Abstract

The thermal lens (TL) effect induced by femtosecond laser pulses in chromium film is reported. A Fresnel diffraction theory is used to explain the TL effect. The intensity profile of the TL calculated by the theoretical model is in agreement with the experimental results. The contrast ratio of the TL is defined to describe the TL effect, and we find that the maximum contrast ratio of the TL effect is obtained when the probe beam is recorded at a characteristic distance. The dependence of the contrast ratio of the TL on different pump laser power levels and delay times is also investigated. Numerical simulations are also consistent with the experimental results.

© 2010 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. O. H. Y. Zalloum, M. Parrish, A. Terekhov, and W. Hofmeister, “On femtosecond micromachining of HPHT single-crystal diamond with direct laser writing using tight focusing,” Opt. Express 18, 13122–13135 (2010).
    [CrossRef] [PubMed]
  2. Y. Wang, M. Yang, D. N. Wang, S. Liu, and P. Lu, “Fiber in-line Mach–Zehnder interferometer fabricated by femtosecond laser micromachining for refractive index measurement with high sensitivity,” J. Opt. Soc. Am. B 27, 370–374 (2010).
    [CrossRef]
  3. Q.-Z. Zhao, J.-R. Qiu, X.-W. Jiang, E.-W. Dai, C.-H. Zhou, and C.-S. Zhu, “Direct writing computer-generated holograms on metal film by an infrared femtosecond laser,” Opt. Express 13, 2089–2092 (2005).
    [CrossRef] [PubMed]
  4. M. Sakakura, M. Terazima, Y. Shimotsuma, K. Miura, and K. Hirao, “Heating and rapid cooling of bulk glass after photoexcitation by a focused femtosecond laser pulse,” Opt. Express 15, 16800–16807 (2007).
    [CrossRef] [PubMed]
  5. D. Giguère, G. Olivié, F. Vidal, S. Toetsch, G. Girard, T. Ozaki, J.-C. Kieffer, O. Nada, and I. Brunette, “Laser ablation threshold dependence on pulse duration for fused silica and corneal tissues: experiments and modeling,” J. Opt. Soc. Am. A 24, 1562–1568 (2007).
    [CrossRef]
  6. T. Wu, C. Zhou, E. Dai, and J. Xie, “Experimental study of the time-resolved reflectivity of chromium film,” Chin. Opt. Lett. 7, 653–655 (2009).
    [CrossRef]
  7. K. C. Vishnubhatla, J. Clark, G. Lanzani, R. Ramponi, R. Osellame, and T. Virgili, “Femtosecond laser fabrication of microfluidic channels for organic photonic devices,” Appl. Opt. 48, G114–G118 (2009).
    [CrossRef]
  8. J. Xie, C. Zhou, W. Wang, and T. Wu, “Femtosecond laser induced microripple on PDMS surface,” Chin. Opt. Lett. 7, 715–717 (2009).
    [CrossRef]
  9. J. Xie, C. Zhou, E. Dai, and Z. Han, “Invertible dark-center diffraction of the metal film induced by femtosecond laser,” Opt. Commun. 281, 5396–5399 (2008).
    [CrossRef]
  10. L. Zhu, C. Zhou, T. Wu, W. Jia, Z. Fan, Y. Ma, and G. Niu, “Femtosecond off-axis digital holography for monitoring dynamic surface deformation,” Appl. Opt. 49, 2510–2518(2010).
    [CrossRef]
  11. J. P. Gordon, R. C. C. Leite, R. S. Moore, S. P. S. Porto, and J. R. Whinnery, “Long transient effects in lasers with inserted liquid samples,” J. Appl. Phys. 36, 3–8 (1965).
    [CrossRef]
  12. M. Franko and C. D. Tran, “Analytical thermal lens instrumentation,” Rev. Sci. Instrum. 67, 1–18 (1996).
    [CrossRef]
  13. C. Jacinto, D. N. Messias, A. A. Andrade, and T. Catunda, “Energy transfer upconversion determination by thermal lens and Z-scan techniques in Nd3+-doped laser materials,” J. Opt. Soc. Am. B 26, 1002–1007 (2009).
    [CrossRef]
  14. E. Welsch and D. Ristau, “Photothermal measurements on optical thin films,” Appl. Opt. 34, 7239–7253 (1995).
    [CrossRef] [PubMed]
  15. S.-H. Li, H.-B. He, Y.-G. Shan, D.-W. Li, Y.-A. Zhao, and Z.-X. Fan, “Enhanced surface thermal lensing for absorption evaluation and defect identification of optical films,” Appl. Opt. 49, 2417–2421 (2010).
    [CrossRef]
  16. H. Hao and B. Li, “Photothermal detuning for absorption measurement of optical coatings,” Appl. Opt. 47, 188–194(2008).
    [CrossRef] [PubMed]
  17. M. Andika, G. C. K. Chen, and S. Vasudevan, “Excitation temporal pulse shape and probe beam size effect on pulsed photothermal lens of single particle,” J. Opt. Soc. Am. B 27, 796–805 (2010).
    [CrossRef]
  18. J.-P. Bourgoin, S. Doiron, M. Deveaux, and A. Haché, “Single laser beam measurement of thermal diffusivity,” Appl. Opt. 47, 6530–6534 (2008).
    [CrossRef] [PubMed]
  19. J.-P. Bourgoin, G.-G. Allogho, and A. Haché, “Thermal measurement on subnanoliter sample volumes,” Appl. Opt. 49, 2547–2551 (2010).
    [CrossRef]
  20. N. G. C. Astrath, F. B. G. Astrath, J. Shen, J. Zhou, K. H. Michaelian, C. Fairbridge, L. C. Malacarne, P. R. B. Pedreira, A. N. Medina, and M. L. Baesso, “Thermal-lens study of photochemical reaction kinetics,” Opt. Lett. 34, 3460–3462 (2009).
    [CrossRef] [PubMed]
  21. R. A. Cruz, A. Marcano, C. Jacinto, and T. Catunda, “Ultrasensitive thermal lens spectroscopy of water,” Opt. Lett. 34, 1882–1884 (2009).
    [CrossRef] [PubMed]
  22. J. Moreau and V. Loriette, “Confocal thermal-lens microscope,” Opt. Lett. 29, 1488–1490 (2004).
    [CrossRef] [PubMed]
  23. S. J. Sheldon, L. V. Knight, and J. M. Thorne, “Laser-induced thermal lens effect: a new theoretical model,” Appl. Opt. 21, 1663–1669 (1982).
    [CrossRef] [PubMed]
  24. A. Marcano, H. Cabrera, M. Guerra, R. A. Cruz, C. Jacinto, and T. Catunda, “Optimizing and calibrating a mode-mismatched thermal lens experiment for low absorption measurement,” J. Opt. Soc. Am. B 23, 1408–1413 (2006).
    [CrossRef]
  25. E. Dai, C. Zhou, and G. Li, “Dammann SHG-FROG for characterization of the ultrashort optical pulses,” Opt. Express 13, 6145–6152 (2005).
    [CrossRef] [PubMed]
  26. J. F. Power, “Pulsed mode thermal lens effect detection in the near field via thermally induced probe beam spatial phase modulation: a theory,” Appl. Opt. 29, 52–63 (1990).
    [CrossRef] [PubMed]
  27. D. J. Hwang, H. Jeon, C. P. Grigoropoulos, J. Yoo, and R. E. Russo, “Femtosecond laser ablation induced plasma characteristics from submicron craters in thin metal film,” Appl. Phys. Lett. 91, 251118 (2007).
    [CrossRef]
  28. B.-C. Li, S.-Y. Zhang, J.-W. Fang, and X.-J. Shui, “Pulsed laser induced mode-mismatched crossed-beam thermal lens measurements,” Rev. Sci. Instrum. 68, 2741–2749 (1997).
    [CrossRef]
  29. Z. Han, C. Zhou, and E. Dai, “Microripple structures induced by femtosecond laser pulses,” Chin. J. Lasers 34, 715–718(2007).
  30. E. A. Avallone and T. Baumeister, Marks’ Standard Handbook for Mechanical Engineers, 10th ed. (McGraw-Hill, 1996).
  31. I. Gerdova, X. Zhang, and A. Haché, “Optically tunable hollow Gaussian beams with thin metal films,” J. Opt. Soc. Am. B 23, 1934–1937 (2006).
    [CrossRef]
  32. S. Doiron and A. Haché, “Time evolution of reflective thermal lenses and measurement of thermal diffusivity in bulk solids,” Appl. Opt. 43, 4250–4253 (2004).
    [CrossRef] [PubMed]

2010 (6)

2009 (6)

2008 (3)

2007 (4)

2006 (2)

2005 (2)

2004 (2)

1997 (1)

B.-C. Li, S.-Y. Zhang, J.-W. Fang, and X.-J. Shui, “Pulsed laser induced mode-mismatched crossed-beam thermal lens measurements,” Rev. Sci. Instrum. 68, 2741–2749 (1997).
[CrossRef]

1996 (1)

M. Franko and C. D. Tran, “Analytical thermal lens instrumentation,” Rev. Sci. Instrum. 67, 1–18 (1996).
[CrossRef]

1995 (1)

1990 (1)

1982 (1)

1965 (1)

J. P. Gordon, R. C. C. Leite, R. S. Moore, S. P. S. Porto, and J. R. Whinnery, “Long transient effects in lasers with inserted liquid samples,” J. Appl. Phys. 36, 3–8 (1965).
[CrossRef]

Allogho, G.-G.

Andika, M.

Andrade, A. A.

Astrath, F. B. G.

Astrath, N. G. C.

Avallone, E. A.

E. A. Avallone and T. Baumeister, Marks’ Standard Handbook for Mechanical Engineers, 10th ed. (McGraw-Hill, 1996).

Baesso, M. L.

Baumeister, T.

E. A. Avallone and T. Baumeister, Marks’ Standard Handbook for Mechanical Engineers, 10th ed. (McGraw-Hill, 1996).

Bourgoin, J.-P.

Brunette, I.

Cabrera, H.

Catunda, T.

Chen, G. C. K.

Clark, J.

Cruz, R. A.

Dai, E.

T. Wu, C. Zhou, E. Dai, and J. Xie, “Experimental study of the time-resolved reflectivity of chromium film,” Chin. Opt. Lett. 7, 653–655 (2009).
[CrossRef]

J. Xie, C. Zhou, E. Dai, and Z. Han, “Invertible dark-center diffraction of the metal film induced by femtosecond laser,” Opt. Commun. 281, 5396–5399 (2008).
[CrossRef]

Z. Han, C. Zhou, and E. Dai, “Microripple structures induced by femtosecond laser pulses,” Chin. J. Lasers 34, 715–718(2007).

E. Dai, C. Zhou, and G. Li, “Dammann SHG-FROG for characterization of the ultrashort optical pulses,” Opt. Express 13, 6145–6152 (2005).
[CrossRef] [PubMed]

Dai, E.-W.

Deveaux, M.

Doiron, S.

Fairbridge, C.

Fan, Z.

Fan, Z.-X.

Fang, J.-W.

B.-C. Li, S.-Y. Zhang, J.-W. Fang, and X.-J. Shui, “Pulsed laser induced mode-mismatched crossed-beam thermal lens measurements,” Rev. Sci. Instrum. 68, 2741–2749 (1997).
[CrossRef]

Franko, M.

M. Franko and C. D. Tran, “Analytical thermal lens instrumentation,” Rev. Sci. Instrum. 67, 1–18 (1996).
[CrossRef]

Gerdova, I.

Giguère, D.

Girard, G.

Gordon, J. P.

J. P. Gordon, R. C. C. Leite, R. S. Moore, S. P. S. Porto, and J. R. Whinnery, “Long transient effects in lasers with inserted liquid samples,” J. Appl. Phys. 36, 3–8 (1965).
[CrossRef]

Grigoropoulos, C. P.

D. J. Hwang, H. Jeon, C. P. Grigoropoulos, J. Yoo, and R. E. Russo, “Femtosecond laser ablation induced plasma characteristics from submicron craters in thin metal film,” Appl. Phys. Lett. 91, 251118 (2007).
[CrossRef]

Guerra, M.

Haché, A.

Han, Z.

J. Xie, C. Zhou, E. Dai, and Z. Han, “Invertible dark-center diffraction of the metal film induced by femtosecond laser,” Opt. Commun. 281, 5396–5399 (2008).
[CrossRef]

Z. Han, C. Zhou, and E. Dai, “Microripple structures induced by femtosecond laser pulses,” Chin. J. Lasers 34, 715–718(2007).

Hao, H.

He, H.-B.

Hirao, K.

Hofmeister, W.

Hwang, D. J.

D. J. Hwang, H. Jeon, C. P. Grigoropoulos, J. Yoo, and R. E. Russo, “Femtosecond laser ablation induced plasma characteristics from submicron craters in thin metal film,” Appl. Phys. Lett. 91, 251118 (2007).
[CrossRef]

Jacinto, C.

Jeon, H.

