Abstract

We developed an iteration algorithm for open resonator simulation and employed it in studying the dynamics of mode formation. Simulations of an axially symmetrical empty resonator rely on an analytical description of radiation diffraction from a narrow ring. Reflection of an incident wave with a specified amplitude-phase distribution from the mirror is calculated by the Green function method. The process of mode formation is characterized by relaxation oscillations of various frequencies depending on the resonator parameters. The evolution of the relaxation oscillation amplitude can be aperiodic in nature, or it can occur as beats of a different frequency. It has been shown that there is a consistency between the known conditions of paraxial resonance obtained in the approximation of geometric optics and the aperiodic processes of evolution of relaxation oscillation amplitude in mode forming. An investigation has been performed on the factors affecting the time of mode formation. The possibility has been shown for multipass mode suppression and TEM10 mode generation by the use of an absorber mask on the resonator mirror.

© 2010 Optical Society of America

Full Article  |  PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (10)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (13)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription