Abstract

We investigate photophysical processes that take place in macromolecules of a fluorescent protein mRFP1 under UV excitation [when the energy transfer in a localized donor–acceptor (LDA) pair, which is presented in the molecules of the protein, becomes apparent]. We used a special approach based on the fluorescence laser spectroscopy technique. The energy transfer rates in LDA pairs and photophysical parameters of fluorophores (chromophores) of three spectral forms, which coexist in the ensemble of the macromolecules of this protein, were determined under pulse UV laser excitation.

© 2010 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. O. Shimomura, The Discovery of Green Fluorescent Protein (Wiley, 1998).
  2. B. W. Hicks, Green Fluorescent Protein: Applications and Protocols (Humana, 2002).
    [CrossRef]
  3. M. Chalfie, Y. Tu, G. Euskirchen, W. W. Ward, and D. C. Prasher, “Green fluorescent protein as a marker for gene expression,” Science 263, 802–805 (1994).
    [CrossRef] [PubMed]
  4. B. Lounis, J. Deich, F. I. Rosell, Steven G. Boxer, and W. E. Moerner, “Photophysics of DsRed, a red fluorescent protein, from the ensemble to the single-molecule level,” J. Phys. Chem. B 105, 5048–5054 (2001).
    [CrossRef]
  5. R. Steinmeyer, A. Noskov, C. Krasel, I. Weber, C. Dees, and G. S. Harms, “Improved fluorescent proteins for single-molecule research in molecular tracking and co-localization,” J. Fluorescence 15, 707–721 (2005).
    [CrossRef]
  6. L. Stryer, “Fluorescence energy transfer as a spectroscopic ruler,” Annu. Rev. Biochem. 47, 819–846 (1978).
    [CrossRef] [PubMed]
  7. R. E. Campbell, O. Tour, A. E. Palmer, P. A. Steinbach, G. S. Baird, D. A. Zacharias, and R. Y. Tsien, “A monomeric red fluorescent protein,” Proc. Natl. Acad. Sci. USA 99, 7877–7882 (2002).
    [CrossRef] [PubMed]
  8. Protein Data Bank, ID 1 g7 k, www.pdb.org.
  9. V. V. Verkhusha, D. M. Chudakov, N. G. Gurskaya, S. Lukyanov, and K. A. Lukyanov, “Common pathway for the red chromophore formation in fluorescent proteins and chromoproteins,” Chem. Biol. 11, 845–854 (2004).
    [CrossRef] [PubMed]
  10. M. Chattoraj, B. A. King, G. U. Bublitz, and S. G. Boxer, “Ultra-fast excited state dynamics in green fluorescent protein: multiple states and proton transfer,” Proc. Natl. Acad. Sci. USA 93, 8362–8367 (1996).
    [CrossRef] [PubMed]
  11. A. A. Pakhomov, N. Yu. Martynova, N. G. Gurskaya, T. A. Balashova, and V. I. Martynov, “Photoconversion of the chromophore of a fluorescent protein from Dendronephthya sp.,” Biochem. 69, 901–908 (2004).
    [CrossRef]
  12. S. Habuchi, M. Cotlet, T. Gensch, T. Bednarz, S. Haber-Pohlmeier, J. Rozenski, G. Dirix, J. Michiels, J. Vanderleyden, J. Heberle, F. C. Schryver, and J. Hofkens, “Evidence for the isomerization and decarboxylation in the photoconversion of the red fluorescent protein DsRed,” J. Am. Chem. Soc. 127, 8977–8984 (2005).
    [CrossRef] [PubMed]
  13. A. A. Banishev, E. P. Vrzheshch, D. V. Dmitrienko, V. L. Drutsa, D. V. Maslov, V. Z. Pashchenko, E. A. Shirshin, P. V. Vrzheshch, and V. V. Fadeev, “A method for determining the individual optical characteristics of posttranslational fluorescent forms of fluorescent proteins with the use of nonlinear laser fluorimetry,” Biofizika 52, 792–798 (2007), in Russian.
    [PubMed]
  14. A. A. Banishev, E. P. Vrzheshch, and E. A. Shirshin, “Application of laser fluorimetry for determining the influence of a single amino-acid substitution on the individual photophysical parameters of a fluorescent form of a fluorescent protein mRFP1,” IEEE J. Quantum Electron. 39, 273–278 (2009).
    [CrossRef]
  15. V. V. Fadeev, T. A. Dolenko, E. M. Filippova, and V. V. Chubarov, “Saturation spectroscopy as a method for determining the photophysical parameters of complicated organic compounds,” Opt. Commun. 166, 25–33 (1999).
    [CrossRef]
  16. A. A. Banishev, E. A. Shirshin, and V. V. Fadeev, “Laser fluorimetry of proteins containing one and two tryptophan residues,” Laser Phys. 18, 861–867 (2008).
    [CrossRef]
  17. A. A. Banishev, D. V. Maslov, and V. V. Fadeev, “A nanosecond laser fluorimeter,” Instrum. Exp. Tech. 49, 430–434 (2006).
    [CrossRef]
  18. E. A. Shirshin, A. A. Banishev, and V. V. Fadeev, “Localized donor-acceptor pairs of fluorophores: determination of energy transfer rate using nonlinear fluorimetry,” JETP Lett. 89, 475–478 (2009).
    [CrossRef]
  19. D. N. Klyshko and V. V. Fadeev, “Remote determination of the admixture concentrations in water by the method of laser spectroscopy using Raman scattering as an internal standard,” Sov. Phys. Dokl. 23, 55–57 (1978).
  20. V. Z. Paschenko, R. P. Evstigneeva, V. V. Gorokhov, V. N. Luzgina, V. B. Tusov, and A. B. Rubin, “Photophysical properties of carborane-containing derivatives of 5,10,15,20-tetra(p-aminophenyl)porphyrin,” J. Photochem. Photobiol. B 54, 162–167 (2000).
    [CrossRef] [PubMed]
  21. V. M. Agranovich and M. D. Galanin, Electronic Excitation Energy Transfer in Condensed Matter (North-Holland, 1982).
  22. A. A. Banishev, E. A. Shirshin, and V. V. Fadeev, “Determination of photophysical parameters of tryptophan molecules by methods of laser fluorimetry,” IEEE J. Quantum Electron. 38, 77–81 (2008).
    [CrossRef]
  23. G. Srinivas, A. Yethiraj, and B. Bagchi, “FRET by FET and dynamics of polymer folding,” J. Phys. Chem. B 105, 2475–2478 (2001).
    [CrossRef]
  24. K. Truong and M. Ikura, “The use of FRET imaging microscopy to detect protein—protein interactions and protein conformational changes in vivo,” Curr. Opin. Struct. Biol. 11, 573–578 (2001).
    [CrossRef]
  25. D. V. Maslov, E. E. Ostroumov, and V. V. Fadeev, “Saturation fluorimetry of complex organic compounds with a high local concentration of fluorophores (by the example of phytoplankton),” IEEE J. Quantum Electron. 36, 163–168 (2006).
    [CrossRef]
  26. A. A. Banishev, D. V. Maslov, and V. V. Fadeev, “Determination of the quantum yield of singlet–triplet conversion in complex organic compounds by the methods of laser fluorimetry,” Moscow Univ. Phys. Bull. 63, 218–220 (2008).
    [CrossRef]
  27. B. Valeur, “Resonance energy transfer and its applications,” in Molecular Fluorescence: Principles and Applications (Wiley-VCH, 2002), pp. 247–272.
  28. C. Caratheodory, Calculus of Variations and Partial Differential Equations of First Order (American Mathematical Society, 1999).
  29. H. Mizuno, A. Sawano, P. Eli, H. Hama, and A. Miyawaki, “Red fluorescent protein from Discosoma as a fusion tag and a partner for fluorescence resonance energy transfer,” Biochem. 40, 2502–2510 (2001).
    [CrossRef]

2009 (2)

A. A. Banishev, E. P. Vrzheshch, and E. A. Shirshin, “Application of laser fluorimetry for determining the influence of a single amino-acid substitution on the individual photophysical parameters of a fluorescent form of a fluorescent protein mRFP1,” IEEE J. Quantum Electron. 39, 273–278 (2009).
[CrossRef]

E. A. Shirshin, A. A. Banishev, and V. V. Fadeev, “Localized donor-acceptor pairs of fluorophores: determination of energy transfer rate using nonlinear fluorimetry,” JETP Lett. 89, 475–478 (2009).
[CrossRef]

2008 (3)

A. A. Banishev, E. A. Shirshin, and V. V. Fadeev, “Laser fluorimetry of proteins containing one and two tryptophan residues,” Laser Phys. 18, 861–867 (2008).
[CrossRef]

A. A. Banishev, E. A. Shirshin, and V. V. Fadeev, “Determination of photophysical parameters of tryptophan molecules by methods of laser fluorimetry,” IEEE J. Quantum Electron. 38, 77–81 (2008).
[CrossRef]

A. A. Banishev, D. V. Maslov, and V. V. Fadeev, “Determination of the quantum yield of singlet–triplet conversion in complex organic compounds by the methods of laser fluorimetry,” Moscow Univ. Phys. Bull. 63, 218–220 (2008).
[CrossRef]

2007 (1)

A. A. Banishev, E. P. Vrzheshch, D. V. Dmitrienko, V. L. Drutsa, D. V. Maslov, V. Z. Pashchenko, E. A. Shirshin, P. V. Vrzheshch, and V. V. Fadeev, “A method for determining the individual optical characteristics of posttranslational fluorescent forms of fluorescent proteins with the use of nonlinear laser fluorimetry,” Biofizika 52, 792–798 (2007), in Russian.
[PubMed]

2006 (2)

A. A. Banishev, D. V. Maslov, and V. V. Fadeev, “A nanosecond laser fluorimeter,” Instrum. Exp. Tech. 49, 430–434 (2006).
[CrossRef]

D. V. Maslov, E. E. Ostroumov, and V. V. Fadeev, “Saturation fluorimetry of complex organic compounds with a high local concentration of fluorophores (by the example of phytoplankton),” IEEE J. Quantum Electron. 36, 163–168 (2006).
[CrossRef]

2005 (2)

S. Habuchi, M. Cotlet, T. Gensch, T. Bednarz, S. Haber-Pohlmeier, J. Rozenski, G. Dirix, J. Michiels, J. Vanderleyden, J. Heberle, F. C. Schryver, and J. Hofkens, “Evidence for the isomerization and decarboxylation in the photoconversion of the red fluorescent protein DsRed,” J. Am. Chem. Soc. 127, 8977–8984 (2005).
[CrossRef] [PubMed]

R. Steinmeyer, A. Noskov, C. Krasel, I. Weber, C. Dees, and G. S. Harms, “Improved fluorescent proteins for single-molecule research in molecular tracking and co-localization,” J. Fluorescence 15, 707–721 (2005).
[CrossRef]

2004 (2)

V. V. Verkhusha, D. M. Chudakov, N. G. Gurskaya, S. Lukyanov, and K. A. Lukyanov, “Common pathway for the red chromophore formation in fluorescent proteins and chromoproteins,” Chem. Biol. 11, 845–854 (2004).
[CrossRef] [PubMed]

A. A. Pakhomov, N. Yu. Martynova, N. G. Gurskaya, T. A. Balashova, and V. I. Martynov, “Photoconversion of the chromophore of a fluorescent protein from Dendronephthya sp.,” Biochem. 69, 901–908 (2004).
[CrossRef]

2002 (1)

R. E. Campbell, O. Tour, A. E. Palmer, P. A. Steinbach, G. S. Baird, D. A. Zacharias, and R. Y. Tsien, “A monomeric red fluorescent protein,” Proc. Natl. Acad. Sci. USA 99, 7877–7882 (2002).
[CrossRef] [PubMed]

2001 (4)

B. Lounis, J. Deich, F. I. Rosell, Steven G. Boxer, and W. E. Moerner, “Photophysics of DsRed, a red fluorescent protein, from the ensemble to the single-molecule level,” J. Phys. Chem. B 105, 5048–5054 (2001).
[CrossRef]

G. Srinivas, A. Yethiraj, and B. Bagchi, “FRET by FET and dynamics of polymer folding,” J. Phys. Chem. B 105, 2475–2478 (2001).
[CrossRef]

K. Truong and M. Ikura, “The use of FRET imaging microscopy to detect protein—protein interactions and protein conformational changes in vivo,” Curr. Opin. Struct. Biol. 11, 573–578 (2001).
[CrossRef]

H. Mizuno, A. Sawano, P. Eli, H. Hama, and A. Miyawaki, “Red fluorescent protein from Discosoma as a fusion tag and a partner for fluorescence resonance energy transfer,” Biochem. 40, 2502–2510 (2001).
[CrossRef]

2000 (1)

V. Z. Paschenko, R. P. Evstigneeva, V. V. Gorokhov, V. N. Luzgina, V. B. Tusov, and A. B. Rubin, “Photophysical properties of carborane-containing derivatives of 5,10,15,20-tetra(p-aminophenyl)porphyrin,” J. Photochem. Photobiol. B 54, 162–167 (2000).
[CrossRef] [PubMed]

1999 (1)

V. V. Fadeev, T. A. Dolenko, E. M. Filippova, and V. V. Chubarov, “Saturation spectroscopy as a method for determining the photophysical parameters of complicated organic compounds,” Opt. Commun. 166, 25–33 (1999).
[CrossRef]

1996 (1)

M. Chattoraj, B. A. King, G. U. Bublitz, and S. G. Boxer, “Ultra-fast excited state dynamics in green fluorescent protein: multiple states and proton transfer,” Proc. Natl. Acad. Sci. USA 93, 8362–8367 (1996).
[CrossRef] [PubMed]

1994 (1)

M. Chalfie, Y. Tu, G. Euskirchen, W. W. Ward, and D. C. Prasher, “Green fluorescent protein as a marker for gene expression,” Science 263, 802–805 (1994).
[CrossRef] [PubMed]

1978 (2)

L. Stryer, “Fluorescence energy transfer as a spectroscopic ruler,” Annu. Rev. Biochem. 47, 819–846 (1978).
[CrossRef] [PubMed]

D. N. Klyshko and V. V. Fadeev, “Remote determination of the admixture concentrations in water by the method of laser spectroscopy using Raman scattering as an internal standard,” Sov. Phys. Dokl. 23, 55–57 (1978).

Agranovich, V. M.

V. M. Agranovich and M. D. Galanin, Electronic Excitation Energy Transfer in Condensed Matter (North-Holland, 1982).

Bagchi, B.

