Abstract

We experimentally demonstrate a linearized Y-fed directional coupler (DC) modulator based on an electro-optic (EO) polymer waveguide. The spurious free dynamic range of 119dB/Hz2/3, which is 11dB higher than that of the conventional Mach–Zehnder modulator, is achieved by introducing the reversed Δβ technique in the two-section Y-fed DC. The in-device EO coefficient (r33) of the fabricated device is as high as 79pm/V in 1.55μm wavelength, which is 88% of a single film r33 of LPD-80/APC

© 2010 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. L. M. Johnson and H. V. Roussell, “Reduction of intermodulation distortion in interferometric optical modulators,” Opt. Lett. 13, 928–930 (1988).
    [CrossRef] [PubMed]
  2. S. K. Korotky and R. M. de Ridder, “Dual parallel modulation schemes for low-distortion analog optical transmission,” IEEE J. Select. Areas Commun. 8, 1377–1381 (1990).
    [CrossRef]
  3. R. B. Childs and V. A. O’Bryne, “Predistortion linearization of directly modulated DFB lasers and external modulators for AM video transmission,” in Optical Fiber Communication, OSA Technical Digest (Optical Society of America, 1990), paper WH6.
  4. Y. Chiu, B. Jalali, S. Garner, and W. Steier, “Broad-band electronic linearizer for externally modulated analog fiber-optic links,” IEEE Photon. Technol. Lett. 11, 48–50 (1999).
    [CrossRef]
  5. H. Kogelnik and R. Schmidt, “Switched directional couplers with alternating Δβ,” IEEE J. Quantum Electron. 12, 396–401 (1976).
    [CrossRef]
  6. R. F. Tavlykaev and R. V. Ramaswamy, “Highly linear Y-fed directional coupler modulator with low intermodulation distortion,” J. Lightwave Technol. 17, 282–291 (1999).
    [CrossRef]
  7. X. Wang, B.-S. Lee, C.-Y. Lin, D. An, and R. T. Chen, “Electro-optic polymer linear modulators based on multiple-domain Y-fed directional coupler,” J. Lightwave Technol. 28, 1670–1676 (2010).
    [CrossRef]
  8. J. H. Schaffner, J. F. Lam, C. J. Gaeta, G. L. Tangonan, R. L. Joyce, M. L. Farwell, and W. S. C. Chang, “Spur-free dynamic range measurements of a fiber optic link with traveling wave linearized directional coupler modulators,” IEEE Photon. Technol. Lett. 6, 273–275 (1994).
    [CrossRef]
  9. T. Kishino, R. F. Tavlykaev, and R. V. Ramaswamy, “A Y-fed directional coupler modulator with a highly linear transfer curve,” IEEE Photon. Technol. Lett. 12, 1474–1476 (2000).
    [CrossRef]
  10. D. An, S. Tang, Z. Yue, J. Taboada, L. Sun, Z. Han, X. Lu, and R. T. Chen, “Linearized Y-coupler modulator based on domain-inverted polymeric waveguide,” Proc. SPIE 3632, 220–231 (1999).
    [CrossRef]
  11. P. R. Ashley, E. A. Sornsin, U. Command, and R. Arsenal, “Doped optical claddings for waveguide devices with electrooptical polymers,” IEEE Photon. Technol. Lett. 4, 1026–1028 (1992).
    [CrossRef]
  12. Y. H. Kuo, L. Jingdong, W. H. Steier, and A. K. Y. Jen, “Enhanced thermal stability of electrooptic polymer modulators using the Diels-Alder crosslinkable polymer,” IEEE Photon. Technol. Lett. 18, 175–177 (2006).
    [CrossRef]
  13. R. C. Alferness, “Waveguide electrooptic modulators,” IEEE Trans. Microwave Theory Tech. 30, 1121–1137 (1982).
    [CrossRef]
  14. H. Chen, B. Chen, D. Huang, D. Jin, J. D. Luo, A. K.-Y. Jen, and R. Dinu, “Broadband electro-optic polymer modulators with high electro-optic activity and low poling induced optical loss,” Appl. Phys. Lett. 93, 043507 (2008).
    [CrossRef]
  15. B. Lee, C. Lin, X. Wang, R. T. Chen, J. Luo, and A. K.-Y. Jen, “Bias-free electro-optic polymer-based two-section Y-branch waveguide modulator with 22dB linearity enhancement,” Opt. Lett. 34, 3277–3279 (2009).
    [CrossRef] [PubMed]
  16. Y.-C. Hung, S. K. Kim, and H. Fetterman, “Experimental demonstration of a linearized polymeric directional coupler modulator,” IEEE Photon. Technol. Lett. 19, 1762–1764(2007).
    [CrossRef]

