Abstract

We simultaneously measured the diffuse reflectance spectra and transmittance spectra of in vitro rat cerebral cortical tissue slices perfused with artificial cerebrospinal fluid (aCSF) in the wavelength range from 500 to 900nm. An ischemia-like condition in the cortical tissue was induced by oxygen/glucose deprivation (OGD) of the aCSF. Diffuse reflectance and transmittance of the cortical slices were decreased and increased, respectively, during OGD. Spectral data of reduced scattering coefficients and absorption coefficients were estimated by the inverse Monte Carlo simulation for light transport in tissue. As with OGD, significant decrease of the reduced scattering coefficients and alteration of the absorption coefficient spectrum were observed over the measured wavelength range. The mean maximum amplitudes of change in the absorption coefficient at 520, 550, 605, and 830nm were 0.33±0.14, 0.30±0.12, 0.30±0.14, and 0.04±0.16, respectively, whereas those in the reduced scattering coefficient at 520, 550, 605, and 830nm were 0.37±0.08, 0.38±0.08, 0.38±0.08, and 0.39±0.08. Variations in the reduced scattering coefficients implied cell deformation mainly due to cell swelling, whereas those in the absorption spectra indicated reductions in heme aa3 and CuA in cytochrome c oxidase and cytochrome c.

© 2010 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. T. Bonhoeffer and A. Grinvald, Brain Mapping: The Methods, A.W.Toga and J.C.Mazziotta, eds. (Academic, 1996).
  2. Y. Yamashita, M. Oda, H. Naruse, and M. Tamura, “In vivo measurement of reduced scattering and absorption coefficients of living tissue using time-resolved spectroscopy,” in Advanced Solid State Lasers, Vol. 2 of OSA Trends in Optics and Photonics (Optical Society of America, 1996), pp. 387–390.
  3. S. Kawauchi, S. Sato, H. Ooigawa, H. Nawashiro, M. Ishihara, and M. Kikuchi, “Simultaneous measurement of changes in light absorption due to the reduction of cytochrome c oxidase and light scattering in rat brains during loss of tissue viability,” Appl. Opt. 47, 4164–4176 (2008).
    [CrossRef] [PubMed]
  4. M. Sato, M. S. Hrebesh, and I. Nishidate, “Measurement of signal intensity depth profiles in rat brains with cardiac arrest using wide-field optical coherence tomography,” Appl. Opt. 48, 4354–4364 (2009).
    [CrossRef] [PubMed]
  5. W. F. Cheong, S. A. Prahl, and J. Welch, “A review of the optical properties of biological tissues,” IEEE J. Quantum Electron. 26, 2166–2185 (1990).
    [CrossRef]
  6. A. Taddeucci, F. Martelli, M. Barilli, M. Ferrari, and G. Zaccanti, “Optical properties of brain tissue,” J. Biomed. Opt. 1, 117–123 (1996).
    [CrossRef]
  7. A. N. Yaroslavsky, P. C. Schulze, I. V. Yaroslavsky, R. Schober, F. Ulrich, and H.-J. Schwarzmaier, “Optical properties of selected native and coagulated human brain tissue in vitro in the visible and near infrared spectral range,” Phys. Med. Biol. 47, 2059–2073 (2002).
    [CrossRef] [PubMed]
  8. P. G. Aitken, D. Fayuk, G. G. Somjen, and D. A. Turner, “Use of intrinsic optical signals to monitor physiological changes in brain tissue slices,” Methods Enzymol. 18, 91–103 (1999).
    [CrossRef]
  9. R. D. Andrew, C. R. Jarvis, and A. S. Obeidat, “Potential sources of intrinsic optical signals imaged in live brain slices,” Methods Enzymol. 18, 185–196 (1999).
    [CrossRef]
  10. L. Tao, “Light scattering in brain slices measured with a photon counting fiber optic system,” J. Neurosci. Methods 101, 19–29 (2000).
    [CrossRef] [PubMed]
  11. S. Bahar, D. Fayuk, G. G. Somjen, P. G. Aitken, and D. A. Turner, “Mitochondrial and intrinsic optical signals imaged during hypoxia and spreading depression in rat hippocampal slices,” J. Neurophysiol. 84, 311–324 (2000).
    [PubMed]
  12. T. A. Basarsky, D. Feighan, and B. A. MacVicar, “Glutamate release through volume-activated channels during spreading depression,” J. Neurosci. 19, 6439–6445 (1999).
    [PubMed]
  13. L. Tao, D. Masri, S. Hrabvětová, and C. Nicholson, “Light scattering in rat neocortical slices differs during spreading depression and ischemia,” Brain Res. 952, 290–300 (2002).
    [CrossRef] [PubMed]
  14. C. R. Jarvis, T. R. Anderson, and R. D. Andrew, “Anoxic depolarization mediates acute damage independent of glutamate in neocortical brain slices,” Cereb. Cortex 11, 249–259 (2001).
    [CrossRef] [PubMed]
  15. I. Joshi and R. D. Andrew, “Imaging anoxic depolarization during ischemia-like conditions in the mouse hemi-brain slice,” J. Neurophysiol. 85, 414–424 (2001).
    [PubMed]
  16. T. R. Anderson, C. R. Jarvis, A. J. Biedermann, C. Molnar, and R. D. Andrew, “Blocking the anoxic depolarization protects without functional compromise following simulated stroke in cortical brain slices,” J. Neurophysiol. 93, 963–979 (2004).
    [CrossRef] [PubMed]
  17. L.-H. Wang, S. L. Jacques, and L.-Q. Zheng, “MCML-Monte Carlo modeling of photon transport in multi-layered tissues,” Comput. Methods Programs Biomed. 47, 131–146 (1995).
    [CrossRef] [PubMed]
  18. F. Fujii, Y. Nodasaka, G. Nishimura, and M. Tamura, “Anoxia induces matrix shrinkage accompanied by an increase in light scattering in isolated brain mitochondria,” Brain Res. 999, 29–39 (2004).
    [CrossRef] [PubMed]
  19. A. Matsunaga, Y. Nomura, S. Kuroda, M. Tamura, J. Nishihira, and N. Yoshimura, “Energy-dependent redox state of heme a+a3 and copper of cytochrome oxidase in perfused rat brain in situ,” Am. J. Physiol. 275, C1022–C1030 (1998).
    [PubMed]
  20. Y. Hoshi, O. Hazeki, and M. Tamura, “Oxygen dependence of redox state of copper in cytochrome oxidase in vitro,” J. Appl. Physiol. 74, 1622–1627 (1993).
    [PubMed]
  21. C. E. Cooper and R. Springett, “Measurement of cytochrome oxidase and mitochondrial energetic by near-infrared spectroscopy,” Philos. Trans. R. Soc. London B 352, 669–676 (1997).
    [CrossRef]
  22. P. Lipton, “Ischemic cell death in brain neuron,” Physiol. Rev. 79, 1431–1568 (1999).
    [PubMed]
  23. T. M. Polischuk, C. R. Jarvis, and R. D. Andrew, “Intrinsic optical signaling denoting neuronal damage in response to acute excitotoxic insult in the hippocampal slice,” Neurobiol. Dis. 4, 423–437 (1998).
    [CrossRef] [PubMed]
  24. C. R. Jarvis, L. Lilge, G. J. Vipond, and R. D. Andrew, “Interpretation of intrinsic optical signals and calcein fluorescence during acute excitotoxic insult in the hippocampal slice,” NeuroImage 10, 357–372 (1999).
    [CrossRef] [PubMed]
  25. A. Obeidat, C. R. Jarvis, and R. D. Andrew, “Glutamate does not mediate acute neuronal damage following spreading depression induced by O2/glucose deprivation in the hippocampal slice,” J. Cereb. Blood Flow Metab. 20, 412–422 (2000).
    [CrossRef] [PubMed]