G. Srinivas, A. Yethiraj, and B. Bagchi, “FRET by FET and dynamics of polymer folding,” J. Phys. Chem. B 105, 2475–2478 (2001).
[CrossRef]

Baird, G. S.

R. E. Campbell, O. Tour, A. E. Palmer, P. A. Steinbach, G. S. Baird, D. A. Zacharias, and R. Y. Tsien, “A monomeric red fluorescent protein,” Proc. Natl. Acad. Sci. USA 99, 7877–7882 (2002).
[CrossRef] [PubMed]

Balashova, T. A.

A. A. Pakhomov, N. Yu. Martynova, N. G. Gurskaya, T. A. Balashova, and V. I. Martynov, “Photoconversion of the chromophore of a fluorescent protein from Dendronephthya sp.,” Biochem. 69, 901–908 (2004).
[CrossRef]

Banishev, A. A.

A. A. Banishev, E. P. Vrzheshch, and E. A. Shirshin, “Application of laser fluorimetry for determining the influence of a single amino-acid substitution on the individual photophysical parameters of a fluorescent form of a fluorescent protein mRFP1,” IEEE J. Quantum Electron. 39, 273–278 (2009).
[CrossRef]

E. A. Shirshin, A. A. Banishev, and V. V. Fadeev, “Localized donor-acceptor pairs of fluorophores: determination of energy transfer rate using nonlinear fluorimetry,” JETP Lett. 89, 475–478 (2009).
[CrossRef]

A. A. Banishev, E. A. Shirshin, and V. V. Fadeev, “Determination of photophysical parameters of tryptophan molecules by methods of laser fluorimetry,” IEEE J. Quantum Electron. 38, 77–81 (2008).
[CrossRef]

A. A. Banishev, D. V. Maslov, and V. V. Fadeev, “Determination of the quantum yield of singlet–triplet conversion in complex organic compounds by the methods of laser fluorimetry,” Moscow Univ. Phys. Bull. 63, 218–220 (2008).
[CrossRef]

A. A. Banishev, E. A. Shirshin, and V. V. Fadeev, “Laser fluorimetry of proteins containing one and two tryptophan residues,” Laser Phys. 18, 861–867 (2008).
[CrossRef]

A. A. Banishev, E. P. Vrzheshch, D. V. Dmitrienko, V. L. Drutsa, D. V. Maslov, V. Z. Pashchenko, E. A. Shirshin, P. V. Vrzheshch, and V. V. Fadeev, “A method for determining the individual optical characteristics of posttranslational fluorescent forms of fluorescent proteins with the use of nonlinear laser fluorimetry,” Biofizika 52, 792–798 (2007), in Russian.
[PubMed]

A. A. Banishev, D. V. Maslov, and V. V. Fadeev, “A nanosecond laser fluorimeter,” Instrum. Exp. Tech. 49, 430–434 (2006).
[CrossRef]

Bednarz, T.

S. Habuchi, M. Cotlet, T. Gensch, T. Bednarz, S. Haber-Pohlmeier, J. Rozenski, G. Dirix, J. Michiels, J. Vanderleyden, J. Heberle, F. C. Schryver, and J. Hofkens, “Evidence for the isomerization and decarboxylation in the photoconversion of the red fluorescent protein DsRed,” J. Am. Chem. Soc. 127, 8977–8984 (2005).
[CrossRef] [PubMed]

Boxer, S. G.

M. Chattoraj, B. A. King, G. U. Bublitz, and S. G. Boxer, “Ultra-fast excited state dynamics in green fluorescent protein: multiple states and proton transfer,” Proc. Natl. Acad. Sci. USA 93, 8362–8367 (1996).
[CrossRef] [PubMed]

Boxer, Steven G.

B. Lounis, J. Deich, F. I. Rosell, Steven G. Boxer, and W. E. Moerner, “Photophysics of DsRed, a red fluorescent protein, from the ensemble to the single-molecule level,” J. Phys. Chem. B 105, 5048–5054 (2001).
[CrossRef]

Bublitz, G. U.

M. Chattoraj, B. A. King, G. U. Bublitz, and S. G. Boxer, “Ultra-fast excited state dynamics in green fluorescent protein: multiple states and proton transfer,” Proc. Natl. Acad. Sci. USA 93, 8362–8367 (1996).
[CrossRef] [PubMed]

Campbell, R. E.

R. E. Campbell, O. Tour, A. E. Palmer, P. A. Steinbach, G. S. Baird, D. A. Zacharias, and R. Y. Tsien, “A monomeric red fluorescent protein,” Proc. Natl. Acad. Sci. USA 99, 7877–7882 (2002).
[CrossRef] [PubMed]

Caratheodory, C.

C. Caratheodory, Calculus of Variations and Partial Differential Equations of First Order (American Mathematical Society, 1999).

Chalfie, M.

M. Chalfie, Y. Tu, G. Euskirchen, W. W. Ward, and D. C. Prasher, “Green fluorescent protein as a marker for gene expression,” Science 263, 802–805 (1994).
[CrossRef] [PubMed]

Chattoraj, M.

M. Chattoraj, B. A. King, G. U. Bublitz, and S. G. Boxer, “Ultra-fast excited state dynamics in green fluorescent protein: multiple states and proton transfer,” Proc. Natl. Acad. Sci. USA 93, 8362–8367 (1996).
[CrossRef] [PubMed]

Chubarov, V. V.

V. V. Fadeev, T. A. Dolenko, E. M. Filippova, and V. V. Chubarov, “Saturation spectroscopy as a method for determining the photophysical parameters of complicated organic compounds,” Opt. Commun. 166, 25–33 (1999).
[CrossRef]

Chudakov, D. M.

V. V. Verkhusha, D. M. Chudakov, N. G. Gurskaya, S. Lukyanov, and K. A. Lukyanov, “Common pathway for the red chromophore formation in fluorescent proteins and chromoproteins,” Chem. Biol. 11, 845–854 (2004).
[CrossRef] [PubMed]

Cotlet, M.

S. Habuchi, M. Cotlet, T. Gensch, T. Bednarz, S. Haber-Pohlmeier, J. Rozenski, G. Dirix, J. Michiels, J. Vanderleyden, J. Heberle, F. C. Schryver, and J. Hofkens, “Evidence for the isomerization and decarboxylation in the photoconversion of the red fluorescent protein DsRed,” J. Am. Chem. Soc. 127, 8977–8984 (2005).
[CrossRef] [PubMed]

Dees, C.

R. Steinmeyer, A. Noskov, C. Krasel, I. Weber, C. Dees, and G. S. Harms, “Improved fluorescent proteins for single-molecule research in molecular tracking and co-localization,” J. Fluorescence 15, 707–721 (2005).
[CrossRef]

Deich, J.

B. Lounis, J. Deich, F. I. Rosell, Steven G. Boxer, and W. E. Moerner, “Photophysics of DsRed, a red fluorescent protein, from the ensemble to the single-molecule level,” J. Phys. Chem. B 105, 5048–5054 (2001).
[CrossRef]

Dirix, G.

S. Habuchi, M. Cotlet, T. Gensch, T. Bednarz, S. Haber-Pohlmeier, J. Rozenski, G. Dirix, J. Michiels, J. Vanderleyden, J. Heberle, F. C. Schryver, and J. Hofkens, “Evidence for the isomerization and decarboxylation in the photoconversion of the red fluorescent protein DsRed,” J. Am. Chem. Soc. 127, 8977–8984 (2005).
[CrossRef] [PubMed]

Dmitrienko, D. V.