2010 (1)

2009 (1)

2008 (1)

H. Chen, B. Chen, D. Huang, D. Jin, J. D. Luo, A. K.-Y. Jen, and R. Dinu, “Broadband electro-optic polymer modulators with high electro-optic activity and low poling induced optical loss,” Appl. Phys. Lett. 93, 043507 (2008).
[CrossRef]

2007 (1)

Y.-C. Hung, S. K. Kim, and H. Fetterman, “Experimental demonstration of a linearized polymeric directional coupler modulator,” IEEE Photon. Technol. Lett. 19, 1762–1764(2007).
[CrossRef]

2006 (1)

Y. H. Kuo, L. Jingdong, W. H. Steier, and A. K. Y. Jen, “Enhanced thermal stability of electrooptic polymer modulators using the Diels-Alder crosslinkable polymer,” IEEE Photon. Technol. Lett. 18, 175–177 (2006).
[CrossRef]

2000 (1)

T. Kishino, R. F. Tavlykaev, and R. V. Ramaswamy, “A Y-fed directional coupler modulator with a highly linear transfer curve,” IEEE Photon. Technol. Lett. 12, 1474–1476 (2000).
[CrossRef]

1999 (3)

D. An, S. Tang, Z. Yue, J. Taboada, L. Sun, Z. Han, X. Lu, and R. T. Chen, “Linearized Y-coupler modulator based on domain-inverted polymeric waveguide,” Proc. SPIE 3632, 220–231 (1999).
[CrossRef]

Y. Chiu, B. Jalali, S. Garner, and W. Steier, “Broad-band electronic linearizer for externally modulated analog fiber-optic links,” IEEE Photon. Technol. Lett. 11, 48–50 (1999).
[CrossRef]

R. F. Tavlykaev and R. V. Ramaswamy, “Highly linear Y-fed directional coupler modulator with low intermodulation distortion,” J. Lightwave Technol. 17, 282–291 (1999).
[CrossRef]

1994 (1)

J. H. Schaffner, J. F. Lam, C. J. Gaeta, G. L. Tangonan, R. L. Joyce, M. L. Farwell, and W. S. C. Chang, “Spur-free dynamic range measurements of a fiber optic link with traveling wave linearized directional coupler modulators,” IEEE Photon. Technol. Lett. 6, 273–275 (1994).
[CrossRef]

1992 (1)

P. R. Ashley, E. A. Sornsin, U. Command, and R. Arsenal, “Doped optical claddings for waveguide devices with electrooptical polymers,” IEEE Photon. Technol. Lett. 4, 1026–1028 (1992).
[CrossRef]

1990 (1)

S. K. Korotky and R. M. de Ridder, “Dual parallel modulation schemes for low-distortion analog optical transmission,” IEEE J. Select. Areas Commun. 8, 1377–1381 (1990).
[CrossRef]

1988 (1)

1982 (1)

R. C. Alferness, “Waveguide electrooptic modulators,” IEEE Trans. Microwave Theory Tech. 30, 1121–1137 (1982).
[CrossRef]

1976 (1)

H. Kogelnik and R. Schmidt, “Switched directional couplers with alternating Δβ,” IEEE J. Quantum Electron. 12, 396–401 (1976).
[CrossRef]

Alferness, R. C.