2009

2008

2004

T. R. Anderson, C. R. Jarvis, A. J. Biedermann, C. Molnar, and R. D. Andrew, “Blocking the anoxic depolarization protects without functional compromise following simulated stroke in cortical brain slices,” J. Neurophysiol. 93, 963–979 (2004).
[CrossRef] [PubMed]

F. Fujii, Y. Nodasaka, G. Nishimura, and M. Tamura, “Anoxia induces matrix shrinkage accompanied by an increase in light scattering in isolated brain mitochondria,” Brain Res. 999, 29–39 (2004).
[CrossRef] [PubMed]

2002

L. Tao, D. Masri, S. Hrabvětová, and C. Nicholson, “Light scattering in rat neocortical slices differs during spreading depression and ischemia,” Brain Res. 952, 290–300 (2002).
[CrossRef] [PubMed]

A. N. Yaroslavsky, P. C. Schulze, I. V. Yaroslavsky, R. Schober, F. Ulrich, and H.-J. Schwarzmaier, “Optical properties of selected native and coagulated human brain tissue in vitro in the visible and near infrared spectral range,” Phys. Med. Biol. 47, 2059–2073 (2002).
[CrossRef] [PubMed]

2001

C. R. Jarvis, T. R. Anderson, and R. D. Andrew, “Anoxic depolarization mediates acute damage independent of glutamate in neocortical brain slices,” Cereb. Cortex 11, 249–259 (2001).
[CrossRef] [PubMed]

I. Joshi and R. D. Andrew, “Imaging anoxic depolarization during ischemia-like conditions in the mouse hemi-brain slice,” J. Neurophysiol. 85, 414–424 (2001).
[PubMed]

2000

L. Tao, “Light scattering in brain slices measured with a photon counting fiber optic system,” J. Neurosci. Methods 101, 19–29 (2000).
[CrossRef] [PubMed]

S. Bahar, D. Fayuk, G. G. Somjen, P. G. Aitken, and D. A. Turner, “Mitochondrial and intrinsic optical signals imaged during hypoxia and spreading depression in rat hippocampal slices,” J. Neurophysiol. 84, 311–324 (2000).
[PubMed]

A. Obeidat, C. R. Jarvis, and R. D. Andrew, “Glutamate does not mediate acute neuronal damage following spreading depression induced by O2/glucose deprivation in the hippocampal slice,” J. Cereb. Blood Flow Metab. 20, 412–422 (2000).
[CrossRef] [PubMed]

1999

C. R. Jarvis, L. Lilge, G. J. Vipond, and R. D. Andrew, “Interpretation of intrinsic optical signals and calcein fluorescence during acute excitotoxic insult in the hippocampal slice,” NeuroImage 10, 357–372 (1999).
[CrossRef] [PubMed]

T. A. Basarsky, D. Feighan, and B. A. MacVicar, “Glutamate release through volume-activated channels during spreading depression,” J. Neurosci. 19, 6439–6445 (1999).
[PubMed]

