Abstract

A new type of composite quarter-wave system with adjustable parameters has been proposed and investigated experimentally. The first system is a quarter-waveplate with adjustable optical activity and the second system is a quarter-wave plate with an adjustable axis orientation.

© 2010 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Yu. A. Ushenko, A. P. Peresunko, and B. A. Baku, “A new method of mueller-matrix diagnostics and differentiation of early oncological changes of the skin derma,” Adv. Opt. Technol. 2010, 1–9 (2010).
    [CrossRef]
  2. D. A. VanNasdale, A. E. Elsner, A. Weber, M. Miura, and B. P. Haggerty, “Determination of foveal location using scanning laser polarimetry,” J. Vision 9, 1–17 (2009).
    [CrossRef]
  3. J. M. Bueno, C. J. Cookson, J. J. Hunter, M. L. Kisilak, and M. C. W. Campbell, “Depolarization properties of the optic nerve head: the effect of age,” Ophthal. Physiol. Opt. 29, 247–255(2009).
    [CrossRef]
  4. M. Miura, M. Yamanari, T. Iwasaki, A. E. Elsner, S. Makita, T. Yatagai, and Y. Yasuno, “Imaging polarimetry in age-related macular degeneration,” Invest. Ophthalmol. Vis. Sci. 49, 2661–2667 (2008).
    [CrossRef] [PubMed]
  5. Q. Zhou and R. N. Weinreb, “Individualized compensation of anterior segment birefringence during scanning laser polarimetry,” Invest. Ophthalmol. Vis. Sci. 43, 2221–2228 (2002).
    [PubMed]
  6. S. Psilodimitrakopoulos, V. Petegnief, G. Soria, I. Amat-Roldan, D. Artigas, A. M. Planas, P. Loza-Alvarez, “Estimation of the effective orientation of the SHG source in primary cortical neurons,” Opt. Express 17, 14418–14425 (2009).
    [CrossRef] [PubMed]
  7. C. C. Jung and J. Stumpe, “Immersion transmission ellipsometry (ITE): a new method for the precise determination of the 3D indicatrix of thin films,” Appl. Phys. B 80, 231–238(2005).
    [CrossRef]
  8. G. Badano, A. Million, B. Canava, P. Tran-Van, and A. Etcheberry, “Fast detection of precipitates and oxides on CdZnTe surfaces by spectroscopic ellipsometry,” J. Electron. Mater. 36, 1077–1084 (2007).
    [CrossRef]
  9. M. L. Demidov and H. Balthasar, “Spectro-polarimetric observations of solar magnetic fields and the SOHO/MDI calibration issue,” Sol. Phys. 260, 261–270 (2009).
    [CrossRef]
  10. J. S. Tyo, D. L. Goldstein, D. B. Chenault, and J. A. Shaw, “Review of passive imaging polarimetry for remote sensing applications,” Appl. Opt. 45, 5453–5469 (2006).
    [CrossRef] [PubMed]
  11. D. J. Diner, A. Davis, B. Hancock, G. Gutt, R. A. Chipman, and B. Cairns, “Dual-photoelastic-modulator-based polarimetric imaging concept for aerosol remote sensing,” Appl. Opt. 46, 8428–8445 (2007).
    [CrossRef] [PubMed]
  12. D. L. Bowers, J. K. Boger, L. D. Wellems, S. E. Ortega, M. P. Fetrow, J. E. Hubbs, W. T. Black, B. M. Ratliff, and J. S. Tyo, “Unpolarized calibration and nonuniformity correction for long-wave infrared microgrid imaging polarimeters,” Opt. Eng. 47, 046403 (2008).
    [CrossRef]
  13. Z. Zhuang, S.-W. Suh, and J. S. Patel, “Polarization controller using nematic liquid crystals,” Opt. Lett. 24, 694–697 (1999).
    [CrossRef]
  14. M. Martinelli and R. A. Chipman, “Endless polarization control algorithm using adjustable linear retarders with fixed axes,” J. Lightwave Technol. 21, 2089–2096 (2003).
    [CrossRef]
  15. A. Safrani and I. Abdulhalim, “Liquid-crystal polarization rotator and a tunable polarizer,” Opt. Lett. 34, 1801–1803(2009).
    [CrossRef] [PubMed]
  16. O. Aharon and I. Abdulhalim, “Liquid crystal wavelength-independent continuous polarization rotator,” Opt. Eng. 49, 034002 (2010).
    [CrossRef]
  17. R. S. Seymour, S. M. Rees, J. Staromlynska, J. Richards, and P. Wilson, “Design considerations for a liquid crystal tuned Lyot filter for laser bathymetry,” Opt. Eng. 33, 915–923 (1994).
    [CrossRef]
  18. P. A. Searcy, P. Wagner, R. A. Ramsey, J. Powell, and T. G. Baur, “Tunable liquid crystal filters including variable FWHM control,” Proc. SPIE 7672, 76720F (2010).
    [CrossRef]
  19. O. Aharon and I. Abdulhalim, “Liquid crystal Lyot tunable filter with extended free spectral range,” Opt. Express 17, 11426–11433 (2009).
    [CrossRef] [PubMed]
  20. R. C. Jones, “A new calculus for the treatment of optical systems. I. Description and discussion of the calculus,” J. Opt. Soc. Am. 31, 488–493 (1941).
    [CrossRef]
  21. R. C. Jones, “New calculus for the treatment of optical systems. VIII. Electromagnetic theory,” J. Opt. Soc. Am. 46, 126–131 (1956).
    [CrossRef]
  22. W. A. Shurcliff, Polarized Light: Production and Use (Harvard U. Press1962).
  23. R. M. A. Azzam and N. M. Bashara, Ellipsometry and Polarized Light (North-Holland, 1977).
  24. S. Huard, Polarization of Light (Wiley, 1997).
  25. M. Born and E. Wolf, Principles of Optics (Pergamon, 1959).
  26. S. N. Savenkov, V. V. Marienko, and E. A. Oberemok, “Generalized matrix equivalence theorem for polarization theory,” Phys. Rev. E 74, 056607 (2006).
    [CrossRef]
  27. H. Hurwitz and R. C. Jones, “A new calculus for the treatment of optical systems. II. Proof of three general equivalence theorems,” J. Opt. Soc. Am. 31, 493–499 (1941).
    [CrossRef]
  28. M. Ya. Darsht, I. V. Goltser, N. D. Kundikova, and B. Ya. Zel’dovich, “An adjustable half-wave plate,” Appl. Opt. 34, 3658–3661 (1995).
    [CrossRef] [PubMed]
  29. I. V. Goltser, M. Ya. Darsht, N. D. Kundikova, and B. Ya. Zel’dovich, “An adjustable quarterwave plate,” Opt. Commun. 97, 291–294 (1993).
    [CrossRef]
  30. I. V. Gol’tser, M. Ya. Darsht, B. Ya. Zel’dovich, N. D. Kundikova, L. F. Rogacheva, “Quarter-wave plate tunable in a wide wavelength range,” Quantum Electron. 25, 187–190 (1995).
    [CrossRef]
  31. V. V. Chirkov, N. D. Kundikova, and L. F. Rogacheva, “An adjustable complex phase retarder without optical activity,” Proc. Chelyabinsk Scientific Center 1, 15–18 (2001).
  32. S. N. Savenkov, O. I. Sydoruk, and R. S. Muttiah, “Eigenanalysis of dichroic, birefringent, and degenerate polarization elements: a Jones-calculus study,” Appl. Opt. 46, 6700–6709(2007).
    [CrossRef] [PubMed]
  33. S. N. Savenkov, Y. A. Oberemok, and V. V. Yakubchak, “Matrix model of inhomogeneous medium with circular birefringence in single scattering case,” Quantum Electron. Optoelectron. 12, 199–203 (2009).
  34. Meadowlark Optics, “Polarization Rotator,” http://www.meadowlark.com/products/lcPolarizationRotator.php.
  35. W. C. Davis, “Simplified wave plate measurements,” Appl. Opt. 20, 2879–2880 (1981).
    [CrossRef] [PubMed]
  36. N. D. Kundikova and A. M. Suvorova, “Tunable quarter-wave plate for determining light wavelength,” Tech. Phys. Lett. 35, 63–66 (2009).
    [CrossRef]

