Abstract

A distributed optical-fiber sensing system based on pulsed excitation and time-gated photon counting has been used to locate a fluorescent region along the fiber. The complex Alq3 and the infrared dye IR-125 were examined with 405 and 780nm excitation, respectively. A model to characterize the response of the distributed fluorescence sensor to a Gaussian input pulse was developed and tested. Analysis of the Alq3 fluorescent response confirmed the validity of the model and enabled the fluorescence lifetime to be determined. The intrinsic lifetime obtained (18.2±0.9ns) is in good agreement with published data. The decay rate was found to be proportional to concentration, which is indicative of collisional deactivation. The model allows the spatial resolution of a distributed sensing system to be improved for fluorophores with lifetimes that are longer than the resolution of the sensing system.

© 2010 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. R. Cordero, H. Mukamal, A. Low, E. P. Locke, and R. A. Lieberman, “A fiber optic sensor for nerve agent,” Proc. SPIE 6378, 63780U (2006).
    [CrossRef]
  2. S. R. Cordero, H. Mukamal, A. Low, M. Beshay, D. Ruiz, and R. A. Lieberman, “Fiber optic sensor coatings with enhanced sensitivity and longevity,” Proc. SPIE 6377, 63770C (2006).
    [CrossRef]
  3. R. A. Potyrailo, A. W. Szumlas, T. L. Danielson, M. Johnson, and G. M. Hieftje, “A dual-parameter optical sensor fabricated by gradient axial doping of an optical fibre,” Meas. Sci. Technol. 16, 235–241 (2005).
    [CrossRef]
  4. R. A. Potyrailo and G. M. Hieftje, “Use of the original silicone cladding of an optical fiber as a reagent-immobilization medium for intrinsic chemical sensors,” Fresenius' J. Anal. Chem. 364, 32–40 (1999).
    [CrossRef]
  5. R. A. Potyrailo and G. M. Hieftje, “Optical time-of-flight chemical detection: absorption-modulated fluorescence for spatially resolved analyte mapping in a bidirectional distributed fiber-optic sensor,” Anal. Chem. 70, 3407–3412 (1998).
    [CrossRef] [PubMed]
  6. R. A. Lieberman, L. L. Blyler, and L. G. Cohen, “A distributed fiber optic sensor based on cladding fluorescence,” J. Lightwave Technol. 8, 212–220 (1990).
    [CrossRef]
  7. R. A. Potyrailo and G. M. Hieftje, “Optical time-of-flight chemical detection: spatially resolved analyte mapping with extended-length continuous chemically modified optical fibers,” Anal. Chem. 70, 1453–1461 (1998).
    [CrossRef] [PubMed]
  8. P. E. Henning, A. Benko, A. W. Schwabacher, P. Geissinger, and R. J. Olsson, “Apparatus and methods for optical time-of-flight discrimination in combinatorial library analysis,” Rev. Sci. Instrum. 76, 062220 (2005).
    [CrossRef]
  9. H. Mukamal, S. R. Cordero, D. Ruiz, M. Beshay, and R. A. Lieberman, “Distributed fiber optic chemical sensor for hydrogen sulfide and chlorine detection,” Proc. SPIE 6004, 600406(2005).
    [CrossRef]
  10. S. R. Cordero, M. Beshay, A. Low, H. Mukamal, D. Ruiz, and R. A. Lieberman, “A distributed fiber optic chemical sensor for hydrogen cyanide detection,” Proc. SPIE 5993, 599302(2005).
    [CrossRef]
  11. P. R. Stoddart, P. J. Cadusch, J. B. Pearce, D. Vukovic, C. R. Nagarajah, and D. J. Booth, “Fibre optic distributed temperature sensor with an integrated background correction function,” Meas. Sci. Technol. 16, 1299–1304 (2005).
    [CrossRef]
  12. G. McAdam, P. J. Newman, I. McKenzie, C. Davis, and B. R. W. Hinton, “Fiber optic sensors for detection of corrosion within aircraft,” Struct. Health Monit. 4, 47–56 (2005).
    [CrossRef]
  13. R. Philip, A. Penzkofer, W. Bäumler, R. M. Szeimies, and C. Abels, “Absorption and fluorescence spectroscopic investigation of indocyanine green,” J. Photochem. Photobiol. A 96, 137–148(1996).
    [CrossRef]
  14. S. A. Soper and Q. L. Mattingly, “Steady-state and picosecond laser fluorescence studies of nonradiative pathways in tricarbocyanine dyes—implications to the design of near-IR fluorochromes with high fluorescence efficiencies,” J. Am. Chem. Soc. 116, 3744–3752 (1994).
    [CrossRef]
  15. T. Hoshi, K. Kumagai, K. Inoue, S. Enomoto, Y. Nobe, and M. Kobayashi, “Electronic absorption and emission spectra of Alq(3) in solution with special attention to a delayed fluorescence,” J. Lumin. 128, 1353–1358 (2008).
    [CrossRef]
  16. V. V. N. R. Kishore, K. L. Narasimhan, and N. Periasamy, “On the radiative lifetime, quantum yield and fluorescence decay of Alq in thin films,” Phys. Chem. Chem. Phys. 5, 1386–1391(2003).
    [CrossRef]
  17. H. Lee, M. Y. Berezin, M. Henary, L. Strekowski, and S. Achilefu, “Fluorescence lifetime properties of near-infrared cyanine dyes in relation to their structures,” J. Photochem. Photobiol. A 200, 438–444 (2008).
    [CrossRef]