P. G. Aitken, D. Fayuk, G. G. Somjen, and D. A. Turner, “Use of intrinsic optical signals to monitor physiological changes in brain tissue slices,” Methods Enzymol. 18, 91–103 (1999).
[CrossRef]

R. D. Andrew, C. R. Jarvis, and A. S. Obeidat, “Potential sources of intrinsic optical signals imaged in live brain slices,” Methods Enzymol. 18, 185–196 (1999).
[CrossRef]

P. Lipton, “Ischemic cell death in brain neuron,” Physiol. Rev. 79, 1431–1568 (1999).
[PubMed]

1998

T. M. Polischuk, C. R. Jarvis, and R. D. Andrew, “Intrinsic optical signaling denoting neuronal damage in response to acute excitotoxic insult in the hippocampal slice,” Neurobiol. Dis. 4, 423–437 (1998).
[CrossRef] [PubMed]

A. Matsunaga, Y. Nomura, S. Kuroda, M. Tamura, J. Nishihira, and N. Yoshimura, “Energy-dependent redox state of heme a+a3 and copper of cytochrome oxidase in perfused rat brain in situ,” Am. J. Physiol. 275, C1022–C1030 (1998).
[PubMed]

1997

C. E. Cooper and R. Springett, “Measurement of cytochrome oxidase and mitochondrial energetic by near-infrared spectroscopy,” Philos. Trans. R. Soc. London B 352, 669–676 (1997).
[CrossRef]

1996

A. Taddeucci, F. Martelli, M. Barilli, M. Ferrari, and G. Zaccanti, “Optical properties of brain tissue,” J. Biomed. Opt. 1, 117–123 (1996).
[CrossRef]

1995

L.-H. Wang, S. L. Jacques, and L.-Q. Zheng, “MCML-Monte Carlo modeling of photon transport in multi-layered tissues,” Comput. Methods Programs Biomed. 47, 131–146 (1995).
[CrossRef] [PubMed]

1993

Y. Hoshi, O. Hazeki, and M. Tamura, “Oxygen dependence of redox state of copper in cytochrome oxidase in vitro,” J. Appl. Physiol. 74, 1622–1627 (1993).
[PubMed]

1990

W. F. Cheong, S. A. Prahl, and J. Welch, “A review of the optical properties of biological tissues,” IEEE J. Quantum Electron. 26, 2166–2185 (1990).
[CrossRef]

Aitken, P. G.

S. Bahar, D. Fayuk, G. G. Somjen, P. G. Aitken, and D. A. Turner, “Mitochondrial and intrinsic optical signals imaged during hypoxia and spreading depression in rat hippocampal slices,” J. Neurophysiol. 84, 311–324 (2000).
[PubMed]

P. G. Aitken, D. Fayuk, G. G. Somjen, and D. A. Turner, “Use of intrinsic optical signals to monitor physiological changes in brain tissue slices,” Methods Enzymol. 18, 91–103 (1999).
[CrossRef]

Anderson, T. R.

T. R. Anderson, C. R. Jarvis, A. J. Biedermann, C. Molnar, and R. D. Andrew, “Blocking the anoxic depolarization protects without functional compromise following simulated stroke in cortical brain slices,” J. Neurophysiol. 93, 963–979 (2004).
[CrossRef] [PubMed]

C. R. Jarvis, T. R. Anderson, and R. D. Andrew, “Anoxic depolarization mediates acute damage independent of glutamate in neocortical brain slices,” Cereb. Cortex 11, 249–259 (2001).
[CrossRef] [PubMed]

Andrew, R. D.

T. R. Anderson, C. R. Jarvis, A. J. Biedermann, C. Molnar, and R. D. Andrew, “Blocking the anoxic depolarization protects without functional compromise following simulated stroke in cortical brain slices,” J. Neurophysiol. 93, 963–979 (2004).
[CrossRef] [PubMed]

C. R. Jarvis, T. R. Anderson, and R. D. Andrew, “Anoxic depolarization mediates acute damage independent of glutamate in neocortical brain slices,” Cereb. Cortex 11, 249–259 (2001).
[CrossRef] [PubMed]

I. Joshi and R. D. Andrew, “Imaging anoxic depolarization during ischemia-like conditions in the mouse hemi-brain slice,” J. Neurophysiol. 85, 414–424 (2001).
[PubMed]

A. Obeidat, C. R. Jarvis, and R. D. Andrew, “Glutamate does not mediate acute neuronal damage following spreading depression induced by O2/glucose deprivation in the hippocampal slice,” J. Cereb. Blood Flow Metab. 20, 412–422 (2000).
[CrossRef] [PubMed]

R. D. Andrew, C. R. Jarvis, and A. S. Obeidat, “Potential sources of intrinsic optical signals imaged in live brain slices,” Methods Enzymol. 18, 185–196 (1999).
[CrossRef]

C. R. Jarvis, L. Lilge, G. J. Vipond, and R. D. Andrew, “Interpretation of intrinsic optical signals and calcein fluorescence during acute excitotoxic insult in the hippocampal slice,” NeuroImage 10, 357–372 (1999).
[CrossRef] [PubMed]

T. M. Polischuk, C. R. Jarvis, and R. D. Andrew, “Intrinsic optical signaling denoting neuronal damage in response to acute excitotoxic insult in the hippocampal slice,” Neurobiol. Dis. 4, 423–437 (1998).
[CrossRef] [PubMed]

Bahar, S.

