Abstract

The waveguide based on the honeycomb photonic crystal has propagating modes for both the TE and TM polarizations. The group index-normalized frequency curves are U-shaped for the two polarizations. The average group index of the TE mode is approximately 3, while the average group index of the TM mode is over 10, which implies that the TM mode is a slow light mode. With the shift value 0δx0.025a, the group index is over 10 and the normalized delay-bandwidth product is from 0.316 to 0.349, which is ideal for the slow light mode of the TM polarization. In the group velocity dispersion of the waveguide, there is a very large “zero” dispersion region for both the TM and TE modes, which is far larger than that of other photonic crystal waveguides. The TM mode of this kind of waveguide structure is a slow light mode with wide bandwidth and a large “zero” dispersion region.

© 2010 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Y. A. Vlasov, M. O’Boyle, H. F. Hamann, and S. J. McNab, “Active control of slow light on a chip with photonic crystal waveguides,” Nature 438, 65–69 (2005).
    [CrossRef] [PubMed]
  2. T. Baba, “Slow light in photonic crystals,” Nat. Photon. 2, 465–473 (2008).
    [CrossRef]
  3. T. F. Krauss, “Slow light in photonic crystal waveguides,” J. Phys. D 40, 2666–2670 (2007).
    [CrossRef]
  4. R. Hao, E. Cassan, H. Kurt, X. L. Roux, D. Marris-Morini, L. Vivien, H. Wu, Z. P. Zhou, and X. L. Zhang, “Novel slow light waveguide with controllable delay-bandwidth product and ultra-low dispersion,” Opt. Express 18, 5942–5950(2010).
    [CrossRef] [PubMed]
  5. T. B. Yu, X. Q. Jiang, J. Y. Yang, H. F. Zhou, Q. H. Liao, and M. H. Wang, “Self-imaging effect of TM modes in photonic crystal multimode waveguides only exhibiting band gaps for TE modes,” Phys. Lett. A 369, 167–171 (2007).
    [CrossRef]
  6. Z. Y. Li, B. Y. Gu, and G. Z. Yang, “Large absolute band gap in 2D anisotropic photonic crystals,” Phys. Rev. Lett. 81, 2574–2577 (1998).
    [CrossRef]
  7. F. Wen, S. David, X. Checoury, M. E. Kurdi, and P. Boucaud, “Two-dimensional photonics with large complete photonic band gaps in both TE and TM polarizations,” Opt. Express 16, 12278–12289 (2008).
    [CrossRef] [PubMed]
  8. G. Lenz, B. J. Eggleton, C. K. Madsen, and R. E. Slusher, “Optical delay lines based on optical filters,” IEEE J. Quantum Electron. 37, 525–532 (2001).
    [CrossRef]
  9. J. Li, T. P. White, L. O’Fanlain, A. Gomez-Iglelesias, and T. F. Krauss, “Systematic design of flat band slow light in photonic crystal waveguides,” Opt. Express 15, 8323–8328 (2007).
    [CrossRef]
  10. R. J. P. Engelen, Y. Sugimoto, Y. Watanabe, J. P. Korterik, N. Ikeda, N. F. van Hulst, K. Asakawa, and L. Kuipers, “The effect of higher-order dispersion on slow light propagation in photonic crystal waveguides,” Opt. Express 14, 1658–1672(2006).
    [CrossRef] [PubMed]

2010 (1)

2008 (2)

2007 (3)

J. Li, T. P. White, L. O’Fanlain, A. Gomez-Iglelesias, and T. F. Krauss, “Systematic design of flat band slow light in photonic crystal waveguides,” Opt. Express 15, 8323–8328 (2007).
[CrossRef]

T. F. Krauss, “Slow light in photonic crystal waveguides,” J. Phys. D 40, 2666–2670 (2007).
[CrossRef]

T. B. Yu, X. Q. Jiang, J. Y. Yang, H. F. Zhou, Q. H. Liao, and M. H. Wang, “Self-imaging effect of TM modes in photonic crystal multimode waveguides only exhibiting band gaps for TE modes,” Phys. Lett. A 369, 167–171 (2007).
[CrossRef]

2006 (1)

2005 (1)

