Abstract

Microlenses have been characterized by a digital holographic microscopy system, which is immune to the inherent wavefront aberration. The digital holographic microscopy system takes advantage of fiber optics and uses the light emitted directly from a single-mode fiber as the recording reference wave. By using such a reference beam, which is quasi-identical to the object beam, the inherent wavefront aberration of the digital holographic microscope is removed. The alignment of the optical setup can be optimized with the help of numerical reconstruction software to give the system phase with the off-axis tilt removed. There is one, and only one, reference fiber point position to give a reference wavefront that is quasi- identical to the object wavefront where the system is free of wavefront aberration and directly gives the quantitative phase of the test object without the need for complicated numerical compensation.

© 2010 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. Takahashi, N. Kureyama, and T. Aida, “Flatbed-type bidirectional three-dimensional display system,” IJICIC 5, 4115–4124 (2009).
  2. V. Bardinal, E. Daran, T. Leïchlé, C. Vergnenègre, C. Levallois, T. Camps, V. Conedera, J. B. Doucet, and F. Carcenac, “Fabrication and characterization of microlens arrays using a cantilever-based spotter,” Opt. Express 15, 6900–6907 (2007).
    [CrossRef] [PubMed]
  3. H. Ottevaere and H. Thienpont, “Refractive optical microlenses: an introduction to nomenclature and characterization techniques,” in Encyclopedia of Modern Optics, R. D. Guenther, D. G. Steel, and L. Bayvel, eds. (Elsevier, 2004), Vol. 4, pp. 21–43.
  4. F. Charrière, J. Kühn, T. Colomb, F. Montfort, E. Cuche, Y. Emery, K. Weible, P. Marquet, and C. Depeursinge, “Characterization of microlenses by digital holographic microscopy,” Appl. Opt. 45, 829–835 (2006).
    [CrossRef] [PubMed]
  5. E. Cuche, P. Marquet, and C. Depeursinge, “Simultaneous amplitude-contrast and quantitative phase-contrast microscopy by numerical reconstruction of Fresnel off-axis holograms,” Appl. Opt. 38, 6994–7001 (1999).
    [CrossRef]
  6. A. Stadelmaier and J. H. Massig, “Compensation of lens aberrations in digital holography,” Opt. Lett. 25, 1630–1632(2000).
    [CrossRef]
  7. D. Carl, B. Kemper, G. Wernicke, and G. von Bally, “Parameter-optimized digital holographic microscope for high-resolution living-cell analysis,” Appl. Opt. 43, 6536–6544(2004).
    [CrossRef]
  8. P. Ferraro, S. De Nicola, A. Finizio, G. Coppola, S. Grilli, C. Magro, and G. Pierattini, “Compensation of the inherent wave front curvature in digital holographic coherent microscopy for quantitative phase-contrast imaging,” Appl. Opt. 42, 1938–1946 (2003).
    [CrossRef] [PubMed]
  9. T. Colomb, E. Cuche, F. Charrière, J. Kühn, N. Aspert, F. Montfort, P. Marquet, and C. Depeursinge, “Automatic procedure for aberration compensation in digital holographic microscopy and applications to specimen shape compensation,” Appl. Opt. 45, 851–863 (2006).
    [CrossRef] [PubMed]
  10. T. Colomb, F. Montfort, J. Kühn, N. Aspert, E. Cuche, A. Marian, F. Charrière, S. Bourquin, P. Marquet, and C. Depeursinge, “Numerical parametric lens for shifting, magnification, and complete aberration compensation in digital holographic microscopy,” J. Opt. Soc. Am. A 23, 3177–3190(2006).
    [CrossRef]
  11. F. Montfort, F. Charrière, T. Colomb, E. Cuche, P. Marquet, and C. Depeursinge, “Purely numerical compensation for microscope objective phase curvature in digital holographic microscopy: influence of digital phase mask position,” J. Opt. Soc. Am. A 23, 2944–2953 (2006).
    [CrossRef]
  12. Q. Weijuan, C. O. Choo, V. R. Singh, Y. Yingjie, and A. Asundi, “Quasi-physical phase compensation in digital holographic microscopy,” J. Opt. Soc. Am. A 26, 2005–2011 (2009).
    [CrossRef]
  13. Q. Weijuan, Y. Yingjie, C. O. Choo, and A. Asundi, “Digital holographic microscopy with physical phase compensation,” Opt. Lett. 34, 1276–1278 (2009).
    [CrossRef] [PubMed]
  14. D. Malacara, Optical Shop Testing (Wiley, 1992).
  15. C. J. Mann, L. Yu, C.-M. Lo, and M. K. Kim, “High-resolution quantitative phase-contrast microscopy by digital holography,” Opt. Express 13, 8693–8698 (2005).
    [CrossRef] [PubMed]
  16. B. Kemper and G. von Bally, “Digital holographic microscopy for live cell applications and technical inspection,” Appl. Opt. 47, A52–A61 (2008).
    [CrossRef] [PubMed]