S. Bahar, D. Fayuk, G. G. Somjen, P. G. Aitken, and D. A. Turner, “Mitochondrial and intrinsic optical signals imaged during hypoxia and spreading depression in rat hippocampal slices,” J. Neurophysiol. 84, 311–324 (2000).
[PubMed]

Barilli, M.

A. Taddeucci, F. Martelli, M. Barilli, M. Ferrari, and G. Zaccanti, “Optical properties of brain tissue,” J. Biomed. Opt. 1, 117–123 (1996).
[CrossRef]

Basarsky, T. A.

T. A. Basarsky, D. Feighan, and B. A. MacVicar, “Glutamate release through volume-activated channels during spreading depression,” J. Neurosci. 19, 6439–6445 (1999).
[PubMed]

Biedermann, A. J.

T. R. Anderson, C. R. Jarvis, A. J. Biedermann, C. Molnar, and R. D. Andrew, “Blocking the anoxic depolarization protects without functional compromise following simulated stroke in cortical brain slices,” J. Neurophysiol. 93, 963–979 (2004).
[CrossRef] [PubMed]

Bonhoeffer, T.

T. Bonhoeffer and A. Grinvald, Brain Mapping: The Methods, A.W.Toga and J.C.Mazziotta, eds. (Academic, 1996).

Cheong, W. F.

W. F. Cheong, S. A. Prahl, and J. Welch, “A review of the optical properties of biological tissues,” IEEE J. Quantum Electron. 26, 2166–2185 (1990).
[CrossRef]

Cooper, C. E.

C. E. Cooper and R. Springett, “Measurement of cytochrome oxidase and mitochondrial energetic by near-infrared spectroscopy,” Philos. Trans. R. Soc. London B 352, 669–676 (1997).
[CrossRef]

Fayuk, D.

S. Bahar, D. Fayuk, G. G. Somjen, P. G. Aitken, and D. A. Turner, “Mitochondrial and intrinsic optical signals imaged during hypoxia and spreading depression in rat hippocampal slices,” J. Neurophysiol. 84, 311–324 (2000).
[PubMed]

P. G. Aitken, D. Fayuk, G. G. Somjen, and D. A. Turner, “Use of intrinsic optical signals to monitor physiological changes in brain tissue slices,” Methods Enzymol. 18, 91–103 (1999).
[CrossRef]

Feighan, D.

T. A. Basarsky, D. Feighan, and B. A. MacVicar, “Glutamate release through volume-activated channels during spreading depression,” J. Neurosci. 19, 6439–6445 (1999).
[PubMed]

Ferrari, M.

A. Taddeucci, F. Martelli, M. Barilli, M. Ferrari, and G. Zaccanti, “Optical properties of brain tissue,” J. Biomed. Opt. 1, 117–123 (1996).
[CrossRef]

Fujii, F.

F. Fujii, Y. Nodasaka, G. Nishimura, and M. Tamura, “Anoxia induces matrix shrinkage accompanied by an increase in light scattering in isolated brain mitochondria,” Brain Res. 999, 29–39 (2004).
[CrossRef] [PubMed]

Grinvald, A.

T. Bonhoeffer and A. Grinvald, Brain Mapping: The Methods, A.W.Toga and J.C.Mazziotta, eds. (Academic, 1996).

Hazeki, O.

Y. Hoshi, O. Hazeki, and M. Tamura, “Oxygen dependence of redox state of copper in cytochrome oxidase in vitro,” J. Appl. Physiol. 74, 1622–1627 (1993).
[PubMed]

Hoshi, Y.

Y. Hoshi, O. Hazeki, and M. Tamura, “Oxygen dependence of redox state of copper in cytochrome oxidase in vitro,” J. Appl. Physiol. 74, 1622–1627 (1993).
[PubMed]

Hrabvetová, S.

L. Tao, D. Masri, S. Hrabvětová, and C. Nicholson, “Light scattering in rat neocortical slices differs during spreading depression and ischemia,” Brain Res. 952, 290–300 (2002).
[CrossRef] [PubMed]

Hrebesh, M. S.

Ishihara, M.

Jacques, S. L.

L.-H. Wang, S. L. Jacques, and L.-Q. Zheng, “MCML-Monte Carlo modeling of photon transport in multi-layered tissues,” Comput. Methods Programs Biomed. 47, 131–146 (1995).
[CrossRef] [PubMed]

Jarvis, C. R.

T. R. Anderson, C. R. Jarvis, A. J. Biedermann, C. Molnar, and R. D. Andrew, “Blocking the anoxic depolarization protects without functional compromise following simulated stroke in cortical brain slices,” J. Neurophysiol. 93, 963–979 (2004).
[CrossRef] [PubMed]

C. R. Jarvis, T. R. Anderson, and R. D. Andrew, “Anoxic depolarization mediates acute damage independent of glutamate in neocortical brain slices,” Cereb. Cortex 11, 249–259 (2001).
[CrossRef] [PubMed]

A. Obeidat, C. R. Jarvis, and R. D. Andrew, “Glutamate does not mediate acute neuronal damage following spreading depression induced by O2/glucose deprivation in the hippocampal slice,” J. Cereb. Blood Flow Metab. 20, 412–422 (2000).
[CrossRef] [PubMed]

C. R. Jarvis, L. Lilge, G. J. Vipond, and R. D. Andrew, “Interpretation of intrinsic optical signals and calcein fluorescence during acute excitotoxic insult in the hippocampal slice,” NeuroImage 10, 357–372 (1999).
[CrossRef] [PubMed]

R. D. Andrew, C. R. Jarvis, and A. S. Obeidat, “Potential sources of intrinsic optical signals imaged in live brain slices,” Methods Enzymol. 18, 185–196 (1999).
[CrossRef]

T. M. Polischuk, C. R. Jarvis, and R. D. Andrew, “Intrinsic optical signaling denoting neuronal damage in response to acute excitotoxic insult in the hippocampal slice,” Neurobiol. Dis. 4, 423–437 (1998).
[CrossRef] [PubMed]

Joshi, I.