A. A. Banishev, E. P. Vrzheshch, D. V. Dmitrienko, V. L. Drutsa, D. V. Maslov, V. Z. Pashchenko, E. A. Shirshin, P. V. Vrzheshch, and V. V. Fadeev, “A method for determining the individual optical characteristics of posttranslational fluorescent forms of fluorescent proteins with the use of nonlinear laser fluorimetry,” Biofizika 52, 792–798 (2007), in Russian.
[PubMed]

Dolenko, T. A.

V. V. Fadeev, T. A. Dolenko, E. M. Filippova, and V. V. Chubarov, “Saturation spectroscopy as a method for determining the photophysical parameters of complicated organic compounds,” Opt. Commun. 166, 25–33 (1999).
[CrossRef]

Drutsa, V. L.

A. A. Banishev, E. P. Vrzheshch, D. V. Dmitrienko, V. L. Drutsa, D. V. Maslov, V. Z. Pashchenko, E. A. Shirshin, P. V. Vrzheshch, and V. V. Fadeev, “A method for determining the individual optical characteristics of posttranslational fluorescent forms of fluorescent proteins with the use of nonlinear laser fluorimetry,” Biofizika 52, 792–798 (2007), in Russian.
[PubMed]

Eli, P.

H. Mizuno, A. Sawano, P. Eli, H. Hama, and A. Miyawaki, “Red fluorescent protein from Discosoma as a fusion tag and a partner for fluorescence resonance energy transfer,” Biochem. 40, 2502–2510 (2001).
[CrossRef]

Euskirchen, G.

M. Chalfie, Y. Tu, G. Euskirchen, W. W. Ward, and D. C. Prasher, “Green fluorescent protein as a marker for gene expression,” Science 263, 802–805 (1994).
[CrossRef] [PubMed]

Evstigneeva, R. P.

V. Z. Paschenko, R. P. Evstigneeva, V. V. Gorokhov, V. N. Luzgina, V. B. Tusov, and A. B. Rubin, “Photophysical properties of carborane-containing derivatives of 5,10,15,20-tetra(p-aminophenyl)porphyrin,” J. Photochem. Photobiol. B 54, 162–167 (2000).
[CrossRef] [PubMed]

Fadeev, V. V.

E. A. Shirshin, A. A. Banishev, and V. V. Fadeev, “Localized donor-acceptor pairs of fluorophores: determination of energy transfer rate using nonlinear fluorimetry,” JETP Lett. 89, 475–478 (2009).
[CrossRef]

A. A. Banishev, D. V. Maslov, and V. V. Fadeev, “Determination of the quantum yield of singlet–triplet conversion in complex organic compounds by the methods of laser fluorimetry,” Moscow Univ. Phys. Bull. 63, 218–220 (2008).
[CrossRef]

A. A. Banishev, E. A. Shirshin, and V. V. Fadeev, “Determination of photophysical parameters of tryptophan molecules by methods of laser fluorimetry,” IEEE J. Quantum Electron. 38, 77–81 (2008).
[CrossRef]

A. A. Banishev, E. A. Shirshin, and V. V. Fadeev, “Laser fluorimetry of proteins containing one and two tryptophan residues,” Laser Phys. 18, 861–867 (2008).
[CrossRef]

A. A. Banishev, E. P. Vrzheshch, D. V. Dmitrienko, V. L. Drutsa, D. V. Maslov, V. Z. Pashchenko, E. A. Shirshin, P. V. Vrzheshch, and V. V. Fadeev, “A method for determining the individual optical characteristics of posttranslational fluorescent forms of fluorescent proteins with the use of nonlinear laser fluorimetry,” Biofizika 52, 792–798 (2007), in Russian.
[PubMed]

D. V. Maslov, E. E. Ostroumov, and V. V. Fadeev, “Saturation fluorimetry of complex organic compounds with a high local concentration of fluorophores (by the example of phytoplankton),” IEEE J. Quantum Electron. 36, 163–168 (2006).
[CrossRef]

A. A. Banishev, D. V. Maslov, and V. V. Fadeev, “A nanosecond laser fluorimeter,” Instrum. Exp. Tech. 49, 430–434 (2006).
[CrossRef]

V. V. Fadeev, T. A. Dolenko, E. M. Filippova, and V. V. Chubarov, “Saturation spectroscopy as a method for determining the photophysical parameters of complicated organic compounds,” Opt. Commun. 166, 25–33 (1999).
[CrossRef]

D. N. Klyshko and V. V. Fadeev, “Remote determination of the admixture concentrations in water by the method of laser spectroscopy using Raman scattering as an internal standard,” Sov. Phys. Dokl. 23, 55–57 (1978).

Filippova, E. M.

V. V. Fadeev, T. A. Dolenko, E. M. Filippova, and V. V. Chubarov, “Saturation spectroscopy as a method for determining the photophysical parameters of complicated organic compounds,” Opt. Commun. 166, 25–33 (1999).
[CrossRef]

Galanin, M. D.

V. M. Agranovich and M. D. Galanin, Electronic Excitation Energy Transfer in Condensed Matter (North-Holland, 1982).

Gensch, T.

S. Habuchi, M. Cotlet, T. Gensch, T. Bednarz, S. Haber-Pohlmeier, J. Rozenski, G. Dirix, J. Michiels, J. Vanderleyden, J. Heberle, F. C. Schryver, and J. Hofkens, “Evidence for the isomerization and decarboxylation in the photoconversion of the red fluorescent protein DsRed,” J. Am. Chem. Soc. 127, 8977–8984 (2005).
[CrossRef] [PubMed]

Gorokhov, V. V.

V. Z. Paschenko, R. P. Evstigneeva, V. V. Gorokhov, V. N. Luzgina, V. B. Tusov, and A. B. Rubin, “Photophysical properties of carborane-containing derivatives of 5,10,15,20-tetra(p-aminophenyl)porphyrin,” J. Photochem. Photobiol. B 54, 162–167 (2000).
[CrossRef] [PubMed]

Gurskaya, N. G.

A. A. Pakhomov, N. Yu. Martynova, N. G. Gurskaya, T. A. Balashova, and V. I. Martynov, “Photoconversion of the chromophore of a fluorescent protein from Dendronephthya sp.,” Biochem. 69, 901–908 (2004).
[CrossRef]

V. V. Verkhusha, D. M. Chudakov, N. G. Gurskaya, S. Lukyanov, and K. A. Lukyanov, “Common pathway for the red chromophore formation in fluorescent proteins and chromoproteins,” Chem. Biol. 11, 845–854 (2004).
[CrossRef] [PubMed]

Haber-Pohlmeier, S.

S. Habuchi, M. Cotlet, T. Gensch, T. Bednarz, S. Haber-Pohlmeier, J. Rozenski, G. Dirix, J. Michiels, J. Vanderleyden, J. Heberle, F. C. Schryver, and J. Hofkens, “Evidence for the isomerization and decarboxylation in the photoconversion of the red fluorescent protein DsRed,” J. Am. Chem. Soc. 127, 8977–8984 (2005).
[CrossRef] [PubMed]

Habuchi, S.

S. Habuchi, M. Cotlet, T. Gensch, T. Bednarz, S. Haber-Pohlmeier, J. Rozenski, G. Dirix, J. Michiels, J. Vanderleyden, J. Heberle, F. C. Schryver, and J. Hofkens, “Evidence for the isomerization and decarboxylation in the photoconversion of the red fluorescent protein DsRed,” J. Am. Chem. Soc. 127, 8977–8984 (2005).
[CrossRef] [PubMed]

Hama, H.

H. Mizuno, A. Sawano, P. Eli, H. Hama, and A. Miyawaki, “Red fluorescent protein from Discosoma as a fusion tag and a partner for fluorescence resonance energy transfer,” Biochem. 40, 2502–2510 (2001).
[CrossRef]

Harms, G. S.

R. Steinmeyer, A. Noskov, C. Krasel, I. Weber, C. Dees, and G. S. Harms, “Improved fluorescent proteins for single-molecule research in molecular tracking and co-localization,” J. Fluorescence 15, 707–721 (2005).
[CrossRef]

Heberle, J.

S. Habuchi, M. Cotlet, T. Gensch, T. Bednarz, S. Haber-Pohlmeier, J. Rozenski, G. Dirix, J. Michiels, J. Vanderleyden, J. Heberle, F. C. Schryver, and J. Hofkens, “Evidence for the isomerization and decarboxylation in the photoconversion of the red fluorescent protein DsRed,” J. Am. Chem. Soc. 127, 8977–8984 (2005).
[CrossRef] [PubMed]

Hicks, B. W.

B. W. Hicks, Green Fluorescent Protein: Applications and Protocols (Humana, 2002).
[CrossRef]

Hofkens, J.

S. Habuchi, M. Cotlet, T. Gensch, T. Bednarz, S. Haber-Pohlmeier, J. Rozenski, G. Dirix, J. Michiels, J. Vanderleyden, J. Heberle, F. C. Schryver, and J. Hofkens, “Evidence for the isomerization and decarboxylation in the photoconversion of the red fluorescent protein DsRed,” J. Am. Chem. Soc. 127, 8977–8984 (2005).
[CrossRef] [PubMed]

Ikura, M.

K. Truong and M. Ikura, “The use of FRET imaging microscopy to detect protein—protein interactions and protein conformational changes in vivo,” Curr. Opin. Struct. Biol. 11, 573–578 (2001).
[CrossRef]

King, B. A.

M. Chattoraj, B. A. King, G. U. Bublitz, and S. G. Boxer, “Ultra-fast excited state dynamics in green fluorescent protein: multiple states and proton transfer,” Proc. Natl. Acad. Sci. USA 93, 8362–8367 (1996).
[CrossRef] [PubMed]

Klyshko, D. N.

D. N. Klyshko and V. V. Fadeev, “Remote determination of the admixture concentrations in water by the method of laser spectroscopy using Raman scattering as an internal standard,” Sov. Phys. Dokl. 23, 55–57 (1978).

Krasel, C.

R. Steinmeyer, A. Noskov, C. Krasel, I. Weber, C. Dees, and G. S. Harms, “Improved fluorescent proteins for single-molecule research in molecular tracking and co-localization,” J. Fluorescence 15, 707–721 (2005).
[CrossRef]

Lounis, B.

B. Lounis, J. Deich, F. I. Rosell, Steven G. Boxer, and W. E. Moerner, “Photophysics of DsRed, a red fluorescent protein, from the ensemble to the single-molecule level,” J. Phys. Chem. B 105, 5048–5054 (2001).
[CrossRef]

Lukyanov, K. A.

V. V. Verkhusha, D. M. Chudakov, N. G. Gurskaya, S. Lukyanov, and K. A. Lukyanov, “Common pathway for the red chromophore formation in fluorescent proteins and chromoproteins,” Chem. Biol. 11, 845–854 (2004).
[CrossRef] [PubMed]

Lukyanov, S.

V. V. Verkhusha, D. M. Chudakov, N. G. Gurskaya, S. Lukyanov, and K. A. Lukyanov, “Common pathway for the red chromophore formation in fluorescent proteins and chromoproteins,” Chem. Biol. 11, 845–854 (2004).
[CrossRef] [PubMed]

Luzgina, V. N.

V. Z. Paschenko, R. P. Evstigneeva, V. V. Gorokhov, V. N. Luzgina, V. B. Tusov, and A. B. Rubin, “Photophysical properties of carborane-containing derivatives of 5,10,15,20-tetra(p-aminophenyl)porphyrin,” J. Photochem. Photobiol. B 54, 162–167 (2000).
[CrossRef] [PubMed]

Martynov, V. I.

A. A. Pakhomov, N. Yu. Martynova, N. G. Gurskaya, T. A. Balashova, and V. I. Martynov, “Photoconversion of the chromophore of a fluorescent protein from Dendronephthya sp.,” Biochem. 69, 901–908 (2004).
[CrossRef]

Martynova, N. Yu.

A. A. Pakhomov, N. Yu. Martynova, N. G. Gurskaya, T. A. Balashova, and V. I. Martynov, “Photoconversion of the chromophore of a fluorescent protein from Dendronephthya sp.,” Biochem. 69, 901–908 (2004).
[CrossRef]

Maslov, D. V.

A. A. Banishev, D. V. Maslov, and V. V. Fadeev, “Determination of the quantum yield of singlet–triplet conversion in complex organic compounds by the methods of laser fluorimetry,” Moscow Univ. Phys. Bull. 63, 218–220 (2008).
[CrossRef]

A. A. Banishev, E. P. Vrzheshch, D. V. Dmitrienko, V. L. Drutsa, D. V. Maslov, V. Z. Pashchenko, E. A. Shirshin, P. V. Vrzheshch, and V. V. Fadeev, “A method for determining the individual optical characteristics of posttranslational fluorescent forms of fluorescent proteins with the use of nonlinear laser fluorimetry,” Biofizika 52, 792–798 (2007), in Russian.
[PubMed]

D. V. Maslov, E. E. Ostroumov, and V. V. Fadeev, “Saturation fluorimetry of complex organic compounds with a high local concentration of fluorophores (by the example of phytoplankton),” IEEE J. Quantum Electron. 36, 163–168 (2006).
[CrossRef]

A. A. Banishev, D. V. Maslov, and V. V. Fadeev, “A nanosecond laser fluorimeter,” Instrum. Exp. Tech. 49, 430–434 (2006).
[CrossRef]

Michiels, J.

S. Habuchi, M. Cotlet, T. Gensch, T. Bednarz, S. Haber-Pohlmeier, J. Rozenski, G. Dirix, J. Michiels, J. Vanderleyden, J. Heberle, F. C. Schryver, and J. Hofkens, “Evidence for the isomerization and decarboxylation in the photoconversion of the red fluorescent protein DsRed,” J. Am. Chem. Soc. 127, 8977–8984 (2005).
[CrossRef] [PubMed]

Miyawaki, A.

H. Mizuno, A. Sawano, P. Eli, H. Hama, and A. Miyawaki, “Red fluorescent protein from Discosoma as a fusion tag and a partner for fluorescence resonance energy transfer,” Biochem. 40, 2502–2510 (2001).
[CrossRef]

Mizuno, H.

H. Mizuno, A. Sawano, P. Eli, H. Hama, and A. Miyawaki, “Red fluorescent protein from Discosoma as a fusion tag and a partner for fluorescence resonance energy transfer,” Biochem. 40, 2502–2510 (2001).
[CrossRef]

Moerner, W. E.

B. Lounis, J. Deich, F. I. Rosell, Steven G. Boxer, and W. E. Moerner, “Photophysics of DsRed, a red fluorescent protein, from the ensemble to the single-molecule level,” J. Phys. Chem. B 105, 5048–5054 (2001).
[CrossRef]

Noskov, A.

R. Steinmeyer, A. Noskov, C. Krasel, I. Weber, C. Dees, and G. S. Harms, “Improved fluorescent proteins for single-molecule research in molecular tracking and co-localization,” J. Fluorescence 15, 707–721 (2005).
[CrossRef]

Ostroumov, E. E.

D. V. Maslov, E. E. Ostroumov, and V. V. Fadeev, “Saturation fluorimetry of complex organic compounds with a high local concentration of fluorophores (by the example of phytoplankton),” IEEE J. Quantum Electron. 36, 163–168 (2006).
[CrossRef]

Pakhomov, A. A.

A. A. Pakhomov, N. Yu. Martynova, N. G. Gurskaya, T. A. Balashova, and V. I. Martynov, “Photoconversion of the chromophore of a fluorescent protein from Dendronephthya sp.,” Biochem. 69, 901–908 (2004).
[CrossRef]

Palmer, A. E.

R. E. Campbell, O. Tour, A. E. Palmer, P. A. Steinbach, G. S. Baird, D. A. Zacharias, and R. Y. Tsien, “A monomeric red fluorescent protein,” Proc. Natl. Acad. Sci. USA 99, 7877–7882 (2002).
[CrossRef] [PubMed]

Paschenko, V. Z.

V. Z. Paschenko, R. P. Evstigneeva, V. V. Gorokhov, V. N. Luzgina, V. B. Tusov, and A. B. Rubin, “Photophysical properties of carborane-containing derivatives of 5,10,15,20-tetra(p-aminophenyl)porphyrin,” J. Photochem. Photobiol. B 54, 162–167 (2000).
[CrossRef] [PubMed]

Pashchenko, V. Z.

A. A. Banishev, E. P. Vrzheshch, D. V. Dmitrienko, V. L. Drutsa, D. V. Maslov, V. Z. Pashchenko, E. A. Shirshin, P. V. Vrzheshch, and V. V. Fadeev, “A method for determining the individual optical characteristics of posttranslational fluorescent forms of fluorescent proteins with the use of nonlinear laser fluorimetry,” Biofizika 52, 792–798 (2007), in Russian.
[PubMed]

Prasher, D. C.

M. Chalfie, Y. Tu, G. Euskirchen, W. W. Ward, and D. C. Prasher, “Green fluorescent protein as a marker for gene expression,” Science 263, 802–805 (1994).
[CrossRef] [PubMed]

Rosell, F. I.

B. Lounis, J. Deich, F. I. Rosell, Steven G. Boxer, and W. E. Moerner, “Photophysics of DsRed, a red fluorescent protein, from the ensemble to the single-molecule level,” J. Phys. Chem. B 105, 5048–5054 (2001).
[CrossRef]

Rozenski, J.

S. Habuchi, M. Cotlet, T. Gensch, T. Bednarz, S. Haber-Pohlmeier, J. Rozenski, G. Dirix, J. Michiels, J. Vanderleyden, J. Heberle, F. C. Schryver, and J. Hofkens, “Evidence for the isomerization and decarboxylation in the photoconversion of the red fluorescent protein DsRed,” J. Am. Chem. Soc. 127, 8977–8984 (2005).
[CrossRef] [PubMed]

Rubin, A. B.

V. Z. Paschenko, R. P. Evstigneeva, V. V. Gorokhov, V. N. Luzgina, V. B. Tusov, and A. B. Rubin, “Photophysical properties of carborane-containing derivatives of 5,10,15,20-tetra(p-aminophenyl)porphyrin,” J. Photochem. Photobiol. B 54, 162–167 (2000).
[CrossRef] [PubMed]

Sawano, A.

H. Mizuno, A. Sawano, P. Eli, H. Hama, and A. Miyawaki, “Red fluorescent protein from Discosoma as a fusion tag and a partner for fluorescence resonance energy transfer,” Biochem. 40, 2502–2510 (2001).
[CrossRef]

Schryver, F. C.

S. Habuchi, M. Cotlet, T. Gensch, T. Bednarz, S. Haber-Pohlmeier, J. Rozenski, G. Dirix, J. Michiels, J. Vanderleyden, J. Heberle, F. C. Schryver, and J. Hofkens, “Evidence for the isomerization and decarboxylation in the photoconversion of the red fluorescent protein DsRed,” J. Am. Chem. Soc. 127, 8977–8984 (2005).
[CrossRef] [PubMed]

Shimomura, O.

O. Shimomura, The Discovery of Green Fluorescent Protein (Wiley, 1998).

Shirshin, E. A.

A. A. Banishev, E. P. Vrzheshch, and E. A. Shirshin, “Application of laser fluorimetry for determining the influence of a single amino-acid substitution on the individual photophysical parameters of a fluorescent form of a fluorescent protein mRFP1,” IEEE J. Quantum Electron. 39, 273–278 (2009).
[CrossRef]

E. A. Shirshin, A. A. Banishev, and V. V. Fadeev, “Localized donor-acceptor pairs of fluorophores: determination of energy transfer rate using nonlinear fluorimetry,” JETP Lett. 89, 475–478 (2009).
[CrossRef]

A. A. Banishev, E. A. Shirshin, and V. V. Fadeev, “Determination of photophysical parameters of tryptophan molecules by methods of laser fluorimetry,” IEEE J. Quantum Electron. 38, 77–81 (2008).
[CrossRef]

A. A. Banishev, E. A. Shirshin, and V. V. Fadeev, “Laser fluorimetry of proteins containing one and two tryptophan residues,” Laser Phys. 18, 861–867 (2008).
[CrossRef]

A. A. Banishev, E. P. Vrzheshch, D. V. Dmitrienko, V. L. Drutsa, D. V. Maslov, V. Z. Pashchenko, E. A. Shirshin, P. V. Vrzheshch, and V. V. Fadeev, “A method for determining the individual optical characteristics of posttranslational fluorescent forms of fluorescent proteins with the use of nonlinear laser fluorimetry,” Biofizika 52, 792–798 (2007), in Russian.
[PubMed]

Srinivas, G.

G. Srinivas, A. Yethiraj, and B. Bagchi, “FRET by FET and dynamics of polymer folding,” J. Phys. Chem. B 105, 2475–2478 (2001).
[CrossRef]

Steinbach, P. A.

R. E. Campbell, O. Tour, A. E. Palmer, P. A. Steinbach, G. S. Baird, D. A. Zacharias, and R. Y. Tsien, “A monomeric red fluorescent protein,” Proc. Natl. Acad. Sci. USA 99, 7877–7882 (2002).
[CrossRef] [PubMed]

Steinmeyer, R.

R. Steinmeyer, A. Noskov, C. Krasel, I. Weber, C. Dees, and G. S. Harms, “Improved fluorescent proteins for single-molecule research in molecular tracking and co-localization,” J. Fluorescence 15, 707–721 (2005).
[CrossRef]

Stryer, L.

L. Stryer, “Fluorescence energy transfer as a spectroscopic ruler,” Annu. Rev. Biochem. 47, 819–846 (1978).
[CrossRef] [PubMed]

Tour, O.