2010

Yu. A. Ushenko, A. P. Peresunko, and B. A. Baku, “A new method of mueller-matrix diagnostics and differentiation of early oncological changes of the skin derma,” Adv. Opt. Technol. 2010, 1–9 (2010).
[CrossRef]

O. Aharon and I. Abdulhalim, “Liquid crystal wavelength-independent continuous polarization rotator,” Opt. Eng. 49, 034002 (2010).
[CrossRef]

P. A. Searcy, P. Wagner, R. A. Ramsey, J. Powell, and T. G. Baur, “Tunable liquid crystal filters including variable FWHM control,” Proc. SPIE 7672, 76720F (2010).
[CrossRef]

2009

S. N. Savenkov, Y. A. Oberemok, and V. V. Yakubchak, “Matrix model of inhomogeneous medium with circular birefringence in single scattering case,” Quantum Electron. Optoelectron. 12, 199–203 (2009).

N. D. Kundikova and A. M. Suvorova, “Tunable quarter-wave plate for determining light wavelength,” Tech. Phys. Lett. 35, 63–66 (2009).
[CrossRef]

D. A. VanNasdale, A. E. Elsner, A. Weber, M. Miura, and B. P. Haggerty, “Determination of foveal location using scanning laser polarimetry,” J. Vision 9, 1–17 (2009).
[CrossRef]

J. M. Bueno, C. J. Cookson, J. J. Hunter, M. L. Kisilak, and M. C. W. Campbell, “Depolarization properties of the optic nerve head: the effect of age,” Ophthal. Physiol. Opt. 29, 247–255(2009).
[CrossRef]

M. L. Demidov and H. Balthasar, “Spectro-polarimetric observations of solar magnetic fields and the SOHO/MDI calibration issue,” Sol. Phys. 260, 261–270 (2009).
[CrossRef]

A. Safrani and I. Abdulhalim, “Liquid-crystal polarization rotator and a tunable polarizer,” Opt. Lett. 34, 1801–1803(2009).
[CrossRef] [PubMed]

O. Aharon and I. Abdulhalim, “Liquid crystal Lyot tunable filter with extended free spectral range,” Opt. Express 17, 11426–11433 (2009).
[CrossRef] [PubMed]

S. Psilodimitrakopoulos, V. Petegnief, G. Soria, I. Amat-Roldan, D. Artigas, A. M. Planas, P. Loza-Alvarez, “Estimation of the effective orientation of the SHG source in primary cortical neurons,” Opt. Express 17, 14418–14425 (2009).
[CrossRef] [PubMed]

2008

D. L. Bowers, J. K. Boger, L. D. Wellems, S. E. Ortega, M. P. Fetrow, J. E. Hubbs, W. T. Black, B. M. Ratliff, and J. S. Tyo, “Unpolarized calibration and nonuniformity correction for long-wave infrared microgrid imaging polarimeters,” Opt. Eng. 47, 046403 (2008).
[CrossRef]

M. Miura, M. Yamanari, T. Iwasaki, A. E. Elsner, S. Makita, T. Yatagai, and Y. Yasuno, “Imaging polarimetry in age-related macular degeneration,” Invest. Ophthalmol. Vis. Sci. 49, 2661–2667 (2008).
[CrossRef] [PubMed]

2007

2006

J. S. Tyo, D. L. Goldstein, D. B. Chenault, and J. A. Shaw, “Review of passive imaging polarimetry for remote sensing applications,” Appl. Opt. 45, 5453–5469 (2006).
[CrossRef] [PubMed]

S. N. Savenkov, V. V. Marienko, and E. A. Oberemok, “Generalized matrix equivalence theorem for polarization theory,” Phys. Rev. E 74, 056607 (2006).
[CrossRef]

2005

C. C. Jung and J. Stumpe, “Immersion transmission ellipsometry (ITE): a new method for the precise determination of the 3D indicatrix of thin films,” Appl. Phys. B 80, 231–238(2005).
[CrossRef]

2003

2002

Q. Zhou and R. N. Weinreb, “Individualized compensation of anterior segment birefringence during scanning laser polarimetry,” Invest. Ophthalmol. Vis. Sci. 43, 2221–2228 (2002).
[PubMed]

2001

V. V. Chirkov, N. D. Kundikova, and L. F. Rogacheva, “An adjustable complex phase retarder without optical activity,” Proc. Chelyabinsk Scientific Center 1, 15–18 (2001).