I. Joshi and R. D. Andrew, “Imaging anoxic depolarization during ischemia-like conditions in the mouse hemi-brain slice,” J. Neurophysiol. 85, 414–424 (2001).
[PubMed]

Kawauchi, S.

Kikuchi, M.

Kuroda, S.

A. Matsunaga, Y. Nomura, S. Kuroda, M. Tamura, J. Nishihira, and N. Yoshimura, “Energy-dependent redox state of heme a+a3 and copper of cytochrome oxidase in perfused rat brain in situ,” Am. J. Physiol. 275, C1022–C1030 (1998).
[PubMed]

Lilge, L.

C. R. Jarvis, L. Lilge, G. J. Vipond, and R. D. Andrew, “Interpretation of intrinsic optical signals and calcein fluorescence during acute excitotoxic insult in the hippocampal slice,” NeuroImage 10, 357–372 (1999).
[CrossRef] [PubMed]

Lipton, P.

P. Lipton, “Ischemic cell death in brain neuron,” Physiol. Rev. 79, 1431–1568 (1999).
[PubMed]

MacVicar, B. A.

T. A. Basarsky, D. Feighan, and B. A. MacVicar, “Glutamate release through volume-activated channels during spreading depression,” J. Neurosci. 19, 6439–6445 (1999).
[PubMed]

Martelli, F.

A. Taddeucci, F. Martelli, M. Barilli, M. Ferrari, and G. Zaccanti, “Optical properties of brain tissue,” J. Biomed. Opt. 1, 117–123 (1996).
[CrossRef]

Masri, D.

L. Tao, D. Masri, S. Hrabvětová, and C. Nicholson, “Light scattering in rat neocortical slices differs during spreading depression and ischemia,” Brain Res. 952, 290–300 (2002).
[CrossRef] [PubMed]

Matsunaga, A.

A. Matsunaga, Y. Nomura, S. Kuroda, M. Tamura, J. Nishihira, and N. Yoshimura, “Energy-dependent redox state of heme a+a3 and copper of cytochrome oxidase in perfused rat brain in situ,” Am. J. Physiol. 275, C1022–C1030 (1998).
[PubMed]

Molnar, C.

T. R. Anderson, C. R. Jarvis, A. J. Biedermann, C. Molnar, and R. D. Andrew, “Blocking the anoxic depolarization protects without functional compromise following simulated stroke in cortical brain slices,” J. Neurophysiol. 93, 963–979 (2004).
[CrossRef] [PubMed]

Naruse, H.

Y. Yamashita, M. Oda, H. Naruse, and M. Tamura, “In vivo measurement of reduced scattering and absorption coefficients of living tissue using time-resolved spectroscopy,” in Advanced Solid State Lasers, Vol. 2 of OSA Trends in Optics and Photonics (Optical Society of America, 1996), pp. 387–390.

Nawashiro, H.

Nicholson, C.

L. Tao, D. Masri, S. Hrabvětová, and C. Nicholson, “Light scattering in rat neocortical slices differs during spreading depression and ischemia,” Brain Res. 952, 290–300 (2002).
[CrossRef] [PubMed]

Nishidate, I.

Nishihira, J.

A. Matsunaga, Y. Nomura, S. Kuroda, M. Tamura, J. Nishihira, and N. Yoshimura, “Energy-dependent redox state of heme a+a3 and copper of cytochrome oxidase in perfused rat brain in situ,” Am. J. Physiol. 275, C1022–C1030 (1998).
[PubMed]

Nishimura, G.

F. Fujii, Y. Nodasaka, G. Nishimura, and M. Tamura, “Anoxia induces matrix shrinkage accompanied by an increase in light scattering in isolated brain mitochondria,” Brain Res. 999, 29–39 (2004).
[CrossRef] [PubMed]

Nodasaka, Y.

F. Fujii, Y. Nodasaka, G. Nishimura, and M. Tamura, “Anoxia induces matrix shrinkage accompanied by an increase in light scattering in isolated brain mitochondria,” Brain Res. 999, 29–39 (2004).
[CrossRef] [PubMed]

Nomura, Y.

A. Matsunaga, Y. Nomura, S. Kuroda, M. Tamura, J. Nishihira, and N. Yoshimura, “Energy-dependent redox state of heme a+a3 and copper of cytochrome oxidase in perfused rat brain in situ,” Am. J. Physiol. 275, C1022–C1030 (1998).
[PubMed]

Obeidat, A.

A. Obeidat, C. R. Jarvis, and R. D. Andrew, “Glutamate does not mediate acute neuronal damage following spreading depression induced by O2/glucose deprivation in the hippocampal slice,” J. Cereb. Blood Flow Metab. 20, 412–422 (2000).
[CrossRef] [PubMed]

Obeidat, A. S.