2009

2008

2007

2006

2005

2004

2003

2000

A. Stadelmaier and J. H. Massig, “Compensation of lens aberrations in digital holography,” Opt. Lett. 25, 1630–1632(2000).
[CrossRef]

1999

Aida, T.

H. Takahashi, N. Kureyama, and T. Aida, “Flatbed-type bidirectional three-dimensional display system,” IJICIC 5, 4115–4124 (2009).

Aspert, N.

Asundi, A.

Bardinal, V.

Bourquin, S.

Camps, T.

Carcenac, F.

Carl, D.

Charrière, F.

Choo, C. O.

Colomb, T.

Conedera, V.

Coppola, G.

Cuche, E.

Daran, E.

De Nicola, S.

Depeursinge, C.

Doucet, J. B.

Emery, Y.

Ferraro, P.

Finizio, A.

Grilli, S.

Kemper, B.

Kim, M. K.

Kühn, J.

Kureyama, N.

H. Takahashi, N. Kureyama, and T. Aida, “Flatbed-type bidirectional three-dimensional display system,” IJICIC 5, 4115–4124 (2009).

Leïchlé, T.

Levallois, C.

Lo, C.-M.

Magro, C.

Malacara, D.

D. Malacara, Optical Shop Testing (Wiley, 1992).

Mann, C. J.

Marian, A.

Marquet, P.

Massig, J. H.

A. Stadelmaier and J. H. Massig, “Compensation of lens aberrations in digital holography,” Opt. Lett. 25, 1630–1632(2000).
[CrossRef]

Montfort, F.

Ottevaere, H.

H. Ottevaere and H. Thienpont, “Refractive optical microlenses: an introduction to nomenclature and characterization techniques,” in Encyclopedia of Modern Optics, R. D. Guenther, D. G. Steel, and L. Bayvel, eds. (Elsevier, 2004), Vol. 4, pp. 21–43.

Pierattini, G.

Singh, V. R.

Stadelmaier, A.

A. Stadelmaier and J. H. Massig, “Compensation of lens aberrations in digital holography,” Opt. Lett. 25, 1630–1632(2000).
[CrossRef]

Takahashi, H.

H. Takahashi, N. Kureyama, and T. Aida, “Flatbed-type bidirectional three-dimensional display system,” IJICIC 5, 4115–4124 (2009).

Thienpont, H.

H. Ottevaere and H. Thienpont, “Refractive optical microlenses: an introduction to nomenclature and characterization techniques,” in Encyclopedia of Modern Optics, R. D. Guenther, D. G. Steel, and L. Bayvel, eds. (Elsevier, 2004), Vol. 4, pp. 21–43.

Vergnenègre, C.

von Bally, G.

Weible, K.

Weijuan, Q.

Wernicke, G.

Yingjie, Y.

Yu, L.

Appl. Opt.

IJICIC

H. Takahashi, N. Kureyama, and T. Aida, “Flatbed-type bidirectional three-dimensional display system,” IJICIC 5, 4115–4124 (2009).

J. Opt. Soc. Am. A

Opt. Express

Opt. Lett.

A. Stadelmaier and J. H. Massig, “Compensation of lens aberrations in digital holography,” Opt. Lett. 25, 1630–1632(2000).
[CrossRef]

Q. Weijuan, Y. Yingjie, C. O. Choo, and A. Asundi, “Digital holographic microscopy with physical phase compensation,” Opt. Lett. 34, 1276–1278 (2009).
[CrossRef] [PubMed]

Other

D. Malacara, Optical Shop Testing (Wiley, 1992).

H. Ottevaere and H. Thienpont, “Refractive optical microlenses: an introduction to nomenclature and characterization techniques,” in Encyclopedia of Modern Optics, R. D. Guenther, D. G. Steel, and L. Bayvel, eds. (Elsevier, 2004), Vol. 4, pp. 21–43.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

Schematic of the DHM system.