D. J. Hwang, H. Jeon, C. P. Grigoropoulos, J. Yoo, and R. E. Russo, “Femtosecond laser ablation induced plasma characteristics from submicron craters in thin metal film,” Appl. Phys. Lett. 91, 251118 (2007).
[CrossRef]

Jia, W.

Jiang, X.-W.

Kieffer, J.-C.

Knight, L. V.

Lanzani, G.

Leite, R. C. C.

J. P. Gordon, R. C. C. Leite, R. S. Moore, S. P. S. Porto, and J. R. Whinnery, “Long transient effects in lasers with inserted liquid samples,” J. Appl. Phys. 36, 3–8 (1965).
[CrossRef]

Li, B.

Li, B.-C.

B.-C. Li, S.-Y. Zhang, J.-W. Fang, and X.-J. Shui, “Pulsed laser induced mode-mismatched crossed-beam thermal lens measurements,” Rev. Sci. Instrum. 68, 2741–2749 (1997).
[CrossRef]

Li, D.-W.

Li, G.

Li, S.-H.

Liu, S.

Loriette, V.

Lu, P.

Ma, Y.

Malacarne, L. C.

Marcano, A.

Medina, A. N.

Messias, D. N.

Michaelian, K. H.

Miura, K.

Moore, R. S.

J. P. Gordon, R. C. C. Leite, R. S. Moore, S. P. S. Porto, and J. R. Whinnery, “Long transient effects in lasers with inserted liquid samples,” J. Appl. Phys. 36, 3–8 (1965).
[CrossRef]

Moreau, J.

Nada, O.

Niu, G.

Olivié, G.

Osellame, R.

Ozaki, T.

Parrish, M.

Pedreira, P. R. B.

Porto, S. P. S.

J. P. Gordon, R. C. C. Leite, R. S. Moore, S. P. S. Porto, and J. R. Whinnery, “Long transient effects in lasers with inserted liquid samples,” J. Appl. Phys. 36, 3–8 (1965).
[CrossRef]

Power, J. F.

Qiu, J.-R.

Ramponi, R.

Ristau, D.

Russo, R. E.

D. J. Hwang, H. Jeon, C. P. Grigoropoulos, J. Yoo, and R. E. Russo, “Femtosecond laser ablation induced plasma characteristics from submicron craters in thin metal film,” Appl. Phys. Lett. 91, 251118 (2007).
[CrossRef]

Sakakura, M.

Shan, Y.-G.

Sheldon, S. J.

Shen, J.

Shimotsuma, Y.

Shui, X.-J.

B.-C. Li, S.-Y. Zhang, J.-W. Fang, and X.-J. Shui, “Pulsed laser induced mode-mismatched crossed-beam thermal lens measurements,” Rev. Sci. Instrum. 68, 2741–2749 (1997).
[CrossRef]

Terazima, M.

Terekhov, A.

Thorne, J. M.

Toetsch, S.

Tran, C. D.

M. Franko and C. D. Tran, “Analytical thermal lens instrumentation,” Rev. Sci. Instrum. 67, 1–18 (1996).
[CrossRef]

Vasudevan, S.

Vidal, F.

Virgili, T.

Vishnubhatla, K. C.

Wang, D. N.

Wang, W.

Wang, Y.

Welsch, E.

Whinnery, J. R.

J. P. Gordon, R. C. C. Leite, R. S. Moore, S. P. S. Porto, and J. R. Whinnery, “Long transient effects in lasers with inserted liquid samples,” J. Appl. Phys. 36, 3–8 (1965).
[CrossRef]

Wu, T.

Xie, J.

Yang, M.

Yoo, J.

D. J. Hwang, H. Jeon, C. P. Grigoropoulos, J. Yoo, and R. E. Russo, “Femtosecond laser ablation induced plasma characteristics from submicron craters in thin metal film,” Appl. Phys. Lett. 91, 251118 (2007).
[CrossRef]

Zalloum, O. H. Y.

Zhang, S.-Y.

B.-C. Li, S.-Y. Zhang, J.-W. Fang, and X.-J. Shui, “Pulsed laser induced mode-mismatched crossed-beam thermal lens measurements,” Rev. Sci. Instrum. 68, 2741–2749 (1997).
[CrossRef]

Zhang, X.

Zhao, Q.-Z.

Zhao, Y.-A.

Zhou, C.

Zhou, C.-H.

Zhou, J.

Zhu, C.-S.

Zhu, L.