R. D. Andrew, C. R. Jarvis, and A. S. Obeidat, “Potential sources of intrinsic optical signals imaged in live brain slices,” Methods Enzymol. 18, 185–196 (1999).
[CrossRef]

Oda, M.

Y. Yamashita, M. Oda, H. Naruse, and M. Tamura, “In vivo measurement of reduced scattering and absorption coefficients of living tissue using time-resolved spectroscopy,” in Advanced Solid State Lasers, Vol. 2 of OSA Trends in Optics and Photonics (Optical Society of America, 1996), pp. 387–390.

Ooigawa, H.

Polischuk, T. M.

T. M. Polischuk, C. R. Jarvis, and R. D. Andrew, “Intrinsic optical signaling denoting neuronal damage in response to acute excitotoxic insult in the hippocampal slice,” Neurobiol. Dis. 4, 423–437 (1998).
[CrossRef] [PubMed]

Prahl, S. A.

W. F. Cheong, S. A. Prahl, and J. Welch, “A review of the optical properties of biological tissues,” IEEE J. Quantum Electron. 26, 2166–2185 (1990).
[CrossRef]

Sato, M.

Sato, S.

Schober, R.

A. N. Yaroslavsky, P. C. Schulze, I. V. Yaroslavsky, R. Schober, F. Ulrich, and H.-J. Schwarzmaier, “Optical properties of selected native and coagulated human brain tissue in vitro in the visible and near infrared spectral range,” Phys. Med. Biol. 47, 2059–2073 (2002).
[CrossRef] [PubMed]

Schulze, P. C.

A. N. Yaroslavsky, P. C. Schulze, I. V. Yaroslavsky, R. Schober, F. Ulrich, and H.-J. Schwarzmaier, “Optical properties of selected native and coagulated human brain tissue in vitro in the visible and near infrared spectral range,” Phys. Med. Biol. 47, 2059–2073 (2002).
[CrossRef] [PubMed]

Schwarzmaier, H.-J.

A. N. Yaroslavsky, P. C. Schulze, I. V. Yaroslavsky, R. Schober, F. Ulrich, and H.-J. Schwarzmaier, “Optical properties of selected native and coagulated human brain tissue in vitro in the visible and near infrared spectral range,” Phys. Med. Biol. 47, 2059–2073 (2002).
[CrossRef] [PubMed]

Somjen, G. G.

S. Bahar, D. Fayuk, G. G. Somjen, P. G. Aitken, and D. A. Turner, “Mitochondrial and intrinsic optical signals imaged during hypoxia and spreading depression in rat hippocampal slices,” J. Neurophysiol. 84, 311–324 (2000).
[PubMed]

P. G. Aitken, D. Fayuk, G. G. Somjen, and D. A. Turner, “Use of intrinsic optical signals to monitor physiological changes in brain tissue slices,” Methods Enzymol. 18, 91–103 (1999).
[CrossRef]

Springett, R.

C. E. Cooper and R. Springett, “Measurement of cytochrome oxidase and mitochondrial energetic by near-infrared spectroscopy,” Philos. Trans. R. Soc. London B 352, 669–676 (1997).
[CrossRef]

Taddeucci, A.

A. Taddeucci, F. Martelli, M. Barilli, M. Ferrari, and G. Zaccanti, “Optical properties of brain tissue,” J. Biomed. Opt. 1, 117–123 (1996).
[CrossRef]

Tamura, M.

F. Fujii, Y. Nodasaka, G. Nishimura, and M. Tamura, “Anoxia induces matrix shrinkage accompanied by an increase in light scattering in isolated brain mitochondria,” Brain Res. 999, 29–39 (2004).
[CrossRef] [PubMed]

A. Matsunaga, Y. Nomura, S. Kuroda, M. Tamura, J. Nishihira, and N. Yoshimura, “Energy-dependent redox state of heme a+a3 and copper of cytochrome oxidase in perfused rat brain in situ,” Am. J. Physiol. 275, C1022–C1030 (1998).
[PubMed]

Y. Hoshi, O. Hazeki, and M. Tamura, “Oxygen dependence of redox state of copper in cytochrome oxidase in vitro,” J. Appl. Physiol. 74, 1622–1627 (1993).
[PubMed]

Y. Yamashita, M. Oda, H. Naruse, and M. Tamura, “In vivo measurement of reduced scattering and absorption coefficients of living tissue using time-resolved spectroscopy,” in Advanced Solid State Lasers, Vol. 2 of OSA Trends in Optics and Photonics (Optical Society of America, 1996), pp. 387–390.

Tao, L.

L. Tao, D. Masri, S. Hrabvětová, and C. Nicholson, “Light scattering in rat neocortical slices differs during spreading depression and ischemia,” Brain Res. 952, 290–300 (2002).
[CrossRef] [PubMed]

L. Tao, “Light scattering in brain slices measured with a photon counting fiber optic system,” J. Neurosci. Methods 101, 19–29 (2000).
[CrossRef] [PubMed]

Turner, D. A.

S. Bahar, D. Fayuk, G. G. Somjen, P. G. Aitken, and D. A. Turner, “Mitochondrial and intrinsic optical signals imaged during hypoxia and spreading depression in rat hippocampal slices,” J. Neurophysiol. 84, 311–324 (2000).
[PubMed]

P. G. Aitken, D. Fayuk, G. G. Somjen, and D. A. Turner, “Use of intrinsic optical signals to monitor physiological changes in brain tissue slices,” Methods Enzymol. 18, 91–103 (1999).
[CrossRef]

Ulrich, F.