2008 (2)

T. Hoshi, K. Kumagai, K. Inoue, S. Enomoto, Y. Nobe, and M. Kobayashi, “Electronic absorption and emission spectra of Alq(3) in solution with special attention to a delayed fluorescence,” J. Lumin. 128, 1353–1358 (2008).
[CrossRef]

H. Lee, M. Y. Berezin, M. Henary, L. Strekowski, and S. Achilefu, “Fluorescence lifetime properties of near-infrared cyanine dyes in relation to their structures,” J. Photochem. Photobiol. A 200, 438–444 (2008).
[CrossRef]

2006 (2)

S. R. Cordero, H. Mukamal, A. Low, E. P. Locke, and R. A. Lieberman, “A fiber optic sensor for nerve agent,” Proc. SPIE 6378, 63780U (2006).
[CrossRef]

S. R. Cordero, H. Mukamal, A. Low, M. Beshay, D. Ruiz, and R. A. Lieberman, “Fiber optic sensor coatings with enhanced sensitivity and longevity,” Proc. SPIE 6377, 63770C (2006).
[CrossRef]

2005 (6)

R. A. Potyrailo, A. W. Szumlas, T. L. Danielson, M. Johnson, and G. M. Hieftje, “A dual-parameter optical sensor fabricated by gradient axial doping of an optical fibre,” Meas. Sci. Technol. 16, 235–241 (2005).
[CrossRef]

P. E. Henning, A. Benko, A. W. Schwabacher, P. Geissinger, and R. J. Olsson, “Apparatus and methods for optical time-of-flight discrimination in combinatorial library analysis,” Rev. Sci. Instrum. 76, 062220 (2005).
[CrossRef]

H. Mukamal, S. R. Cordero, D. Ruiz, M. Beshay, and R. A. Lieberman, “Distributed fiber optic chemical sensor for hydrogen sulfide and chlorine detection,” Proc. SPIE 6004, 600406(2005).
[CrossRef]

S. R. Cordero, M. Beshay, A. Low, H. Mukamal, D. Ruiz, and R. A. Lieberman, “A distributed fiber optic chemical sensor for hydrogen cyanide detection,” Proc. SPIE 5993, 599302(2005).
[CrossRef]

P. R. Stoddart, P. J. Cadusch, J. B. Pearce, D. Vukovic, C. R. Nagarajah, and D. J. Booth, “Fibre optic distributed temperature sensor with an integrated background correction function,” Meas. Sci. Technol. 16, 1299–1304 (2005).
[CrossRef]

G. McAdam, P. J. Newman, I. McKenzie, C. Davis, and B. R. W. Hinton, “Fiber optic sensors for detection of corrosion within aircraft,” Struct. Health Monit. 4, 47–56 (2005).
[CrossRef]

2003 (1)

V. V. N. R. Kishore, K. L. Narasimhan, and N. Periasamy, “On the radiative lifetime, quantum yield and fluorescence decay of Alq in thin films,” Phys. Chem. Chem. Phys. 5, 1386–1391(2003).
[CrossRef]

1999 (1)

R. A. Potyrailo and G. M. Hieftje, “Use of the original silicone cladding of an optical fiber as a reagent-immobilization medium for intrinsic chemical sensors,” Fresenius' J. Anal. Chem. 364, 32–40 (1999).
[CrossRef]