Y. A. Vlasov, M. O’Boyle, H. F. Hamann, and S. J. McNab, “Active control of slow light on a chip with photonic crystal waveguides,” Nature 438, 65–69 (2005).
[CrossRef] [PubMed]

2001 (1)

G. Lenz, B. J. Eggleton, C. K. Madsen, and R. E. Slusher, “Optical delay lines based on optical filters,” IEEE J. Quantum Electron. 37, 525–532 (2001).
[CrossRef]

1998 (1)

Z. Y. Li, B. Y. Gu, and G. Z. Yang, “Large absolute band gap in 2D anisotropic photonic crystals,” Phys. Rev. Lett. 81, 2574–2577 (1998).
[CrossRef]

Asakawa, K.

Baba, T.

T. Baba, “Slow light in photonic crystals,” Nat. Photon. 2, 465–473 (2008).
[CrossRef]

Boucaud, P.

Cassan, E.

Checoury, X.

David, S.

Eggleton, B. J.

G. Lenz, B. J. Eggleton, C. K. Madsen, and R. E. Slusher, “Optical delay lines based on optical filters,” IEEE J. Quantum Electron. 37, 525–532 (2001).
[CrossRef]

Engelen, R. J. P.

Gomez-Iglelesias, A.

Gu, B. Y.

Z. Y. Li, B. Y. Gu, and G. Z. Yang, “Large absolute band gap in 2D anisotropic photonic crystals,” Phys. Rev. Lett. 81, 2574–2577 (1998).
[CrossRef]

Hamann, H. F.

Y. A. Vlasov, M. O’Boyle, H. F. Hamann, and S. J. McNab, “Active control of slow light on a chip with photonic crystal waveguides,” Nature 438, 65–69 (2005).
[CrossRef] [PubMed]

Hao, R.

Ikeda, N.

Jiang, X. Q.

T. B. Yu, X. Q. Jiang, J. Y. Yang, H. F. Zhou, Q. H. Liao, and M. H. Wang, “Self-imaging effect of TM modes in photonic crystal multimode waveguides only exhibiting band gaps for TE modes,” Phys. Lett. A 369, 167–171 (2007).
[CrossRef]

Korterik, J. P.

Krauss, T. F.

Kuipers, L.

Kurdi, M. E.

Kurt, H.

Lenz, G.

G. Lenz, B. J. Eggleton, C. K. Madsen, and R. E. Slusher, “Optical delay lines based on optical filters,” IEEE J. Quantum Electron. 37, 525–532 (2001).
[CrossRef]

Li, J.

Li, Z. Y.

Z. Y. Li, B. Y. Gu, and G. Z. Yang, “Large absolute band gap in 2D anisotropic photonic crystals,” Phys. Rev. Lett. 81, 2574–2577 (1998).
[CrossRef]

Liao, Q. H.

T. B. Yu, X. Q. Jiang, J. Y. Yang, H. F. Zhou, Q. H. Liao, and M. H. Wang, “Self-imaging effect of TM modes in photonic crystal multimode waveguides only exhibiting band gaps for TE modes,” Phys. Lett. A 369, 167–171 (2007).
[CrossRef]

Madsen, C. K.

G. Lenz, B. J. Eggleton, C. K. Madsen, and R. E. Slusher, “Optical delay lines based on optical filters,” IEEE J. Quantum Electron. 37, 525–532 (2001).
[CrossRef]

Marris-Morini, D.

McNab, S. J.

Y. A. Vlasov, M. O’Boyle, H. F. Hamann, and S. J. McNab, “Active control of slow light on a chip with photonic crystal waveguides,” Nature 438, 65–69 (2005).
[CrossRef] [PubMed]

O’Boyle, M.

Y. A. Vlasov, M. O’Boyle, H. F. Hamann, and S. J. McNab, “Active control of slow light on a chip with photonic crystal waveguides,” Nature 438, 65–69 (2005).
[CrossRef] [PubMed]

O’Fanlain, L.

Roux, X. L.

Slusher, R. E.

G. Lenz, B. J. Eggleton, C. K. Madsen, and R. E. Slusher, “Optical delay lines based on optical filters,” IEEE J. Quantum Electron. 37, 525–532 (2001).
[CrossRef]

Sugimoto, Y.

van Hulst, N. F.