A. N. Yaroslavsky, P. C. Schulze, I. V. Yaroslavsky, R. Schober, F. Ulrich, and H.-J. Schwarzmaier, “Optical properties of selected native and coagulated human brain tissue in vitro in the visible and near infrared spectral range,” Phys. Med. Biol. 47, 2059–2073 (2002).
[CrossRef] [PubMed]

Vipond, G. J.

C. R. Jarvis, L. Lilge, G. J. Vipond, and R. D. Andrew, “Interpretation of intrinsic optical signals and calcein fluorescence during acute excitotoxic insult in the hippocampal slice,” NeuroImage 10, 357–372 (1999).
[CrossRef] [PubMed]

Wang, L.-H.

L.-H. Wang, S. L. Jacques, and L.-Q. Zheng, “MCML-Monte Carlo modeling of photon transport in multi-layered tissues,” Comput. Methods Programs Biomed. 47, 131–146 (1995).
[CrossRef] [PubMed]

Welch, J.

W. F. Cheong, S. A. Prahl, and J. Welch, “A review of the optical properties of biological tissues,” IEEE J. Quantum Electron. 26, 2166–2185 (1990).
[CrossRef]

Yamashita, Y.

Y. Yamashita, M. Oda, H. Naruse, and M. Tamura, “In vivo measurement of reduced scattering and absorption coefficients of living tissue using time-resolved spectroscopy,” in Advanced Solid State Lasers, Vol. 2 of OSA Trends in Optics and Photonics (Optical Society of America, 1996), pp. 387–390.

Yaroslavsky, A. N.

A. N. Yaroslavsky, P. C. Schulze, I. V. Yaroslavsky, R. Schober, F. Ulrich, and H.-J. Schwarzmaier, “Optical properties of selected native and coagulated human brain tissue in vitro in the visible and near infrared spectral range,” Phys. Med. Biol. 47, 2059–2073 (2002).
[CrossRef] [PubMed]

Yaroslavsky, I. V.

A. N. Yaroslavsky, P. C. Schulze, I. V. Yaroslavsky, R. Schober, F. Ulrich, and H.-J. Schwarzmaier, “Optical properties of selected native and coagulated human brain tissue in vitro in the visible and near infrared spectral range,” Phys. Med. Biol. 47, 2059–2073 (2002).
[CrossRef] [PubMed]

Yoshimura, N.

A. Matsunaga, Y. Nomura, S. Kuroda, M. Tamura, J. Nishihira, and N. Yoshimura, “Energy-dependent redox state of heme a+a3 and copper of cytochrome oxidase in perfused rat brain in situ,” Am. J. Physiol. 275, C1022–C1030 (1998).
[PubMed]

Zaccanti, G.

A. Taddeucci, F. Martelli, M. Barilli, M. Ferrari, and G. Zaccanti, “Optical properties of brain tissue,” J. Biomed. Opt. 1, 117–123 (1996).
[CrossRef]

Zheng, L.-Q.

L.-H. Wang, S. L. Jacques, and L.-Q. Zheng, “MCML-Monte Carlo modeling of photon transport in multi-layered tissues,” Comput. Methods Programs Biomed. 47, 131–146 (1995).
[CrossRef] [PubMed]

Am. J. Physiol.

A. Matsunaga, Y. Nomura, S. Kuroda, M. Tamura, J. Nishihira, and N. Yoshimura, “Energy-dependent redox state of heme a+a3 and copper of cytochrome oxidase in perfused rat brain in situ,” Am. J. Physiol. 275, C1022–C1030 (1998).
[PubMed]

Appl. Opt.

Brain Res.

F. Fujii, Y. Nodasaka, G. Nishimura, and M. Tamura, “Anoxia induces matrix shrinkage accompanied by an increase in light scattering in isolated brain mitochondria,” Brain Res. 999, 29–39 (2004).
[CrossRef] [PubMed]

L. Tao, D. Masri, S. Hrabvětová, and C. Nicholson, “Light scattering in rat neocortical slices differs during spreading depression and ischemia,” Brain Res. 952, 290–300 (2002).
[CrossRef] [PubMed]

Cereb. Cortex

C. R. Jarvis, T. R. Anderson, and R. D. Andrew, “Anoxic depolarization mediates acute damage independent of glutamate in neocortical brain slices,” Cereb. Cortex 11, 249–259 (2001).
[CrossRef] [PubMed]

Comput. Methods Programs Biomed.

L.-H. Wang, S. L. Jacques, and L.-Q. Zheng, “MCML-Monte Carlo modeling of photon transport in multi-layered tissues,” Comput. Methods Programs Biomed. 47, 131–146 (1995).
[CrossRef] [PubMed]

IEEE J. Quantum Electron.