R. C. Alferness, “Waveguide electrooptic modulators,” IEEE Trans. Microwave Theory Tech. 30, 1121–1137 (1982).
[CrossRef]

An, D.

X. Wang, B.-S. Lee, C.-Y. Lin, D. An, and R. T. Chen, “Electro-optic polymer linear modulators based on multiple-domain Y-fed directional coupler,” J. Lightwave Technol. 28, 1670–1676 (2010).
[CrossRef]

D. An, S. Tang, Z. Yue, J. Taboada, L. Sun, Z. Han, X. Lu, and R. T. Chen, “Linearized Y-coupler modulator based on domain-inverted polymeric waveguide,” Proc. SPIE 3632, 220–231 (1999).
[CrossRef]

Arsenal, R.

P. R. Ashley, E. A. Sornsin, U. Command, and R. Arsenal, “Doped optical claddings for waveguide devices with electrooptical polymers,” IEEE Photon. Technol. Lett. 4, 1026–1028 (1992).
[CrossRef]

Ashley, P. R.

P. R. Ashley, E. A. Sornsin, U. Command, and R. Arsenal, “Doped optical claddings for waveguide devices with electrooptical polymers,” IEEE Photon. Technol. Lett. 4, 1026–1028 (1992).
[CrossRef]

Chang, W. S. C.

J. H. Schaffner, J. F. Lam, C. J. Gaeta, G. L. Tangonan, R. L. Joyce, M. L. Farwell, and W. S. C. Chang, “Spur-free dynamic range measurements of a fiber optic link with traveling wave linearized directional coupler modulators,” IEEE Photon. Technol. Lett. 6, 273–275 (1994).
[CrossRef]

Chen, B.

H. Chen, B. Chen, D. Huang, D. Jin, J. D. Luo, A. K.-Y. Jen, and R. Dinu, “Broadband electro-optic polymer modulators with high electro-optic activity and low poling induced optical loss,” Appl. Phys. Lett. 93, 043507 (2008).
[CrossRef]

Chen, H.

H. Chen, B. Chen, D. Huang, D. Jin, J. D. Luo, A. K.-Y. Jen, and R. Dinu, “Broadband electro-optic polymer modulators with high electro-optic activity and low poling induced optical loss,” Appl. Phys. Lett. 93, 043507 (2008).
[CrossRef]

Chen, R. T.

Childs, R. B.

R. B. Childs and V. A. O’Bryne, “Predistortion linearization of directly modulated DFB lasers and external modulators for AM video transmission,” in Optical Fiber Communication, OSA Technical Digest (Optical Society of America, 1990), paper WH6.

Chiu, Y.

Y. Chiu, B. Jalali, S. Garner, and W. Steier, “Broad-band electronic linearizer for externally modulated analog fiber-optic links,” IEEE Photon. Technol. Lett. 11, 48–50 (1999).
[CrossRef]

Command, U.

P. R. Ashley, E. A. Sornsin, U. Command, and R. Arsenal, “Doped optical claddings for waveguide devices with electrooptical polymers,” IEEE Photon. Technol. Lett. 4, 1026–1028 (1992).
[CrossRef]

de Ridder, R. M.

S. K. Korotky and R. M. de Ridder, “Dual parallel modulation schemes for low-distortion analog optical transmission,” IEEE J. Select. Areas Commun. 8, 1377–1381 (1990).
[CrossRef]

Dinu, R.

H. Chen, B. Chen, D. Huang, D. Jin, J. D. Luo, A. K.-Y. Jen, and R. Dinu, “Broadband electro-optic polymer modulators with high electro-optic activity and low poling induced optical loss,” Appl. Phys. Lett. 93, 043507 (2008).
[CrossRef]

Farwell, M. L.