1999

1995

M. Ya. Darsht, I. V. Goltser, N. D. Kundikova, and B. Ya. Zel’dovich, “An adjustable half-wave plate,” Appl. Opt. 34, 3658–3661 (1995).
[CrossRef] [PubMed]

I. V. Gol’tser, M. Ya. Darsht, B. Ya. Zel’dovich, N. D. Kundikova, L. F. Rogacheva, “Quarter-wave plate tunable in a wide wavelength range,” Quantum Electron. 25, 187–190 (1995).
[CrossRef]

1994

R. S. Seymour, S. M. Rees, J. Staromlynska, J. Richards, and P. Wilson, “Design considerations for a liquid crystal tuned Lyot filter for laser bathymetry,” Opt. Eng. 33, 915–923 (1994).
[CrossRef]

1993

I. V. Goltser, M. Ya. Darsht, N. D. Kundikova, and B. Ya. Zel’dovich, “An adjustable quarterwave plate,” Opt. Commun. 97, 291–294 (1993).
[CrossRef]

1981

1956

1941

Abdulhalim, I.

Aharon, O.

O. Aharon and I. Abdulhalim, “Liquid crystal wavelength-independent continuous polarization rotator,” Opt. Eng. 49, 034002 (2010).
[CrossRef]

O. Aharon and I. Abdulhalim, “Liquid crystal Lyot tunable filter with extended free spectral range,” Opt. Express 17, 11426–11433 (2009).
[CrossRef] [PubMed]

Amat-Roldan, I.

Artigas, D.

Azzam, R. M. A.

R. M. A. Azzam and N. M. Bashara, Ellipsometry and Polarized Light (North-Holland, 1977).

Badano, G.

G. Badano, A. Million, B. Canava, P. Tran-Van, and A. Etcheberry, “Fast detection of precipitates and oxides on CdZnTe surfaces by spectroscopic ellipsometry,” J. Electron. Mater. 36, 1077–1084 (2007).
[CrossRef]

Baku, B. A.

Yu. A. Ushenko, A. P. Peresunko, and B. A. Baku, “A new method of mueller-matrix diagnostics and differentiation of early oncological changes of the skin derma,” Adv. Opt. Technol. 2010, 1–9 (2010).
[CrossRef]

Balthasar, H.

M. L. Demidov and H. Balthasar, “Spectro-polarimetric observations of solar magnetic fields and the SOHO/MDI calibration issue,” Sol. Phys. 260, 261–270 (2009).
[CrossRef]

Bashara, N. M.

R. M. A. Azzam and N. M. Bashara, Ellipsometry and Polarized Light (North-Holland, 1977).

Baur, T. G.

P. A. Searcy, P. Wagner, R. A. Ramsey, J. Powell, and T. G. Baur, “Tunable liquid crystal filters including variable FWHM control,” Proc. SPIE 7672, 76720F (2010).
[CrossRef]

Black, W. T.

D. L. Bowers, J. K. Boger, L. D. Wellems, S. E. Ortega, M. P. Fetrow, J. E. Hubbs, W. T. Black, B. M. Ratliff, and J. S. Tyo, “Unpolarized calibration and nonuniformity correction for long-wave infrared microgrid imaging polarimeters,” Opt. Eng. 47, 046403 (2008).
[CrossRef]

Boger, J. K.

D. L. Bowers, J. K. Boger, L. D. Wellems, S. E. Ortega, M. P. Fetrow, J. E. Hubbs, W. T. Black, B. M. Ratliff, and J. S. Tyo, “Unpolarized calibration and nonuniformity correction for long-wave infrared microgrid imaging polarimeters,” Opt. Eng. 47, 046403 (2008).
[CrossRef]

Born, M.

M. Born and E. Wolf, Principles of Optics (Pergamon, 1959).

Bowers, D. L.

D. L. Bowers, J. K. Boger, L. D. Wellems, S. E. Ortega, M. P. Fetrow, J. E. Hubbs, W. T. Black, B. M. Ratliff, and J. S. Tyo, “Unpolarized calibration and nonuniformity correction for long-wave infrared microgrid imaging polarimeters,” Opt. Eng. 47, 046403 (2008).
[CrossRef]

Bueno, J. M.

J. M. Bueno, C. J. Cookson, J. J. Hunter, M. L. Kisilak, and M. C. W. Campbell, “Depolarization properties of the optic nerve head: the effect of age,” Ophthal. Physiol. Opt. 29, 247–255(2009).
[CrossRef]

Cairns, B.

Campbell, M. C. W.

J. M. Bueno, C. J. Cookson, J. J. Hunter, M. L. Kisilak, and M. C. W. Campbell, “Depolarization properties of the optic nerve head: the effect of age,” Ophthal. Physiol. Opt. 29, 247–255(2009).
[CrossRef]

Canava, B.

G. Badano, A. Million, B. Canava, P. Tran-Van, and A. Etcheberry, “Fast detection of precipitates and oxides on CdZnTe surfaces by spectroscopic ellipsometry,” J. Electron. Mater. 36, 1077–1084 (2007).
[CrossRef]

Chenault, D. B.