R. E. Campbell, O. Tour, A. E. Palmer, P. A. Steinbach, G. S. Baird, D. A. Zacharias, and R. Y. Tsien, “A monomeric red fluorescent protein,” Proc. Natl. Acad. Sci. USA 99, 7877–7882 (2002).
[CrossRef] [PubMed]

Truong, K.

K. Truong and M. Ikura, “The use of FRET imaging microscopy to detect protein—protein interactions and protein conformational changes in vivo,” Curr. Opin. Struct. Biol. 11, 573–578 (2001).
[CrossRef]

Tsien, R. Y.

R. E. Campbell, O. Tour, A. E. Palmer, P. A. Steinbach, G. S. Baird, D. A. Zacharias, and R. Y. Tsien, “A monomeric red fluorescent protein,” Proc. Natl. Acad. Sci. USA 99, 7877–7882 (2002).
[CrossRef] [PubMed]

Tu, Y.

M. Chalfie, Y. Tu, G. Euskirchen, W. W. Ward, and D. C. Prasher, “Green fluorescent protein as a marker for gene expression,” Science 263, 802–805 (1994).
[CrossRef] [PubMed]

Tusov, V. B.

V. Z. Paschenko, R. P. Evstigneeva, V. V. Gorokhov, V. N. Luzgina, V. B. Tusov, and A. B. Rubin, “Photophysical properties of carborane-containing derivatives of 5,10,15,20-tetra(p-aminophenyl)porphyrin,” J. Photochem. Photobiol. B 54, 162–167 (2000).
[CrossRef] [PubMed]

Valeur, B.

B. Valeur, “Resonance energy transfer and its applications,” in Molecular Fluorescence: Principles and Applications (Wiley-VCH, 2002), pp. 247–272.

Vanderleyden, J.

S. Habuchi, M. Cotlet, T. Gensch, T. Bednarz, S. Haber-Pohlmeier, J. Rozenski, G. Dirix, J. Michiels, J. Vanderleyden, J. Heberle, F. C. Schryver, and J. Hofkens, “Evidence for the isomerization and decarboxylation in the photoconversion of the red fluorescent protein DsRed,” J. Am. Chem. Soc. 127, 8977–8984 (2005).
[CrossRef] [PubMed]

Verkhusha, V. V.

V. V. Verkhusha, D. M. Chudakov, N. G. Gurskaya, S. Lukyanov, and K. A. Lukyanov, “Common pathway for the red chromophore formation in fluorescent proteins and chromoproteins,” Chem. Biol. 11, 845–854 (2004).
[CrossRef] [PubMed]

Vrzheshch, E. P.

A. A. Banishev, E. P. Vrzheshch, and E. A. Shirshin, “Application of laser fluorimetry for determining the influence of a single amino-acid substitution on the individual photophysical parameters of a fluorescent form of a fluorescent protein mRFP1,” IEEE J. Quantum Electron. 39, 273–278 (2009).
[CrossRef]

A. A. Banishev, E. P. Vrzheshch, D. V. Dmitrienko, V. L. Drutsa, D. V. Maslov, V. Z. Pashchenko, E. A. Shirshin, P. V. Vrzheshch, and V. V. Fadeev, “A method for determining the individual optical characteristics of posttranslational fluorescent forms of fluorescent proteins with the use of nonlinear laser fluorimetry,” Biofizika 52, 792–798 (2007), in Russian.
[PubMed]

Vrzheshch, P. V.

A. A. Banishev, E. P. Vrzheshch, D. V. Dmitrienko, V. L. Drutsa, D. V. Maslov, V. Z. Pashchenko, E. A. Shirshin, P. V. Vrzheshch, and V. V. Fadeev, “A method for determining the individual optical characteristics of posttranslational fluorescent forms of fluorescent proteins with the use of nonlinear laser fluorimetry,” Biofizika 52, 792–798 (2007), in Russian.
[PubMed]

Ward, W. W.

M. Chalfie, Y. Tu, G. Euskirchen, W. W. Ward, and D. C. Prasher, “Green fluorescent protein as a marker for gene expression,” Science 263, 802–805 (1994).
[CrossRef] [PubMed]

Weber, I.

R. Steinmeyer, A. Noskov, C. Krasel, I. Weber, C. Dees, and G. S. Harms, “Improved fluorescent proteins for single-molecule research in molecular tracking and co-localization,” J. Fluorescence 15, 707–721 (2005).
[CrossRef]

Yethiraj, A.

G. Srinivas, A. Yethiraj, and B. Bagchi, “FRET by FET and dynamics of polymer folding,” J. Phys. Chem. B 105, 2475–2478 (2001).
[CrossRef]

Zacharias, D. A.

R. E. Campbell, O. Tour, A. E. Palmer, P. A. Steinbach, G. S. Baird, D. A. Zacharias, and R. Y. Tsien, “A monomeric red fluorescent protein,” Proc. Natl. Acad. Sci. USA 99, 7877–7882 (2002).
[CrossRef] [PubMed]

Annu. Rev. Biochem. (1)

L. Stryer, “Fluorescence energy transfer as a spectroscopic ruler,” Annu. Rev. Biochem. 47, 819–846 (1978).
[CrossRef] [PubMed]

Biochem. (2)

A. A. Pakhomov, N. Yu. Martynova, N. G. Gurskaya, T. A. Balashova, and V. I. Martynov, “Photoconversion of the chromophore of a fluorescent protein from Dendronephthya sp.,” Biochem. 69, 901–908 (2004).
[CrossRef]

H. Mizuno, A. Sawano, P. Eli, H. Hama, and A. Miyawaki, “Red fluorescent protein from Discosoma as a fusion tag and a partner for fluorescence resonance energy transfer,” Biochem. 40, 2502–2510 (2001).
[CrossRef]

Biofizika (1)

A. A. Banishev, E. P. Vrzheshch, D. V. Dmitrienko, V. L. Drutsa, D. V. Maslov, V. Z. Pashchenko, E. A. Shirshin, P. V. Vrzheshch, and V. V. Fadeev, “A method for determining the individual optical characteristics of posttranslational fluorescent forms of fluorescent proteins with the use of nonlinear laser fluorimetry,” Biofizika 52, 792–798 (2007), in Russian.
[PubMed]

Chem. Biol. (1)

V. V. Verkhusha, D. M. Chudakov, N. G. Gurskaya, S. Lukyanov, and K. A. Lukyanov, “Common pathway for the red chromophore formation in fluorescent proteins and chromoproteins,” Chem. Biol. 11, 845–854 (2004).
[CrossRef] [PubMed]

Curr. Opin. Struct. Biol. (1)

K. Truong and M. Ikura, “The use of FRET imaging microscopy to detect protein—protein interactions and protein conformational changes in vivo,” Curr. Opin. Struct. Biol. 11, 573–578 (2001).
[CrossRef]

IEEE J. Quantum Electron. (3)

D. V. Maslov, E. E. Ostroumov, and V. V. Fadeev, “Saturation fluorimetry of complex organic compounds with a high local concentration of fluorophores (by the example of phytoplankton),” IEEE J. Quantum Electron. 36, 163–168 (2006).
[CrossRef]

A. A. Banishev, E. A. Shirshin, and V. V. Fadeev, “Determination of photophysical parameters of tryptophan molecules by methods of laser fluorimetry,” IEEE J. Quantum Electron. 38, 77–81 (2008).
[CrossRef]