Fig. 2
Fig. 2

System phase variation with different reference waves. (a)–(d) Converging spherical phase, (e) quasi-flat phase, (f)–(i) diverging spherical phase.

Fig. 3
Fig. 3

Microlens with different system phase. (a), (c) System phase resulting from different reference waves; (b) phase of the microlens in addition to the system phase shown in (a); (d) phase of the microlens in addition to the system phase shown in (b).

Fig. 4
Fig. 4

Microlens characterization. (a) Wrapped phase, (b) unwrapped phase, (c) height profile calculated from the phase profile along the solid line shown in (b).

Fig. 5
Fig. 5

(a) Frequency spectra of a digital hologram with a flat phase surface, (b) frequency spectra of a digital hologram of a microlens array.

Fig. 6
Fig. 6

Phase (modulo 2 π ) of the microlens array (a) with off-axis tilt incompletely removed, (b) without off-axis tilt.

Fig. 7
Fig. 7

Microlens array characterization. (a) Unwrapped phase, (b) height profile calculated from the phase profile along the solid line shown in (a).

Fig. 8
Fig. 8

(a) Digital hologram with a converging system curvature, (b) frequency spectra of (a).

Fig. 9
Fig. 9

Phase reconstructed from Fig. 8a with incomplete removal of tilt. (a) Phase with tilt both in x and y directions, (b) phase with tilt in x direction, (c) phase with tilt in y direction, (d) phase without tilt.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

I H ( x , y ) = | O | 2 + | R | 2 + R O * + R * O = 1 + | A O | 2 + A O exp [ j π λ ( S R x 2 h r S O x 2 h o + S R y 2 h r S O y 2 h o ) ] × exp [ j π λ ( 1 h r 1 h o ) ( x 2 + y 2 ) + j 2 π λ ( S R x h r S O x h o ) x + j 2 π λ ( S R y h r S o y h o ) y ] exp [ j φ ( x , y ) ] + A O exp [ j π λ ( S R x 2 h r S O x 2 h o + S R y 2 h r S O y 2 h o ) ] × exp [ j π λ ( 1 h r 1 h o ) ( x 2 + y 2 ) j 2 π λ ( S R x h r S O x h o ) x j 2 π λ ( S R y h r S o y h o ) y ] exp [ j φ ( x , y ) ] ,
I H F ( f x , f y ) = δ ( f x , f y ) + j λ h r h o h o h r exp [ j π λ h r h o h o h r ( f x 2 + f y 2 ) ] δ ( f x 1 λ ( S R x h r S O x h o ) , f y 1 λ ( S R y h r S O y h o ) ) FFT { exp [ j φ ( x , y ) ] } + j λ h r h o h o h r exp [ j π λ h r h o h o h r ( f x 2 + f y 2 ) ] δ ( f x + 1 λ ( S R x h r S O x h o ) , f y + 1 λ ( S R y h r S O y h o ) ) FFT { exp [ j φ ( x , y ) ] } ,
I H ( x , y ) = | O | 2 + | R | 2 + R O * + R * O = 1 + | A O | 2 + A O exp [ j π λ ( S R x 2 S O x 2 + S R y 2 S O y 2 h r ) ] × exp [ j 2 π λ ( S R x S O x h r ) x + j 2 π λ ( S R y S O y h r ) y ] exp [ j φ ( x , y ) ] + A O exp [ j π λ ( S R x 2 S O x 2 + S R y 2 S O y 2 h r ) ] × exp [ j 2 π λ h r ( S R x S O x h r ) y j 2 π λ h r ( S R y S O y h r ) y ] exp [ j φ ( x , y ) ] .
I H F ( f x , f y ) = δ ( f x , f y ) + δ ( f x S R x S O x λ h r , f y S R y S O y λ h r ) FFT { exp [ j φ ( x , y ) ] } + δ ( f x + S R x S O x λ h r , f y + S R y S O y λ h r ) FFT { exp [ j φ ( x , y ) ] }
ROC = h 2 + D 2 8 h .

Metrics