W. F. Cheong, S. A. Prahl, and J. Welch, “A review of the optical properties of biological tissues,” IEEE J. Quantum Electron. 26, 2166–2185 (1990).
[CrossRef]

J. Appl. Physiol.

Y. Hoshi, O. Hazeki, and M. Tamura, “Oxygen dependence of redox state of copper in cytochrome oxidase in vitro,” J. Appl. Physiol. 74, 1622–1627 (1993).
[PubMed]

J. Biomed. Opt.

A. Taddeucci, F. Martelli, M. Barilli, M. Ferrari, and G. Zaccanti, “Optical properties of brain tissue,” J. Biomed. Opt. 1, 117–123 (1996).
[CrossRef]

J. Cereb. Blood Flow Metab.

A. Obeidat, C. R. Jarvis, and R. D. Andrew, “Glutamate does not mediate acute neuronal damage following spreading depression induced by O2/glucose deprivation in the hippocampal slice,” J. Cereb. Blood Flow Metab. 20, 412–422 (2000).
[CrossRef] [PubMed]

J. Neurophysiol.

I. Joshi and R. D. Andrew, “Imaging anoxic depolarization during ischemia-like conditions in the mouse hemi-brain slice,” J. Neurophysiol. 85, 414–424 (2001).
[PubMed]

T. R. Anderson, C. R. Jarvis, A. J. Biedermann, C. Molnar, and R. D. Andrew, “Blocking the anoxic depolarization protects without functional compromise following simulated stroke in cortical brain slices,” J. Neurophysiol. 93, 963–979 (2004).
[CrossRef] [PubMed]

S. Bahar, D. Fayuk, G. G. Somjen, P. G. Aitken, and D. A. Turner, “Mitochondrial and intrinsic optical signals imaged during hypoxia and spreading depression in rat hippocampal slices,” J. Neurophysiol. 84, 311–324 (2000).
[PubMed]

J. Neurosci.

T. A. Basarsky, D. Feighan, and B. A. MacVicar, “Glutamate release through volume-activated channels during spreading depression,” J. Neurosci. 19, 6439–6445 (1999).
[PubMed]

J. Neurosci. Methods

L. Tao, “Light scattering in brain slices measured with a photon counting fiber optic system,” J. Neurosci. Methods 101, 19–29 (2000).
[CrossRef] [PubMed]

Methods Enzymol.

P. G. Aitken, D. Fayuk, G. G. Somjen, and D. A. Turner, “Use of intrinsic optical signals to monitor physiological changes in brain tissue slices,” Methods Enzymol. 18, 91–103 (1999).
[CrossRef]

R. D. Andrew, C. R. Jarvis, and A. S. Obeidat, “Potential sources of intrinsic optical signals imaged in live brain slices,” Methods Enzymol. 18, 185–196 (1999).
[CrossRef]

Neurobiol. Dis.

T. M. Polischuk, C. R. Jarvis, and R. D. Andrew, “Intrinsic optical signaling denoting neuronal damage in response to acute excitotoxic insult in the hippocampal slice,” Neurobiol. Dis. 4, 423–437 (1998).
[CrossRef] [PubMed]

NeuroImage

C. R. Jarvis, L. Lilge, G. J. Vipond, and R. D. Andrew, “Interpretation of intrinsic optical signals and calcein fluorescence during acute excitotoxic insult in the hippocampal slice,” NeuroImage 10, 357–372 (1999).
[CrossRef] [PubMed]

Philos. Trans. R. Soc. London B

C. E. Cooper and R. Springett, “Measurement of cytochrome oxidase and mitochondrial energetic by near-infrared spectroscopy,” Philos. Trans. R. Soc. London B 352, 669–676 (1997).
[CrossRef]

Phys. Med. Biol.

A. N. Yaroslavsky, P. C. Schulze, I. V. Yaroslavsky, R. Schober, F. Ulrich, and H.-J. Schwarzmaier, “Optical properties of selected native and coagulated human brain tissue in vitro in the visible and near infrared spectral range,” Phys. Med. Biol. 47, 2059–2073 (2002).
[CrossRef] [PubMed]

Physiol. Rev.

P. Lipton, “Ischemic cell death in brain neuron,” Physiol. Rev. 79, 1431–1568 (1999).
[PubMed]

Other

T. Bonhoeffer and A. Grinvald, Brain Mapping: The Methods, A.W.Toga and J.C.Mazziotta, eds. (Academic, 1996).

Y. Yamashita, M. Oda, H. Naruse, and M. Tamura, “In vivo measurement of reduced scattering and absorption coefficients of living tissue using time-resolved spectroscopy,” in Advanced Solid State Lasers, Vol. 2 of OSA Trends in Optics and Photonics (Optical Society of America, 1996), pp. 387–390.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Typical photograph of a cerebral cortical slice perfused by artificial cerebrospinal fluid.

Fig. 2
Fig. 2

Schematic diagram of the experimental setup.

Fig. 3
Fig. 3

Typical measured spectra of (a) diffuse reflectance and (b) transmittance obtained from a rat cerebral cortical slice for the normal and OGD conditions.

Fig. 4
Fig. 4

Typical estimated values of (a) absorption coefficient μ a ( λ ) and (b) reduced scattering coefficient μ s ( λ ) of the rat cerebral cortical slices for the normal and OGD conditions.

Fig. 5
Fig. 5

Typical time courses of the changes in the absorption coefficients Δ μ a / μ a , c and the scattering coefficients Δ μ s / μ s , c of a rat cerebral cortical slices (a) at four specific wavelengths of 520, 550, 605, and 830 nm for 45 min . (b) Enlarged view of the part enclosed by a dashed square in (a) for 605 and 830 nm .

Tables (1)

Tables Icon

Table 1 Reduced Scattering Coefficients μ s ( cm 1 ) and Absorption Coefficients μ a ( cm 1 ) for 12 Rat Cerebral Cortical Slices for the Normal and OGD Conditions a

Metrics