J. H. Schaffner, J. F. Lam, C. J. Gaeta, G. L. Tangonan, R. L. Joyce, M. L. Farwell, and W. S. C. Chang, “Spur-free dynamic range measurements of a fiber optic link with traveling wave linearized directional coupler modulators,” IEEE Photon. Technol. Lett. 6, 273–275 (1994).
[CrossRef]

Fetterman, H.

Y.-C. Hung, S. K. Kim, and H. Fetterman, “Experimental demonstration of a linearized polymeric directional coupler modulator,” IEEE Photon. Technol. Lett. 19, 1762–1764(2007).
[CrossRef]

Gaeta, C. J.

J. H. Schaffner, J. F. Lam, C. J. Gaeta, G. L. Tangonan, R. L. Joyce, M. L. Farwell, and W. S. C. Chang, “Spur-free dynamic range measurements of a fiber optic link with traveling wave linearized directional coupler modulators,” IEEE Photon. Technol. Lett. 6, 273–275 (1994).
[CrossRef]

Garner, S.

Y. Chiu, B. Jalali, S. Garner, and W. Steier, “Broad-band electronic linearizer for externally modulated analog fiber-optic links,” IEEE Photon. Technol. Lett. 11, 48–50 (1999).
[CrossRef]

Han, Z.

D. An, S. Tang, Z. Yue, J. Taboada, L. Sun, Z. Han, X. Lu, and R. T. Chen, “Linearized Y-coupler modulator based on domain-inverted polymeric waveguide,” Proc. SPIE 3632, 220–231 (1999).
[CrossRef]

Huang, D.

H. Chen, B. Chen, D. Huang, D. Jin, J. D. Luo, A. K.-Y. Jen, and R. Dinu, “Broadband electro-optic polymer modulators with high electro-optic activity and low poling induced optical loss,” Appl. Phys. Lett. 93, 043507 (2008).
[CrossRef]

Hung, Y.-C.

Y.-C. Hung, S. K. Kim, and H. Fetterman, “Experimental demonstration of a linearized polymeric directional coupler modulator,” IEEE Photon. Technol. Lett. 19, 1762–1764(2007).
[CrossRef]

Jalali, B.

Y. Chiu, B. Jalali, S. Garner, and W. Steier, “Broad-band electronic linearizer for externally modulated analog fiber-optic links,” IEEE Photon. Technol. Lett. 11, 48–50 (1999).
[CrossRef]

Jen, A. K. Y.

Y. H. Kuo, L. Jingdong, W. H. Steier, and A. K. Y. Jen, “Enhanced thermal stability of electrooptic polymer modulators using the Diels-Alder crosslinkable polymer,” IEEE Photon. Technol. Lett. 18, 175–177 (2006).
[CrossRef]

Jen, A. K.-Y.

B. Lee, C. Lin, X. Wang, R. T. Chen, J. Luo, and A. K.-Y. Jen, “Bias-free electro-optic polymer-based two-section Y-branch waveguide modulator with 22dB linearity enhancement,” Opt. Lett. 34, 3277–3279 (2009).
[CrossRef] [PubMed]

H. Chen, B. Chen, D. Huang, D. Jin, J. D. Luo, A. K.-Y. Jen, and R. Dinu, “Broadband electro-optic polymer modulators with high electro-optic activity and low poling induced optical loss,” Appl. Phys. Lett. 93, 043507 (2008).
[CrossRef]

Jin, D.

H. Chen, B. Chen, D. Huang, D. Jin, J. D. Luo, A. K.-Y. Jen, and R. Dinu, “Broadband electro-optic polymer modulators with high electro-optic activity and low poling induced optical loss,” Appl. Phys. Lett. 93, 043507 (2008).
[CrossRef]

Jingdong, L.

Y. H. Kuo, L. Jingdong, W. H. Steier, and A. K. Y. Jen, “Enhanced thermal stability of electrooptic polymer modulators using the Diels-Alder crosslinkable polymer,” IEEE Photon. Technol. Lett. 18, 175–177 (2006).
[CrossRef]

Johnson, L. M.