Appl. Opt. (10)

S. J. Sheldon, L. V. Knight, and J. M. Thorne, “Laser-induced thermal lens effect: a new theoretical model,” Appl. Opt. 21, 1663–1669 (1982).
[CrossRef] [PubMed]

J. F. Power, “Pulsed mode thermal lens effect detection in the near field via thermally induced probe beam spatial phase modulation: a theory,” Appl. Opt. 29, 52–63 (1990).
[CrossRef] [PubMed]

E. Welsch and D. Ristau, “Photothermal measurements on optical thin films,” Appl. Opt. 34, 7239–7253 (1995).
[CrossRef] [PubMed]

S. Doiron and A. Haché, “Time evolution of reflective thermal lenses and measurement of thermal diffusivity in bulk solids,” Appl. Opt. 43, 4250–4253 (2004).
[CrossRef] [PubMed]

H. Hao and B. Li, “Photothermal detuning for absorption measurement of optical coatings,” Appl. Opt. 47, 188–194(2008).
[CrossRef] [PubMed]

J.-P. Bourgoin, S. Doiron, M. Deveaux, and A. Haché, “Single laser beam measurement of thermal diffusivity,” Appl. Opt. 47, 6530–6534 (2008).
[CrossRef] [PubMed]

K. C. Vishnubhatla, J. Clark, G. Lanzani, R. Ramponi, R. Osellame, and T. Virgili, “Femtosecond laser fabrication of microfluidic channels for organic photonic devices,” Appl. Opt. 48, G114–G118 (2009).
[CrossRef]

S.-H. Li, H.-B. He, Y.-G. Shan, D.-W. Li, Y.-A. Zhao, and Z.-X. Fan, “Enhanced surface thermal lensing for absorption evaluation and defect identification of optical films,” Appl. Opt. 49, 2417–2421 (2010).
[CrossRef]

L. Zhu, C. Zhou, T. Wu, W. Jia, Z. Fan, Y. Ma, and G. Niu, “Femtosecond off-axis digital holography for monitoring dynamic surface deformation,” Appl. Opt. 49, 2510–2518(2010).
[CrossRef]

J.-P. Bourgoin, G.-G. Allogho, and A. Haché, “Thermal measurement on subnanoliter sample volumes,” Appl. Opt. 49, 2547–2551 (2010).
[CrossRef]

Appl. Phys. Lett. (1)

D. J. Hwang, H. Jeon, C. P. Grigoropoulos, J. Yoo, and R. E. Russo, “Femtosecond laser ablation induced plasma characteristics from submicron craters in thin metal film,” Appl. Phys. Lett. 91, 251118 (2007).
[CrossRef]

Chin. J. Lasers (1)

Z. Han, C. Zhou, and E. Dai, “Microripple structures induced by femtosecond laser pulses,” Chin. J. Lasers 34, 715–718(2007).

Chin. Opt. Lett. (2)

J. Appl. Phys. (1)

J. P. Gordon, R. C. C. Leite, R. S. Moore, S. P. S. Porto, and J. R. Whinnery, “Long transient effects in lasers with inserted liquid samples,” J. Appl. Phys. 36, 3–8 (1965).
[CrossRef]

J. Opt. Soc. Am. A (1)

J. Opt. Soc. Am. B (5)

Opt. Commun. (1)

J. Xie, C. Zhou, E. Dai, and Z. Han, “Invertible dark-center diffraction of the metal film induced by femtosecond laser,” Opt. Commun. 281, 5396–5399 (2008).
[CrossRef]

Opt. Express (4)

Opt. Lett. (3)

Rev. Sci. Instrum. (2)

M. Franko and C. D. Tran, “Analytical thermal lens instrumentation,” Rev. Sci. Instrum. 67, 1–18 (1996).
[CrossRef]

B.-C. Li, S.-Y. Zhang, J.-W. Fang, and X.-J. Shui, “Pulsed laser induced mode-mismatched crossed-beam thermal lens measurements,” Rev. Sci. Instrum. 68, 2741–2749 (1997).
[CrossRef]

Other (1)

E. A. Avallone and T. Baumeister, Marks’ Standard Handbook for Mechanical Engineers, 10th ed. (McGraw-Hill, 1996).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

Experimental setup for observation of the TL effect induced by femtosecond laser pulses: M 1 and M 2 , mirrors; BS 1 and BS 2 , beam splitters; L 1 and L 2 , lens; BBO, barium metaborate crystal; CCD, charge-coupled device; filter, pass 400 nm light and block 800 nm light. The sample is a Cr film (thickness of 145 nm ) on glass substrate; the probe light can pass through it.