Chipman, R. A.

Chirkov, V. V.

V. V. Chirkov, N. D. Kundikova, and L. F. Rogacheva, “An adjustable complex phase retarder without optical activity,” Proc. Chelyabinsk Scientific Center 1, 15–18 (2001).

Cookson, C. J.

J. M. Bueno, C. J. Cookson, J. J. Hunter, M. L. Kisilak, and M. C. W. Campbell, “Depolarization properties of the optic nerve head: the effect of age,” Ophthal. Physiol. Opt. 29, 247–255(2009).
[CrossRef]

Darsht, M. Ya.

M. Ya. Darsht, I. V. Goltser, N. D. Kundikova, and B. Ya. Zel’dovich, “An adjustable half-wave plate,” Appl. Opt. 34, 3658–3661 (1995).
[CrossRef] [PubMed]

I. V. Gol’tser, M. Ya. Darsht, B. Ya. Zel’dovich, N. D. Kundikova, L. F. Rogacheva, “Quarter-wave plate tunable in a wide wavelength range,” Quantum Electron. 25, 187–190 (1995).
[CrossRef]

I. V. Goltser, M. Ya. Darsht, N. D. Kundikova, and B. Ya. Zel’dovich, “An adjustable quarterwave plate,” Opt. Commun. 97, 291–294 (1993).
[CrossRef]

Davis, A.

Davis, W. C.

Demidov, M. L.

M. L. Demidov and H. Balthasar, “Spectro-polarimetric observations of solar magnetic fields and the SOHO/MDI calibration issue,” Sol. Phys. 260, 261–270 (2009).
[CrossRef]

Diner, D. J.

Elsner, A. E.

D. A. VanNasdale, A. E. Elsner, A. Weber, M. Miura, and B. P. Haggerty, “Determination of foveal location using scanning laser polarimetry,” J. Vision 9, 1–17 (2009).
[CrossRef]

M. Miura, M. Yamanari, T. Iwasaki, A. E. Elsner, S. Makita, T. Yatagai, and Y. Yasuno, “Imaging polarimetry in age-related macular degeneration,” Invest. Ophthalmol. Vis. Sci. 49, 2661–2667 (2008).
[CrossRef] [PubMed]

Etcheberry, A.

G. Badano, A. Million, B. Canava, P. Tran-Van, and A. Etcheberry, “Fast detection of precipitates and oxides on CdZnTe surfaces by spectroscopic ellipsometry,” J. Electron. Mater. 36, 1077–1084 (2007).
[CrossRef]

Fetrow, M. P.

D. L. Bowers, J. K. Boger, L. D. Wellems, S. E. Ortega, M. P. Fetrow, J. E. Hubbs, W. T. Black, B. M. Ratliff, and J. S. Tyo, “Unpolarized calibration and nonuniformity correction for long-wave infrared microgrid imaging polarimeters,” Opt. Eng. 47, 046403 (2008).
[CrossRef]

Gol’tser, I. V.

I. V. Gol’tser, M. Ya. Darsht, B. Ya. Zel’dovich, N. D. Kundikova, L. F. Rogacheva, “Quarter-wave plate tunable in a wide wavelength range,” Quantum Electron. 25, 187–190 (1995).
[CrossRef]

Goldstein, D. L.

Goltser, I. V.

M. Ya. Darsht, I. V. Goltser, N. D. Kundikova, and B. Ya. Zel’dovich, “An adjustable half-wave plate,” Appl. Opt. 34, 3658–3661 (1995).
[CrossRef] [PubMed]

I. V. Goltser, M. Ya. Darsht, N. D. Kundikova, and B. Ya. Zel’dovich, “An adjustable quarterwave plate,” Opt. Commun. 97, 291–294 (1993).
[CrossRef]

Gutt, G.

Haggerty, B. P.

D. A. VanNasdale, A. E. Elsner, A. Weber, M. Miura, and B. P. Haggerty, “Determination of foveal location using scanning laser polarimetry,” J. Vision 9, 1–17 (2009).
[CrossRef]

Hancock, B.

Huard, S.

S. Huard, Polarization of Light (Wiley, 1997).

Hubbs, J. E.

D. L. Bowers, J. K. Boger, L. D. Wellems, S. E. Ortega, M. P. Fetrow, J. E. Hubbs, W. T. Black, B. M. Ratliff, and J. S. Tyo, “Unpolarized calibration and nonuniformity correction for long-wave infrared microgrid imaging polarimeters,” Opt. Eng. 47, 046403 (2008).
[CrossRef]

Hunter, J. J.

J. M. Bueno, C. J. Cookson, J. J. Hunter, M. L. Kisilak, and M. C. W. Campbell, “Depolarization properties of the optic nerve head: the effect of age,” Ophthal. Physiol. Opt. 29, 247–255(2009).
[CrossRef]

Hurwitz, H.

Iwasaki, T.

M. Miura, M. Yamanari, T. Iwasaki, A. E. Elsner, S. Makita, T. Yatagai, and Y. Yasuno, “Imaging polarimetry in age-related macular degeneration,” Invest. Ophthalmol. Vis. Sci. 49, 2661–2667 (2008).
[CrossRef] [PubMed]

Jones, R. C.

Jung, C. C.

C. C. Jung and J. Stumpe, “Immersion transmission ellipsometry (ITE): a new method for the precise determination of the 3D indicatrix of thin films,” Appl. Phys. B 80, 231–238(2005).
[CrossRef]

Kisilak, M. L.

J. M. Bueno, C. J. Cookson, J. J. Hunter, M. L. Kisilak, and M. C. W. Campbell, “Depolarization properties of the optic nerve head: the effect of age,” Ophthal. Physiol. Opt. 29, 247–255(2009).
[CrossRef]

Kundikova, N. D.