Joyce, R. L.

J. H. Schaffner, J. F. Lam, C. J. Gaeta, G. L. Tangonan, R. L. Joyce, M. L. Farwell, and W. S. C. Chang, “Spur-free dynamic range measurements of a fiber optic link with traveling wave linearized directional coupler modulators,” IEEE Photon. Technol. Lett. 6, 273–275 (1994).
[CrossRef]

Kim, S. K.

Y.-C. Hung, S. K. Kim, and H. Fetterman, “Experimental demonstration of a linearized polymeric directional coupler modulator,” IEEE Photon. Technol. Lett. 19, 1762–1764(2007).
[CrossRef]

Kishino, T.

T. Kishino, R. F. Tavlykaev, and R. V. Ramaswamy, “A Y-fed directional coupler modulator with a highly linear transfer curve,” IEEE Photon. Technol. Lett. 12, 1474–1476 (2000).
[CrossRef]

Kogelnik, H.

H. Kogelnik and R. Schmidt, “Switched directional couplers with alternating Δβ,” IEEE J. Quantum Electron. 12, 396–401 (1976).
[CrossRef]

Korotky, S. K.

S. K. Korotky and R. M. de Ridder, “Dual parallel modulation schemes for low-distortion analog optical transmission,” IEEE J. Select. Areas Commun. 8, 1377–1381 (1990).
[CrossRef]

Kuo, Y. H.

Y. H. Kuo, L. Jingdong, W. H. Steier, and A. K. Y. Jen, “Enhanced thermal stability of electrooptic polymer modulators using the Diels-Alder crosslinkable polymer,” IEEE Photon. Technol. Lett. 18, 175–177 (2006).
[CrossRef]

Lam, J. F.

J. H. Schaffner, J. F. Lam, C. J. Gaeta, G. L. Tangonan, R. L. Joyce, M. L. Farwell, and W. S. C. Chang, “Spur-free dynamic range measurements of a fiber optic link with traveling wave linearized directional coupler modulators,” IEEE Photon. Technol. Lett. 6, 273–275 (1994).
[CrossRef]

Lee, B.

Lee, B.-S.

Lin, C.

Lin, C.-Y.

Lu, X.

D. An, S. Tang, Z. Yue, J. Taboada, L. Sun, Z. Han, X. Lu, and R. T. Chen, “Linearized Y-coupler modulator based on domain-inverted polymeric waveguide,” Proc. SPIE 3632, 220–231 (1999).
[CrossRef]

Luo, J.

Luo, J. D.

H. Chen, B. Chen, D. Huang, D. Jin, J. D. Luo, A. K.-Y. Jen, and R. Dinu, “Broadband electro-optic polymer modulators with high electro-optic activity and low poling induced optical loss,” Appl. Phys. Lett. 93, 043507 (2008).
[CrossRef]

O’Bryne, V. A.

R. B. Childs and V. A. O’Bryne, “Predistortion linearization of directly modulated DFB lasers and external modulators for AM video transmission,” in Optical Fiber Communication, OSA Technical Digest (Optical Society of America, 1990), paper WH6.

Ramaswamy, R. V.

T. Kishino, R. F. Tavlykaev, and R. V. Ramaswamy, “A Y-fed directional coupler modulator with a highly linear transfer curve,” IEEE Photon. Technol. Lett. 12, 1474–1476 (2000).
[CrossRef]

R. F. Tavlykaev and R. V. Ramaswamy, “Highly linear Y-fed directional coupler modulator with low intermodulation distortion,” J. Lightwave Technol. 17, 282–291 (1999).
[CrossRef]

Roussell, H. V.

Schaffner, J. H.

J. H. Schaffner, J. F. Lam, C. J. Gaeta, G. L. Tangonan, R. L. Joyce, M. L. Farwell, and W. S. C. Chang, “Spur-free dynamic range measurements of a fiber optic link with traveling wave linearized directional coupler modulators,” IEEE Photon. Technol. Lett. 6, 273–275 (1994).
[CrossRef]

Schmidt, R.

H. Kogelnik and R. Schmidt, “Switched directional couplers with alternating Δβ,” IEEE J. Quantum Electron. 12, 396–401 (1976).
[CrossRef]

Sornsin, E. A.

P. R. Ashley, E. A. Sornsin, U. Command, and R. Arsenal, “Doped optical claddings for waveguide devices with electrooptical polymers,” IEEE Photon. Technol. Lett. 4, 1026–1028 (1992).
[CrossRef]

Steier, W.

Y. Chiu, B. Jalali, S. Garner, and W. Steier, “Broad-band electronic linearizer for externally modulated analog fiber-optic links,” IEEE Photon. Technol. Lett. 11, 48–50 (1999).
[CrossRef]

Steier, W. H.

Y. H. Kuo, L. Jingdong, W. H. Steier, and A. K. Y. Jen, “Enhanced thermal stability of electrooptic polymer modulators using the Diels-Alder crosslinkable polymer,” IEEE Photon. Technol. Lett. 18, 175–177 (2006).
[CrossRef]

Sun, L.

D. An, S. Tang, Z. Yue, J. Taboada, L. Sun, Z. Han, X. Lu, and R. T. Chen, “Linearized Y-coupler modulator based on domain-inverted polymeric waveguide,” Proc. SPIE 3632, 220–231 (1999).
[CrossRef]

Taboada, J.

D. An, S. Tang, Z. Yue, J. Taboada, L. Sun, Z. Han, X. Lu, and R. T. Chen, “Linearized Y-coupler modulator based on domain-inverted polymeric waveguide,” Proc. SPIE 3632, 220–231 (1999).
[CrossRef]

Tang, S.

D. An, S. Tang, Z. Yue, J. Taboada, L. Sun, Z. Han, X. Lu, and R. T. Chen, “Linearized Y-coupler modulator based on domain-inverted polymeric waveguide,” Proc. SPIE 3632, 220–231 (1999).
[CrossRef]

Tangonan, G. L.

J. H. Schaffner, J. F. Lam, C. J. Gaeta, G. L. Tangonan, R. L. Joyce, M. L. Farwell, and W. S. C. Chang, “Spur-free dynamic range measurements of a fiber optic link with traveling wave linearized directional coupler modulators,” IEEE Photon. Technol. Lett. 6, 273–275 (1994).
[CrossRef]

Tavlykaev, R. F.

T. Kishino, R. F. Tavlykaev, and R. V. Ramaswamy, “A Y-fed directional coupler modulator with a highly linear transfer curve,” IEEE Photon. Technol. Lett. 12, 1474–1476 (2000).
[CrossRef]

R. F. Tavlykaev and R. V. Ramaswamy, “Highly linear Y-fed directional coupler modulator with low intermodulation distortion,” J. Lightwave Technol. 17, 282–291 (1999).
[CrossRef]

Wang, X.

Yue, Z.

D. An, S. Tang, Z. Yue, J. Taboada, L. Sun, Z. Han, X. Lu, and R. T. Chen, “Linearized Y-coupler modulator based on domain-inverted polymeric waveguide,” Proc. SPIE 3632, 220–231 (1999).
[CrossRef]

Appl. Phys. Lett. (1)

H. Chen, B. Chen, D. Huang, D. Jin, J. D. Luo, A. K.-Y. Jen, and R. Dinu, “Broadband electro-optic polymer modulators with high electro-optic activity and low poling induced optical loss,” Appl. Phys. Lett. 93, 043507 (2008).
[CrossRef]

IEEE J. Quantum Electron. (1)

H. Kogelnik and R. Schmidt, “Switched directional couplers with alternating Δβ,” IEEE J. Quantum Electron. 12, 396–401 (1976).
[CrossRef]

IEEE J. Select. Areas Commun. (1)

S. K. Korotky and R. M. de Ridder, “Dual parallel modulation schemes for low-distortion analog optical transmission,” IEEE J. Select. Areas Commun. 8, 1377–1381 (1990).
[CrossRef]

IEEE Photon. Technol. Lett. (6)

Y.-C. Hung, S. K. Kim, and H. Fetterman, “Experimental demonstration of a linearized polymeric directional coupler modulator,” IEEE Photon. Technol. Lett. 19, 1762–1764(2007).
[CrossRef]

J. H. Schaffner, J. F. Lam, C. J. Gaeta, G. L. Tangonan, R. L. Joyce, M. L. Farwell, and W. S. C. Chang, “Spur-free dynamic range measurements of a fiber optic link with traveling wave linearized directional coupler modulators,” IEEE Photon. Technol. Lett. 6, 273–275 (1994).
[CrossRef]

T. Kishino, R. F. Tavlykaev, and R. V. Ramaswamy, “A Y-fed directional coupler modulator with a highly linear transfer curve,” IEEE Photon. Technol. Lett. 12, 1474–1476 (2000).
[CrossRef]

P. R. Ashley, E. A. Sornsin, U. Command, and R. Arsenal, “Doped optical claddings for waveguide devices with electrooptical polymers,” IEEE Photon. Technol. Lett. 4, 1026–1028 (1992).
[CrossRef]

Y. H. Kuo, L. Jingdong, W. H. Steier, and A. K. Y. Jen, “Enhanced thermal stability of electrooptic polymer modulators using the Diels-Alder crosslinkable polymer,” IEEE Photon. Technol. Lett. 18, 175–177 (2006).
[CrossRef]

Y. Chiu, B. Jalali, S. Garner, and W. Steier, “Broad-band electronic linearizer for externally modulated analog fiber-optic links,” IEEE Photon. Technol. Lett. 11, 48–50 (1999).
[CrossRef]

IEEE Trans. Microwave Theory Tech. (1)

R. C. Alferness, “Waveguide electrooptic modulators,” IEEE Trans. Microwave Theory Tech. 30, 1121–1137 (1982).
[CrossRef]

J. Lightwave Technol. (2)

Opt. Lett. (2)

Proc. SPIE (1)

D. An, S. Tang, Z. Yue, J. Taboada, L. Sun, Z. Han, X. Lu, and R. T. Chen, “Linearized Y-coupler modulator based on domain-inverted polymeric waveguide,” Proc. SPIE 3632, 220–231 (1999).
[CrossRef]

Other (1)

R. B. Childs and V. A. O’Bryne, “Predistortion linearization of directly modulated DFB lasers and external modulators for AM video transmission,” in Optical Fiber Communication, OSA Technical Digest (Optical Society of America, 1990), paper WH6.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Schematic of YFDC modulators with (a) two-section electrode with reversed Δ β , (b) single uniform traveling wave electrode with two-section domain inversion, and (c) single lumped element electrode with two-section pseudo domain inversion (S, normalized interaction length of each section; L, interaction length of each section; and l, coupling length of the DC).

Fig. 2
Fig. 2

(a) Exploded schematic of the two-section YFDC modulator with pseudo domain inversion ( S 1 = S 2 = 2.85 ), (b) top view of the driving electrode aligned with waveguides, and (c) cross-sectional scanning electron micrograph of the fabricated waveguides.

Fig. 3
Fig. 3

Transfer function of the linearized two-section YFDC modulator. (The input optical wavelength is 1.55 μm . The device is overmodulated by 10 V pp at 1 kHz .)

Fig. 4
Fig. 4

Two-tone test results of (a) a conventional MZ modulator and (b) a linearized two-section YFDC modulator. (Input optical wavelength is 1.55 μm . Fundamental frequencies are 19 and 21 kHz , and the resulting IMD3 frequencies are 17 and 23 kHz . Squares are measured output power of the fundamental signals and dots are that of the IMD3 signals. Dashed lines are the extrapolation of measured data points.)

Metrics