Vivien, L.

Vlasov, Y. A.

Y. A. Vlasov, M. O’Boyle, H. F. Hamann, and S. J. McNab, “Active control of slow light on a chip with photonic crystal waveguides,” Nature 438, 65–69 (2005).
[CrossRef] [PubMed]

Wang, M. H.

T. B. Yu, X. Q. Jiang, J. Y. Yang, H. F. Zhou, Q. H. Liao, and M. H. Wang, “Self-imaging effect of TM modes in photonic crystal multimode waveguides only exhibiting band gaps for TE modes,” Phys. Lett. A 369, 167–171 (2007).
[CrossRef]

Watanabe, Y.

Wen, F.

White, T. P.

Wu, H.

Yang, G. Z.

Z. Y. Li, B. Y. Gu, and G. Z. Yang, “Large absolute band gap in 2D anisotropic photonic crystals,” Phys. Rev. Lett. 81, 2574–2577 (1998).
[CrossRef]

Yang, J. Y.

T. B. Yu, X. Q. Jiang, J. Y. Yang, H. F. Zhou, Q. H. Liao, and M. H. Wang, “Self-imaging effect of TM modes in photonic crystal multimode waveguides only exhibiting band gaps for TE modes,” Phys. Lett. A 369, 167–171 (2007).
[CrossRef]

Yu, T. B.

T. B. Yu, X. Q. Jiang, J. Y. Yang, H. F. Zhou, Q. H. Liao, and M. H. Wang, “Self-imaging effect of TM modes in photonic crystal multimode waveguides only exhibiting band gaps for TE modes,” Phys. Lett. A 369, 167–171 (2007).
[CrossRef]

Zhang, X. L.

Zhou, H. F.

T. B. Yu, X. Q. Jiang, J. Y. Yang, H. F. Zhou, Q. H. Liao, and M. H. Wang, “Self-imaging effect of TM modes in photonic crystal multimode waveguides only exhibiting band gaps for TE modes,” Phys. Lett. A 369, 167–171 (2007).
[CrossRef]

Zhou, Z. P.

IEEE J. Quantum Electron. (1)

G. Lenz, B. J. Eggleton, C. K. Madsen, and R. E. Slusher, “Optical delay lines based on optical filters,” IEEE J. Quantum Electron. 37, 525–532 (2001).
[CrossRef]

J. Phys. D (1)

T. F. Krauss, “Slow light in photonic crystal waveguides,” J. Phys. D 40, 2666–2670 (2007).
[CrossRef]

Nat. Photon. (1)

T. Baba, “Slow light in photonic crystals,” Nat. Photon. 2, 465–473 (2008).
[CrossRef]

Nature (1)

Y. A. Vlasov, M. O’Boyle, H. F. Hamann, and S. J. McNab, “Active control of slow light on a chip with photonic crystal waveguides,” Nature 438, 65–69 (2005).
[CrossRef] [PubMed]

Opt. Express (4)

Phys. Lett. A (1)

T. B. Yu, X. Q. Jiang, J. Y. Yang, H. F. Zhou, Q. H. Liao, and M. H. Wang, “Self-imaging effect of TM modes in photonic crystal multimode waveguides only exhibiting band gaps for TE modes,” Phys. Lett. A 369, 167–171 (2007).
[CrossRef]

Phys. Rev. Lett. (1)

Z. Y. Li, B. Y. Gu, and G. Z. Yang, “Large absolute band gap in 2D anisotropic photonic crystals,” Phys. Rev. Lett. 81, 2574–2577 (1998).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Schematic of the waveguide structure.

Fig. 2
Fig. 2

Dispersions relation of the waveguide for different shift values δ x . (a) TE mode. (b) TM mode.

Fig. 3
Fig. 3

Frequency dependence of the group index of the TE and TM modes with δ x of 0 and 0.0215 a .

Fig. 4
Fig. 4

Shift-value dependence of the bandwidth and band position for TE and TM modes.

Fig. 5
Fig. 5

Shift-value dependence of the NDBP and the average group index for TE and TM modes.

Fig. 6
Fig. 6

Frequency dependence of the GVD for different shift value δ x . (a) TM mode. (b) TE mode.

Metrics