N. D. Kundikova and A. M. Suvorova, “Tunable quarter-wave plate for determining light wavelength,” Tech. Phys. Lett. 35, 63–66 (2009).
[CrossRef]

V. V. Chirkov, N. D. Kundikova, and L. F. Rogacheva, “An adjustable complex phase retarder without optical activity,” Proc. Chelyabinsk Scientific Center 1, 15–18 (2001).

I. V. Gol’tser, M. Ya. Darsht, B. Ya. Zel’dovich, N. D. Kundikova, L. F. Rogacheva, “Quarter-wave plate tunable in a wide wavelength range,” Quantum Electron. 25, 187–190 (1995).
[CrossRef]

M. Ya. Darsht, I. V. Goltser, N. D. Kundikova, and B. Ya. Zel’dovich, “An adjustable half-wave plate,” Appl. Opt. 34, 3658–3661 (1995).
[CrossRef] [PubMed]

I. V. Goltser, M. Ya. Darsht, N. D. Kundikova, and B. Ya. Zel’dovich, “An adjustable quarterwave plate,” Opt. Commun. 97, 291–294 (1993).
[CrossRef]

Loza-Alvarez, P.

Makita, S.

M. Miura, M. Yamanari, T. Iwasaki, A. E. Elsner, S. Makita, T. Yatagai, and Y. Yasuno, “Imaging polarimetry in age-related macular degeneration,” Invest. Ophthalmol. Vis. Sci. 49, 2661–2667 (2008).
[CrossRef] [PubMed]

Marienko, V. V.

S. N. Savenkov, V. V. Marienko, and E. A. Oberemok, “Generalized matrix equivalence theorem for polarization theory,” Phys. Rev. E 74, 056607 (2006).
[CrossRef]

Martinelli, M.

Million, A.

G. Badano, A. Million, B. Canava, P. Tran-Van, and A. Etcheberry, “Fast detection of precipitates and oxides on CdZnTe surfaces by spectroscopic ellipsometry,” J. Electron. Mater. 36, 1077–1084 (2007).
[CrossRef]

Miura, M.

D. A. VanNasdale, A. E. Elsner, A. Weber, M. Miura, and B. P. Haggerty, “Determination of foveal location using scanning laser polarimetry,” J. Vision 9, 1–17 (2009).
[CrossRef]

M. Miura, M. Yamanari, T. Iwasaki, A. E. Elsner, S. Makita, T. Yatagai, and Y. Yasuno, “Imaging polarimetry in age-related macular degeneration,” Invest. Ophthalmol. Vis. Sci. 49, 2661–2667 (2008).
[CrossRef] [PubMed]

Muttiah, R. S.

Oberemok, E. A.

S. N. Savenkov, V. V. Marienko, and E. A. Oberemok, “Generalized matrix equivalence theorem for polarization theory,” Phys. Rev. E 74, 056607 (2006).
[CrossRef]

Oberemok, Y. A.

S. N. Savenkov, Y. A. Oberemok, and V. V. Yakubchak, “Matrix model of inhomogeneous medium with circular birefringence in single scattering case,” Quantum Electron. Optoelectron. 12, 199–203 (2009).

Ortega, S. E.

D. L. Bowers, J. K. Boger, L. D. Wellems, S. E. Ortega, M. P. Fetrow, J. E. Hubbs, W. T. Black, B. M. Ratliff, and J. S. Tyo, “Unpolarized calibration and nonuniformity correction for long-wave infrared microgrid imaging polarimeters,” Opt. Eng. 47, 046403 (2008).
[CrossRef]

Patel, J. S.

Peresunko, A. P.

Yu. A. Ushenko, A. P. Peresunko, and B. A. Baku, “A new method of mueller-matrix diagnostics and differentiation of early oncological changes of the skin derma,” Adv. Opt. Technol. 2010, 1–9 (2010).
[CrossRef]

Petegnief, V.

Planas, A. M.

Powell, J.

P. A. Searcy, P. Wagner, R. A. Ramsey, J. Powell, and T. G. Baur, “Tunable liquid crystal filters including variable FWHM control,” Proc. SPIE 7672, 76720F (2010).
[CrossRef]

Psilodimitrakopoulos, S.

Ramsey, R. A.

P. A. Searcy, P. Wagner, R. A. Ramsey, J. Powell, and T. G. Baur, “Tunable liquid crystal filters including variable FWHM control,” Proc. SPIE 7672, 76720F (2010).
[CrossRef]

Ratliff, B. M.

D. L. Bowers, J. K. Boger, L. D. Wellems, S. E. Ortega, M. P. Fetrow, J. E. Hubbs, W. T. Black, B. M. Ratliff, and J. S. Tyo, “Unpolarized calibration and nonuniformity correction for long-wave infrared microgrid imaging polarimeters,” Opt. Eng. 47, 046403 (2008).
[CrossRef]

Rees, S. M.

R. S. Seymour, S. M. Rees, J. Staromlynska, J. Richards, and P. Wilson, “Design considerations for a liquid crystal tuned Lyot filter for laser bathymetry,” Opt. Eng. 33, 915–923 (1994).
[CrossRef]

Richards, J.

R. S. Seymour, S. M. Rees, J. Staromlynska, J. Richards, and P. Wilson, “Design considerations for a liquid crystal tuned Lyot filter for laser bathymetry,” Opt. Eng. 33, 915–923 (1994).
[CrossRef]

Rogacheva, L. F.

V. V. Chirkov, N. D. Kundikova, and L. F. Rogacheva, “An adjustable complex phase retarder without optical activity,” Proc. Chelyabinsk Scientific Center 1, 15–18 (2001).

I. V. Gol’tser, M. Ya. Darsht, B. Ya. Zel’dovich, N. D. Kundikova, L. F. Rogacheva, “Quarter-wave plate tunable in a wide wavelength range,” Quantum Electron. 25, 187–190 (1995).
[CrossRef]

Safrani, A.

Savenkov, S. N.

S. N. Savenkov, Y. A. Oberemok, and V. V. Yakubchak, “Matrix model of inhomogeneous medium with circular birefringence in single scattering case,” Quantum Electron. Optoelectron. 12, 199–203 (2009).