A. A. Banishev, E. P. Vrzheshch, and E. A. Shirshin, “Application of laser fluorimetry for determining the influence of a single amino-acid substitution on the individual photophysical parameters of a fluorescent form of a fluorescent protein mRFP1,” IEEE J. Quantum Electron. 39, 273–278 (2009).
[CrossRef]

Instrum. Exp. Tech. (1)

A. A. Banishev, D. V. Maslov, and V. V. Fadeev, “A nanosecond laser fluorimeter,” Instrum. Exp. Tech. 49, 430–434 (2006).
[CrossRef]

J. Am. Chem. Soc. (1)

S. Habuchi, M. Cotlet, T. Gensch, T. Bednarz, S. Haber-Pohlmeier, J. Rozenski, G. Dirix, J. Michiels, J. Vanderleyden, J. Heberle, F. C. Schryver, and J. Hofkens, “Evidence for the isomerization and decarboxylation in the photoconversion of the red fluorescent protein DsRed,” J. Am. Chem. Soc. 127, 8977–8984 (2005).
[CrossRef] [PubMed]

J. Fluorescence (1)

R. Steinmeyer, A. Noskov, C. Krasel, I. Weber, C. Dees, and G. S. Harms, “Improved fluorescent proteins for single-molecule research in molecular tracking and co-localization,” J. Fluorescence 15, 707–721 (2005).
[CrossRef]

J. Photochem. Photobiol. B (1)

V. Z. Paschenko, R. P. Evstigneeva, V. V. Gorokhov, V. N. Luzgina, V. B. Tusov, and A. B. Rubin, “Photophysical properties of carborane-containing derivatives of 5,10,15,20-tetra(p-aminophenyl)porphyrin,” J. Photochem. Photobiol. B 54, 162–167 (2000).
[CrossRef] [PubMed]

J. Phys. Chem. B (2)

G. Srinivas, A. Yethiraj, and B. Bagchi, “FRET by FET and dynamics of polymer folding,” J. Phys. Chem. B 105, 2475–2478 (2001).
[CrossRef]

B. Lounis, J. Deich, F. I. Rosell, Steven G. Boxer, and W. E. Moerner, “Photophysics of DsRed, a red fluorescent protein, from the ensemble to the single-molecule level,” J. Phys. Chem. B 105, 5048–5054 (2001).
[CrossRef]

JETP Lett. (1)

E. A. Shirshin, A. A. Banishev, and V. V. Fadeev, “Localized donor-acceptor pairs of fluorophores: determination of energy transfer rate using nonlinear fluorimetry,” JETP Lett. 89, 475–478 (2009).
[CrossRef]

Laser Phys. (1)

A. A. Banishev, E. A. Shirshin, and V. V. Fadeev, “Laser fluorimetry of proteins containing one and two tryptophan residues,” Laser Phys. 18, 861–867 (2008).
[CrossRef]

Moscow Univ. Phys. Bull. (1)

A. A. Banishev, D. V. Maslov, and V. V. Fadeev, “Determination of the quantum yield of singlet–triplet conversion in complex organic compounds by the methods of laser fluorimetry,” Moscow Univ. Phys. Bull. 63, 218–220 (2008).
[CrossRef]

Opt. Commun. (1)

V. V. Fadeev, T. A. Dolenko, E. M. Filippova, and V. V. Chubarov, “Saturation spectroscopy as a method for determining the photophysical parameters of complicated organic compounds,” Opt. Commun. 166, 25–33 (1999).
[CrossRef]

Proc. Natl. Acad. Sci. USA (2)

M. Chattoraj, B. A. King, G. U. Bublitz, and S. G. Boxer, “Ultra-fast excited state dynamics in green fluorescent protein: multiple states and proton transfer,” Proc. Natl. Acad. Sci. USA 93, 8362–8367 (1996).
[CrossRef] [PubMed]

R. E. Campbell, O. Tour, A. E. Palmer, P. A. Steinbach, G. S. Baird, D. A. Zacharias, and R. Y. Tsien, “A monomeric red fluorescent protein,” Proc. Natl. Acad. Sci. USA 99, 7877–7882 (2002).
[CrossRef] [PubMed]

Science (1)

M. Chalfie, Y. Tu, G. Euskirchen, W. W. Ward, and D. C. Prasher, “Green fluorescent protein as a marker for gene expression,” Science 263, 802–805 (1994).
[CrossRef] [PubMed]

Sov. Phys. Dokl. (1)

D. N. Klyshko and V. V. Fadeev, “Remote determination of the admixture concentrations in water by the method of laser spectroscopy using Raman scattering as an internal standard,” Sov. Phys. Dokl. 23, 55–57 (1978).

Other (6)

O. Shimomura, The Discovery of Green Fluorescent Protein (Wiley, 1998).

B. W. Hicks, Green Fluorescent Protein: Applications and Protocols (Humana, 2002).
[CrossRef]

Protein Data Bank, ID 1 g7 k, www.pdb.org.

B. Valeur, “Resonance energy transfer and its applications,” in Molecular Fluorescence: Principles and Applications (Wiley-VCH, 2002), pp. 247–272.

C. Caratheodory, Calculus of Variations and Partial Differential Equations of First Order (American Mathematical Society, 1999).

V. M. Agranovich and M. D. Galanin, Electronic Excitation Energy Transfer in Condensed Matter (North-Holland, 1982).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Absorption (solid curve) and fluorescence excitation (dotted curve, registration wavelength is 607 nm ) spectra of mRFP1. The spectra are normalized to the value of the signal intensity at 584 nm .

Fig. 2
Fig. 2

Fluorescence spectrum of mRFP1 under excitation by radiation with the wavelength of 270 nm .

Fig. 3
Fig. 3

Saturation curves of the donor (circles, fluorescence registration at 330 nm ) and the acceptor (squares, fluorescence registration at 607 nm ) in mRFP1 for the mixture of the R and G forms.

Tables (1)

Tables Icon

Table 1 Values of the Photophysical Parameters of the LDA Pairs in mRFP1 Protein by UV Excitation

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

n 1 t = - F ( t , r ) · ( σ D + σ A ) · n 1 + n 2 τ D + n 3 τ A , n 2 t = - F ( t , r ) · σ A · n 2 - n 2 τ D - K D A · n 2 + F ( t , r ) · σ D · n 1 + n 4 τ A , n 3 t = - F ( t , r ) · σ D · n 3 - n 3 τ A + F ( t , r ) · σ A · n 1 + n 4 τ D + K D A · n 2 , n 4 t = F ( t , r ) · σ A · n 2 + F ( t , r ) · σ D · n 3 - n 4 τ D - n 4 τ A , n 1 + n 2 + n 3 + n 4 = n 0 ,
N Fl D ( λ ) = τ D 1 η D · - + ( n 2 ( t , r ) + n 4 ( t , r ) ) d t ,
N Fl A ( λ ) = τ A 1 η A · - + ( n 3 ( t , r ) + n 4 ( t , r ) ) d t ,
I A ( t ) B × exp ( t / τ A ) A × exp ( t / τ D + A ) ,
N Fl D ( λ ) = τ D 1 η D · + [ c R · ( n 2 R ( t , r ) + n 4 R ( t , r ) ) + c G · ( n 2 G ( t , r ) + n 4 G ( t , r ) ) ] d t ,
N Fl A ( λ ) = τ A 1 η A · + c R [ n 3 R ( t , r ) + n 4 R ( t , r ) ] d t ,

Metrics