Fig. 2
Fig. 2

(a) Illustration of the Fresnel diffraction model of the laser TL effect. In this mode, the probe beam waist is larger than the pump beam waist. (b) Physical processes of Cr film on glass substrate excited by femtosecond laser pulses.

Fig. 3
Fig. 3

Experimental results of the TL effect: 2D intensity distribution of the probe beam produced by femtosecond laser (a) without the pump laser and (b) with the pump laser; 3D intensity profile of the probe beam (c) without the pump laser and (d) with the pump laser.

Fig. 4
Fig. 4

Theoretical simulation results of the TL effect. (a) The 2D diffraction pattern and (b) the corresponding 3D profile of the probe beam recorded on the detector plane. The parameters are the pump–probe beam offset x 0 = y 0 = 0 and the maximum phase shift Δ φ 0 = 0.6 π .

Fig. 5
Fig. 5

Transverse intensity profile of the probe beam at the detection plane with (red circle) or without (black square) the pump beam in the experiment, together with the theoretical fitting (blue line) according to ω 0 = 200 μm , a = 150 μm , z 1 = 85 mm , z 2 = 270 mm , Δ φ 0 = 0.6 π , and x 0 = y 0 = 0 .

Fig. 6
Fig. 6

Intensity profile of the probe beam at different offsets with the same simulation parameters as Fig. 5.

Fig. 7
Fig. 7

Contrast ratio of the TL effect versus the detection distance: (a) experimental and (b) theoretical results with the simulation parameters z 1 = 85 mm , Δ φ 0 = 0.6 π , and x 0 = y 0 = 0 .

Fig. 8
Fig. 8

Contrast ratio of the TL as a function of (a) the pump laser power in the experiment and (b) the maximum phase shift in theoretical simulation when the parameters are taken as the same condition as Fig. 5.

Fig. 9
Fig. 9

(a) Intensity profile of the probe beam at the detection plane for different time delays between the pump and the probe beams. (b) Dependence of the contrast ratio of the TL effect recorded at the characteristic distance z 2 = d c on different delay times when the parameters are taken as the same condition in Fig. 5.

Tables (1)

Tables Icon

Table 1 Simulation Parameters for the TL Effect [30]

Equations (15)

Equations on this page are rendered with MathJax. Learn more.

U 0 ( x 1 , y 1 , z 1 ) = 2 π exp ( i k z 1 ) ω 1 exp [ i k 2 q 1 ( x 1 2 + y 1 2 ) ] ,
1 q 1 = 1 R 1 i λ π ω 1 2 ,
R 1 = z 1 [ 1 + ( z 1 / z c ) 2 ] ,
ω 1 = ω 0 [ 1 + ( z 1 / z c ) 2 ] 1 / 2 ,
U 1 ( x 1 , y 1 , z 1 ) = U 0 ( x 1 , y 1 , z 1 ) exp ( i Δ φ ) .
Δ φ = 2 π λ Δ n l ,
Δ n ( x 1 , y 1 , t ) = d n d T [ Δ T ( x 1 , y 1 , t ) Δ T ( 0 , 0 , t ) ] ,
Δ T ( x 1 , y 1 , t ) = α E 0 π ρ c × 1 a 2 + 8 k th t exp { 2 [ ( x 1 x 0 ) 2 + ( y 1 y 0 ) 2 ] / ( a 2 + 8 k th t ) } ,
Δ φ ( x 1 , y 1 , t ) = 2 π λ d n d T α E 0 2 π ρ c l a 2 + 8 k th t × exp { 2 [ ( x 1 x 0 ) 2 + ( y 1 y 0 ) 2 ] / ( a 2 + 8 k th t ) } ,
Δ φ ( x 1 , y 1 , t ) = Δ φ 0 exp { 2 [ ( x 1 x 0 ) 2 + ( y 1 y 0 ) 2 ] / ( a 2 + 8 k th t ) } ,
U 2 ( x , y , z 2 ) = U 1 ( x 1 , y 1 , z 1 ) * i exp ( i k z 2 ) λ z 2 exp ( i k x 2 + y 2 2 z 2 ) ,
I ( x , y , z 2 ) = | U 2 ( x , y , z 2 ) | 2 .
V = I max I center I max + I center ,
d c = π a 2 λ ,
t c = a 2 4 k th ,

Metrics