S. N. Savenkov, O. I. Sydoruk, and R. S. Muttiah, “Eigenanalysis of dichroic, birefringent, and degenerate polarization elements: a Jones-calculus study,” Appl. Opt. 46, 6700–6709(2007).
[CrossRef] [PubMed]

S. N. Savenkov, V. V. Marienko, and E. A. Oberemok, “Generalized matrix equivalence theorem for polarization theory,” Phys. Rev. E 74, 056607 (2006).
[CrossRef]

Searcy, P. A.

P. A. Searcy, P. Wagner, R. A. Ramsey, J. Powell, and T. G. Baur, “Tunable liquid crystal filters including variable FWHM control,” Proc. SPIE 7672, 76720F (2010).
[CrossRef]

Seymour, R. S.

R. S. Seymour, S. M. Rees, J. Staromlynska, J. Richards, and P. Wilson, “Design considerations for a liquid crystal tuned Lyot filter for laser bathymetry,” Opt. Eng. 33, 915–923 (1994).
[CrossRef]

Shaw, J. A.

Shurcliff, W. A.

W. A. Shurcliff, Polarized Light: Production and Use (Harvard U. Press1962).

Soria, G.

Staromlynska, J.

R. S. Seymour, S. M. Rees, J. Staromlynska, J. Richards, and P. Wilson, “Design considerations for a liquid crystal tuned Lyot filter for laser bathymetry,” Opt. Eng. 33, 915–923 (1994).
[CrossRef]

Stumpe, J.

C. C. Jung and J. Stumpe, “Immersion transmission ellipsometry (ITE): a new method for the precise determination of the 3D indicatrix of thin films,” Appl. Phys. B 80, 231–238(2005).
[CrossRef]

Suh, S.-W.

Suvorova, A. M.

N. D. Kundikova and A. M. Suvorova, “Tunable quarter-wave plate for determining light wavelength,” Tech. Phys. Lett. 35, 63–66 (2009).
[CrossRef]

Sydoruk, O. I.

Tran-Van, P.

G. Badano, A. Million, B. Canava, P. Tran-Van, and A. Etcheberry, “Fast detection of precipitates and oxides on CdZnTe surfaces by spectroscopic ellipsometry,” J. Electron. Mater. 36, 1077–1084 (2007).
[CrossRef]

Tyo, J. S.

D. L. Bowers, J. K. Boger, L. D. Wellems, S. E. Ortega, M. P. Fetrow, J. E. Hubbs, W. T. Black, B. M. Ratliff, and J. S. Tyo, “Unpolarized calibration and nonuniformity correction for long-wave infrared microgrid imaging polarimeters,” Opt. Eng. 47, 046403 (2008).
[CrossRef]

J. S. Tyo, D. L. Goldstein, D. B. Chenault, and J. A. Shaw, “Review of passive imaging polarimetry for remote sensing applications,” Appl. Opt. 45, 5453–5469 (2006).
[CrossRef] [PubMed]

Ushenko, Yu. A.

Yu. A. Ushenko, A. P. Peresunko, and B. A. Baku, “A new method of mueller-matrix diagnostics and differentiation of early oncological changes of the skin derma,” Adv. Opt. Technol. 2010, 1–9 (2010).
[CrossRef]

VanNasdale, D. A.

D. A. VanNasdale, A. E. Elsner, A. Weber, M. Miura, and B. P. Haggerty, “Determination of foveal location using scanning laser polarimetry,” J. Vision 9, 1–17 (2009).
[CrossRef]

Wagner, P.

P. A. Searcy, P. Wagner, R. A. Ramsey, J. Powell, and T. G. Baur, “Tunable liquid crystal filters including variable FWHM control,” Proc. SPIE 7672, 76720F (2010).
[CrossRef]

Weber, A.

D. A. VanNasdale, A. E. Elsner, A. Weber, M. Miura, and B. P. Haggerty, “Determination of foveal location using scanning laser polarimetry,” J. Vision 9, 1–17 (2009).
[CrossRef]

Weinreb, R. N.

Q. Zhou and R. N. Weinreb, “Individualized compensation of anterior segment birefringence during scanning laser polarimetry,” Invest. Ophthalmol. Vis. Sci. 43, 2221–2228 (2002).
[PubMed]

Wellems, L. D.

D. L. Bowers, J. K. Boger, L. D. Wellems, S. E. Ortega, M. P. Fetrow, J. E. Hubbs, W. T. Black, B. M. Ratliff, and J. S. Tyo, “Unpolarized calibration and nonuniformity correction for long-wave infrared microgrid imaging polarimeters,” Opt. Eng. 47, 046403 (2008).
[CrossRef]

Wilson, P.

R. S. Seymour, S. M. Rees, J. Staromlynska, J. Richards, and P. Wilson, “Design considerations for a liquid crystal tuned Lyot filter for laser bathymetry,” Opt. Eng. 33, 915–923 (1994).
[CrossRef]

Wolf, E.

M. Born and E. Wolf, Principles of Optics (Pergamon, 1959).

Yakubchak, V. V.

S. N. Savenkov, Y. A. Oberemok, and V. V. Yakubchak, “Matrix model of inhomogeneous medium with circular birefringence in single scattering case,” Quantum Electron. Optoelectron. 12, 199–203 (2009).

Yamanari, M.

M. Miura, M. Yamanari, T. Iwasaki, A. E. Elsner, S. Makita, T. Yatagai, and Y. Yasuno, “Imaging polarimetry in age-related macular degeneration,” Invest. Ophthalmol. Vis. Sci. 49, 2661–2667 (2008).
[CrossRef] [PubMed]

Yasuno, Y.

M. Miura, M. Yamanari, T. Iwasaki, A. E. Elsner, S. Makita, T. Yatagai, and Y. Yasuno, “Imaging polarimetry in age-related macular degeneration,” Invest. Ophthalmol. Vis. Sci. 49, 2661–2667 (2008).
[CrossRef] [PubMed]

Yatagai, T.

