E. Inoue, “Metal-chalcogenides systems as imaging materials,” Photogr. Soc. Eng. 16, 291–295 (1972).

H. Sakuma, I. Shimizu, H. Kokada, and E. Inoue, “A new method for producing low-electrical-resistivity patterns in insulating chalcogenide glasses,” Bull. Chem. Soc. Jpn. 44, 1723 (1971).
[CrossRef]

Shimizu, L.

L. Shimizu, H. Sakuma, H. Kokoda, and E. Inoue, “The photo-doping of metals into solids for new-type imaging systems,” Bull. Chem. Soc. Jpn. 44, 1173 (1971).
[CrossRef]

Sincerbox, G. T.

H. Ashley and G. T. Sincerbox, “Holographic data storage,” IBM J. Res. Dev. 44, 341–368 (2000).
[CrossRef]

Stringfellow, G. B.

J. Dersner and G. B. Stringfellow, “Electronic processes in the photo-crystallization of vitreous selenium,” J. Phys. Chem. Solids 29, 303–311 (1968).
[CrossRef]

Suskova, V.

T. Wagner, M. Frumar, and V. Suskova, “Photoenhanced dissolution and lateral diffusion of Ag in amorphous As-S layers,” J. Non-Cryst. Solids 128197–207 (1991).
[CrossRef]

Takeyama, N.

Y. Kanai, Y. Kanzaki, M. Wakaki, and N. Takeyama, “Design and development of multi functional confocal laser scanning microscope with UV/VIS laser source,” Proc. SPIE 5878, 58781D (2005).
[CrossRef]

Tanaka, K.

K. Tanaka, M. Kikuchi, and H. Mizuno, “Kinetics of photo-induced edge shift in optical transmission of amorphous As2S3 film,” Solid State Commun. 12, 195–198 (1973).
[CrossRef]

Wagner, T.

T. Wagner, M. Frumar, and V. Suskova, “Photoenhanced dissolution and lateral diffusion of Ag in amorphous As-S layers,” J. Non-Cryst. Solids 128197–207 (1991).
[CrossRef]

T. Wagner, M. Frumar, and L. Benes, “Photoenhanced dissolution and diffusion of Ag in As2Sx layers,” J. Non-Cryst. Solids 90, 517–520 (1987).
[CrossRef]

Wakaki, M.

Y. Murakami, M. Wakaki, and S. Kawabata, “In-situ observation of photodoping phenomena in chalcogenide glass by spectroscopic ellipsometry,” Phys. Stat. Sol. C 5, 1283–1286(2008).
[CrossRef]

Y. Murakami, Y. Sata, and M. Wakaki, “Research of Ag photodoping phenomenon in GeS2 chalcogenide glass film,” Proc. School Eng. Tokai University 48, 33–40 (2008).

Y. Kanai, Y. Kanzaki, and M. Wakaki, “Development of multi functional confocal laser scanning microscope with UV/VIS laser source,” Proc. School Eng. Tokai University 46 (2), 23–28 (2006).

Y. Kanai, Y. Kanzaki, M. Wakaki, and N. Takeyama, “Design and development of multi functional confocal laser scanning microscope with UV/VIS laser source,” Proc. SPIE 5878, 58781D (2005).
[CrossRef]

Y. Murakami, T. Ogawa, M. Wakaki, and S. Kawabata, “In-situ ellipsometric observations of thickness change in the layers of Ag/a-AS2S3 film system with progression of photodoping,” Jpn. J. Appl. Phys. 39, 509–510 (2000).
[CrossRef]

Wilson, T.

T. Wilson and C. R. J. Sheppard, Theory and Practice of Scanning Optical Microscopy (Academic, 1984).

Yoshikawa, A.

A. Yoshikawa, O. Ochi, H. Nagai, and Y. Mizushima, “Dry development of Se‐Ge inorganic photoresist,” Appl. Phys. Lett. 36, 107–109 (1980).
[CrossRef]

Adv. Phys.

A. V. Kolobov and S. R. Elliott, “Photodoping of amorphous chalcogenides by metals,” Adv. Phys. 40, 625–684 (1991).
[CrossRef]

Appl. Opt.

Appl. Phys. Lett.

A. Yoshikawa, O. Ochi, H. Nagai, and Y. Mizushima, “Dry development of Se‐Ge inorganic photoresist,” Appl. Phys. Lett. 36, 107–109 (1980).
[CrossRef]

Bull. Chem. Soc. Jpn.

H. Sakuma, I. Shimizu, H. Kokada, and E. Inoue, “A new method for producing low-electrical-resistivity patterns in insulating chalcogenide glasses,” Bull. Chem. Soc. Jpn. 44, 1723 (1971).
[CrossRef]

L. Shimizu, H. Sakuma, H. Kokoda, and E. Inoue, “The photo-doping of metals into solids for new-type imaging systems,” Bull. Chem. Soc. Jpn. 44, 1173 (1971).
[CrossRef]

IBM J. Res. Dev.

H. Ashley and G. T. Sincerbox, “Holographic data storage,” IBM J. Res. Dev. 44, 341–368 (2000).
[CrossRef]

J. Appl. Phys.

J. S. Berkes, S. W. Ing, Jr., and W. J. Hillegas, “Photodecomposition of amorphous As2Se3 and As2S3,” J. Appl. Phys. 42, 4908–4916 (1971).
[CrossRef]

J. Non-Cryst. Solids

T. Wagner, M. Frumar, and L. Benes, “Photoenhanced dissolution and diffusion of Ag in As2Sx layers,” J. Non-Cryst. Solids 90, 517–520 (1987).
[CrossRef]

T. Wagner, M. Frumar, and V. Suskova, “Photoenhanced dissolution and lateral diffusion of Ag in amorphous As-S layers,” J. Non-Cryst. Solids 128197–207 (1991).
[CrossRef]

J. Phys. Chem. Solids

J. Dersner and G. B. Stringfellow, “Electronic processes in the photo-crystallization of vitreous selenium,” J. Phys. Chem. Solids 29, 303–311 (1968).
[CrossRef]

Jpn. J. Appl. Phys.

J. Lee, T. Ogawa, H. Kudo, and T. Arai, “Volume expansion and Ag doping amounts in the photodoping process in amorphous As2S3,” Jpn. J. Appl. Phys. 33, 5865–5869 (1994).
[CrossRef]

Y. Murakami, T. Ogawa, M. Wakaki, and S. Kawabata, “In-situ ellipsometric observations of thickness change in the layers of Ag/a-AS2S3 film system with progression of photodoping,” Jpn. J. Appl. Phys. 39, 509–510 (2000).
[CrossRef]

Photogr. Soc. Eng.

I. Shimizu, H. Sakuma, H. Kokado, and E. Inoue, “Metal-chalcogenides systems as imaging materials,” Photogr. Soc. Eng. 16, 291–295 (1972).

Phys. Stat. Sol. C

Y. Murakami, M. Wakaki, and S. Kawabata, “In-situ observation of photodoping phenomena in chalcogenide glass by spectroscopic ellipsometry,” Phys. Stat. Sol. C 5, 1283–1286(2008).
[CrossRef]

Proc. School Eng. Tokai University

Y. Kanai, Y. Kanzaki, and M. Wakaki, “Development of multi functional confocal laser scanning microscope with UV/VIS laser source,” Proc. School Eng. Tokai University 46 (2), 23–28 (2006).

Y. Murakami, Y. Sata, and M. Wakaki, “Research of Ag photodoping phenomenon in GeS2 chalcogenide glass film,” Proc. School Eng. Tokai University 48, 33–40 (2008).

Proc. SPIE

Y. Kanai, Y. Kanzaki, M. Wakaki, and N. Takeyama, “Design and development of multi functional confocal laser scanning microscope with UV/VIS laser source,” Proc. SPIE 5878, 58781D (2005).
[CrossRef]

Solid State Commun.

K. Tanaka, M. Kikuchi, and H. Mizuno, “Kinetics of photo-induced edge shift in optical transmission of amorphous As2S3 film,” Solid State Commun. 12, 195–198 (1973).
[CrossRef]

Sov. Phys. Solid State

M. T. Kostyshin, E. V. Mikhailovskaya, and P. F. Romanenko, “Photographic sensitivity Effect in thin semiconducting films on metal substrates,” Sov. Phys. Solid State 8, 451–452 (1966).

Other

L. Y. Ju, K. H. Nam, H. Choi, and H. B. Chung, “Developing recordable medium with amorphous chalcogenide material for HDDS,” IEICE Technical Report ED2007-95, SDM2007-100 (2007), pp. 197–200.

T. Wilson and C. R. J. Sheppard, Theory and Practice of Scanning Optical Microscopy (Academic, 1984).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

Schematic diagram to illustrate the photodoping process. (a) When a metal layer of Ag deposited on the GeSe 2 amorphous chalcogenide film is (b) illuminated by light, (c) the metal diffuses abnormally into the amorphous chalcogenide layer.

Fig. 2
Fig. 2

Optical configuration of the developed dual laser scanning microfabrication/microscope system. It consists of UV/VIS laser sources, an optical system, galvano scanners, a piezo stage, a detector unit, a control/data acquisition unit, a PC, and software. An He–Cd laser and an He–Ne laser are used for processing and observation, respectively.

Fig. 3
Fig. 3

Schematic diagram to illustrate the (b) photodoping process by UV laser and (c) the toring process by VIS laser. Initial state of the photodoping system used in this experiment is shown in (a).

Fig. 4
Fig. 4

Schematic diagram of two types of scan ning mode using the developed dual laser scanning system: (a) vector scan mode for manipulation and (b) raster scan mode for observation.

Fig. 5
Fig. 5

Fabricated and observed images of photo doped samples in Ag : GeS 2 amorphous thin films. (a) Chinese character “light,” (b) bent waveguide and (c) diffraction grating were written by the He–Cd laser and the images were read by the He–Ne laser.

Fig. 6
Fig. 6

Fabricated microgratings. Gratings with (a) 83 lines/mm (line pitch, 12.11 μm ), (b) 186 lines/mm (line pitch, 5.38 μm ) and (c) 392 lines/mm (line pitch, 2.55 μm ) observed by the system are shown.

Fig. 7
Fig. 7

Diffraction patterns of an He–Ne laser beam by the fabricated microgratings with the lattice constants of (a) 12.11, (b) 5.38, and (c) 2.55 μm .

Fig. 8
Fig. 8

Simulated light propagation model within the doped layer and GeS 2 layer to explain the enlarged doped width compared with the laser beam spot size. The solid lines show the direct beam from the microscope and the broken lines show the scattered light occurring at the interfaces. Laser light reflects among three boundaries and propagates within the doped layer and the GeS 2 layer.

Fig. 9
Fig. 9

Schematic diagram to illustrate the diffusion behavior of Ag. (a) Ag dissolves through the narrow void in the GeS 2 amorphous layer and diffuses partially at the boundary between the Ag and GeS 2 layers. (b) At the end of doping, a homogeneous doped layer is formed to a depth depending on the relative thickness of the Ag and GeS 2 layers.

Tables (2)

Tables Icon

Table 1 Specification to be Attained by the Developed Dual Laser Scanning System

Tables Icon

Table 2 Observed Groove Widths, Diffraction Angles, and Diffraction Efficiencies at the First Order for Each Grating

Metrics