M. Miura, M. Yamanari, T. Iwasaki, A. E. Elsner, S. Makita, T. Yatagai, and Y. Yasuno, “Imaging polarimetry in age-related macular degeneration,” Invest. Ophthalmol. Vis. Sci. 49, 2661–2667 (2008).
[CrossRef] [PubMed]

Zel’dovich, B. Ya.

I. V. Gol’tser, M. Ya. Darsht, B. Ya. Zel’dovich, N. D. Kundikova, L. F. Rogacheva, “Quarter-wave plate tunable in a wide wavelength range,” Quantum Electron. 25, 187–190 (1995).
[CrossRef]

M. Ya. Darsht, I. V. Goltser, N. D. Kundikova, and B. Ya. Zel’dovich, “An adjustable half-wave plate,” Appl. Opt. 34, 3658–3661 (1995).
[CrossRef] [PubMed]

I. V. Goltser, M. Ya. Darsht, N. D. Kundikova, and B. Ya. Zel’dovich, “An adjustable quarterwave plate,” Opt. Commun. 97, 291–294 (1993).
[CrossRef]

Zhou, Q.

Q. Zhou and R. N. Weinreb, “Individualized compensation of anterior segment birefringence during scanning laser polarimetry,” Invest. Ophthalmol. Vis. Sci. 43, 2221–2228 (2002).
[PubMed]

Zhuang, Z.

Adv. Opt. Technol.

Yu. A. Ushenko, A. P. Peresunko, and B. A. Baku, “A new method of mueller-matrix diagnostics and differentiation of early oncological changes of the skin derma,” Adv. Opt. Technol. 2010, 1–9 (2010).
[CrossRef]

Appl. Opt.

Appl. Phys. B

C. C. Jung and J. Stumpe, “Immersion transmission ellipsometry (ITE): a new method for the precise determination of the 3D indicatrix of thin films,” Appl. Phys. B 80, 231–238(2005).
[CrossRef]

Invest. Ophthalmol. Vis. Sci.

M. Miura, M. Yamanari, T. Iwasaki, A. E. Elsner, S. Makita, T. Yatagai, and Y. Yasuno, “Imaging polarimetry in age-related macular degeneration,” Invest. Ophthalmol. Vis. Sci. 49, 2661–2667 (2008).
[CrossRef] [PubMed]

Q. Zhou and R. N. Weinreb, “Individualized compensation of anterior segment birefringence during scanning laser polarimetry,” Invest. Ophthalmol. Vis. Sci. 43, 2221–2228 (2002).
[PubMed]

J. Electron. Mater.

G. Badano, A. Million, B. Canava, P. Tran-Van, and A. Etcheberry, “Fast detection of precipitates and oxides on CdZnTe surfaces by spectroscopic ellipsometry,” J. Electron. Mater. 36, 1077–1084 (2007).
[CrossRef]

J. Lightwave Technol.

J. Opt. Soc. Am.

J. Vision

D. A. VanNasdale, A. E. Elsner, A. Weber, M. Miura, and B. P. Haggerty, “Determination of foveal location using scanning laser polarimetry,” J. Vision 9, 1–17 (2009).
[CrossRef]

Ophthal. Physiol. Opt.

J. M. Bueno, C. J. Cookson, J. J. Hunter, M. L. Kisilak, and M. C. W. Campbell, “Depolarization properties of the optic nerve head: the effect of age,” Ophthal. Physiol. Opt. 29, 247–255(2009).
[CrossRef]

Opt. Commun.

I. V. Goltser, M. Ya. Darsht, N. D. Kundikova, and B. Ya. Zel’dovich, “An adjustable quarterwave plate,” Opt. Commun. 97, 291–294 (1993).
[CrossRef]

Opt. Eng.

D. L. Bowers, J. K. Boger, L. D. Wellems, S. E. Ortega, M. P. Fetrow, J. E. Hubbs, W. T. Black, B. M. Ratliff, and J. S. Tyo, “Unpolarized calibration and nonuniformity correction for long-wave infrared microgrid imaging polarimeters,” Opt. Eng. 47, 046403 (2008).
[CrossRef]

O. Aharon and I. Abdulhalim, “Liquid crystal wavelength-independent continuous polarization rotator,” Opt. Eng. 49, 034002 (2010).
[CrossRef]

R. S. Seymour, S. M. Rees, J. Staromlynska, J. Richards, and P. Wilson, “Design considerations for a liquid crystal tuned Lyot filter for laser bathymetry,” Opt. Eng. 33, 915–923 (1994).
[CrossRef]

Opt. Express

Opt. Lett.

Phys. Rev. E

S. N. Savenkov, V. V. Marienko, and E. A. Oberemok, “Generalized matrix equivalence theorem for polarization theory,” Phys. Rev. E 74, 056607 (2006).
[CrossRef]

Proc. Chelyabinsk Scientific Center

V. V. Chirkov, N. D. Kundikova, and L. F. Rogacheva, “An adjustable complex phase retarder without optical activity,” Proc. Chelyabinsk Scientific Center 1, 15–18 (2001).

Proc. SPIE

P. A. Searcy, P. Wagner, R. A. Ramsey, J. Powell, and T. G. Baur, “Tunable liquid crystal filters including variable FWHM control,” Proc. SPIE 7672, 76720F (2010).
[CrossRef]

Quantum Electron.

I. V. Gol’tser, M. Ya. Darsht, B. Ya. Zel’dovich, N. D. Kundikova, L. F. Rogacheva, “Quarter-wave plate tunable in a wide wavelength range,” Quantum Electron. 25, 187–190 (1995).
[CrossRef]

Quantum Electron. Optoelectron.

S. N. Savenkov, Y. A. Oberemok, and V. V. Yakubchak, “Matrix model of inhomogeneous medium with circular birefringence in single scattering case,” Quantum Electron. Optoelectron. 12, 199–203 (2009).

Sol. Phys.

M. L. Demidov and H. Balthasar, “Spectro-polarimetric observations of solar magnetic fields and the SOHO/MDI calibration issue,” Sol. Phys. 260, 261–270 (2009).
[CrossRef]

Tech. Phys. Lett.

N. D. Kundikova and A. M. Suvorova, “Tunable quarter-wave plate for determining light wavelength,” Tech. Phys. Lett. 35, 63–66 (2009).
[CrossRef]

Other

Meadowlark Optics, “Polarization Rotator,” http://www.meadowlark.com/products/lcPolarizationRotator.php.

W. A. Shurcliff, Polarized Light: Production and Use (Harvard U. Press1962).

R. M. A. Azzam and N. M. Bashara, Ellipsometry and Polarized Light (North-Holland, 1977).

S. Huard, Polarization of Light (Wiley, 1997).

M. Born and E. Wolf, Principles of Optics (Pergamon, 1959).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1

Polarization transformation of a beam of light propagating through the first polarization system (the quarter-wave plate with adjustable values of optical activity θ and axes orientation ε) represented by a point on the Poincaré sphere.

Fig. 2
Fig. 2

Polarization transformation of a beam of light propagating through the second polarization system (the quarter-wave plate with adjustable values of optical activity θ and immovable axes orientation ε) represented by a point on the Poincaré sphere.

Fig. 3
Fig. 3

Experimental setup: a, a quarter-wave plate with adjustable axes; b, a quarter-wave plate with adjustable optical activity.

Fig. 4
Fig. 4

Phase retardation of the LC cell as a function of the applied voltage.

Fig. 5
Fig. 5

Deviation of the effective phase retardation Δ Γ eff = | 90 ° Γ eff | of the first polarization system with adjustable effective axis orientation as a function of the phase retardation of the LC cell.

Fig. 6
Fig. 6

Angle of optical activity (a) and the angle of effective angle position (b) as a function of the LC cell phase retardation for the first polarization system under investigation. The solid curve is the function θ = Γ v / 2 .

Fig. 7
Fig. 7

Dependence of the azimuth of linearly polarized light converted into circularly polarized light by the first system under investigation on the phase retardation value of the LC cell. The dashed curve (A) is the best fit approximation to the experimental points, the solid curve (B) is the function α = α 0 - Γ v / 2 .

Fig. 8
Fig. 8

Deviation of the effective phase retardation Δ Γ eff = | 90 ° Γ eff | of the second polarization system with adjustable optical activity as a function of the LC cell phase shift.

Fig. 9
Fig. 9

Ellipticity of light transmitted through the second polarization system as a function of the phase shift for different values of linearly polarized light azimuth: a, α = 15 ° ; b, α = 30 ° ; c, α = 45 ° .

Fig. 10
Fig. 10

Angle of the ellipse major axis at the system output as a function of the LC cell phase shift: a, α = 15 ° ; b, α = 30 ° ; c, α = 45 ° . The solid curve is the function θ = Γ v / 2 .

Equations (22)

Equations on this page are rendered with MathJax. Learn more.

T Gen = T CP T LP T CA T LA .
T ( φ , Γ 1 , Γ 2 ) = T CP ( θ ) T LP ( ε , Γ eff ) .
T CP ( θ ) = ( cos θ sin θ sin θ cos θ ) ,
T LP ( ε , Γ eff ) = ( T 11 T 12 T 21 T 22 ) .
T 11 = exp ( i Γ eff / 2 ) cos 2 ε + exp ( i Γ eff / 2 ) sin 2 ε ,
T 12 = [ exp ( i Γ eff / 2 ) exp ( i Γ eff / 2 ) ] cos ε sin ε ,
T 21 = [ exp ( i Γ eff / 2 ) exp ( i Γ eff / 2 ) ] cos ε sin ε ,
T 22 = exp ( i Γ eff / 2 ) sin 2 ε + exp ( i Γ eff / 2 ) cos 2 ε ,
cos ( Γ eff ) = cos ( Γ 1 ) · cos ( Γ 2 ) cos ( 2 φ ) · sin ( Γ 1 ) · sin ( Γ 2 ) ,
tan ( 2 ε ) = sin ( 2 φ ) cot ( Γ 2 ) · sin ( Γ 1 ) + cos ( 2 φ ) · cos ( Γ 1 ) ,
tan ( θ ) = sin ( 2 φ ) cot ( Γ 1 / 2 ) · cot ( Γ 2 / 2 ) cot ( 2 φ ) .
cos ( Γ eff ) = cos ( Γ 1 ) · cos ( Γ 2 ) ,
tan ( 2 ε ) = tan Γ 2 sin Γ 1 ,
tan ( θ ) = tan ( Γ 1 / 2 ) · tan ( Γ 2 / 2 ) .
ε = Γ v 2 , θ = Γ v 2 .
T ( φ , Γ f , Γ v ) = T CP ( θ = Γ v / 2 ) T LP ( ε = Γ v / 2 , Γ eff = 90 ° ) ,
T ( φ , Γ f , Γ v ) = 1 2 ( cos ( Γ v / 2 ) sin ( Γ v / 2 ) sin ( Γ v / 2 ) cos ( Γ v / 2 ) ) × ( 1 i cos Γ v i sin Γ v i sin Γ v 1 + i cos Γ v ) .
tan ( θ ) = tan ( Γ v 2 ) , tan 2 ε = .
θ = Γ v 2 , ε = 45 ° .
T ( φ , Γ v , Γ f ) = T CP ( θ = Γ v / 2 ) T LP ( ε = 45 ° , Γ eff = 90 ° ) ,
T ( φ , Γ v , Γ f ) = 1 2 ( cos ( Γ v / 2 ) sin ( Γ v / 2 ) sin ( Γ v / 2 ) cos ( Γ v / 2 ) ) × ( 1 i i 1 ) .
e = I min / I max .

Metrics