1998 (2)

R. A. Potyrailo and G. M. Hieftje, “Optical time-of-flight chemical detection: absorption-modulated fluorescence for spatially resolved analyte mapping in a bidirectional distributed fiber-optic sensor,” Anal. Chem. 70, 3407–3412 (1998).
[CrossRef] [PubMed]

R. A. Potyrailo and G. M. Hieftje, “Optical time-of-flight chemical detection: spatially resolved analyte mapping with extended-length continuous chemically modified optical fibers,” Anal. Chem. 70, 1453–1461 (1998).
[CrossRef] [PubMed]

1996 (1)

R. Philip, A. Penzkofer, W. Bäumler, R. M. Szeimies, and C. Abels, “Absorption and fluorescence spectroscopic investigation of indocyanine green,” J. Photochem. Photobiol. A 96, 137–148(1996).
[CrossRef]

1994 (1)

S. A. Soper and Q. L. Mattingly, “Steady-state and picosecond laser fluorescence studies of nonradiative pathways in tricarbocyanine dyes—implications to the design of near-IR fluorochromes with high fluorescence efficiencies,” J. Am. Chem. Soc. 116, 3744–3752 (1994).
[CrossRef]

1990 (1)

R. A. Lieberman, L. L. Blyler, and L. G. Cohen, “A distributed fiber optic sensor based on cladding fluorescence,” J. Lightwave Technol. 8, 212–220 (1990).
[CrossRef]

Abels, C.

R. Philip, A. Penzkofer, W. Bäumler, R. M. Szeimies, and C. Abels, “Absorption and fluorescence spectroscopic investigation of indocyanine green,” J. Photochem. Photobiol. A 96, 137–148(1996).
[CrossRef]

Achilefu, S.

H. Lee, M. Y. Berezin, M. Henary, L. Strekowski, and S. Achilefu, “Fluorescence lifetime properties of near-infrared cyanine dyes in relation to their structures,” J. Photochem. Photobiol. A 200, 438–444 (2008).
[CrossRef]

Bäumler, W.

R. Philip, A. Penzkofer, W. Bäumler, R. M. Szeimies, and C. Abels, “Absorption and fluorescence spectroscopic investigation of indocyanine green,” J. Photochem. Photobiol. A 96, 137–148(1996).
[CrossRef]

Benko, A.

P. E. Henning, A. Benko, A. W. Schwabacher, P. Geissinger, and R. J. Olsson, “Apparatus and methods for optical time-of-flight discrimination in combinatorial library analysis,” Rev. Sci. Instrum. 76, 062220 (2005).
[CrossRef]

Berezin, M. Y.

H. Lee, M. Y. Berezin, M. Henary, L. Strekowski, and S. Achilefu, “Fluorescence lifetime properties of near-infrared cyanine dyes in relation to their structures,” J. Photochem. Photobiol. A 200, 438–444 (2008).
[CrossRef]

Beshay, M.

S. R. Cordero, H. Mukamal, A. Low, M. Beshay, D. Ruiz, and R. A. Lieberman, “Fiber optic sensor coatings with enhanced sensitivity and longevity,” Proc. SPIE 6377, 63770C (2006).
[CrossRef]

H. Mukamal, S. R. Cordero, D. Ruiz, M. Beshay, and R. A. Lieberman, “Distributed fiber optic chemical sensor for hydrogen sulfide and chlorine detection,” Proc. SPIE 6004, 600406(2005).
[CrossRef]

S. R. Cordero, M. Beshay, A. Low, H. Mukamal, D. Ruiz, and R. A. Lieberman, “A distributed fiber optic chemical sensor for hydrogen cyanide detection,” Proc. SPIE 5993, 599302(2005).
[CrossRef]

Blyler, L. L.

R. A. Lieberman, L. L. Blyler, and L. G. Cohen, “A distributed fiber optic sensor based on cladding fluorescence,” J. Lightwave Technol. 8, 212–220 (1990).
[CrossRef]

Booth, D. J.

P. R. Stoddart, P. J. Cadusch, J. B. Pearce, D. Vukovic, C. R. Nagarajah, and D. J. Booth, “Fibre optic distributed temperature sensor with an integrated background correction function,” Meas. Sci. Technol. 16, 1299–1304 (2005).
[CrossRef]

Cadusch, P. J.

P. R. Stoddart, P. J. Cadusch, J. B. Pearce, D. Vukovic, C. R. Nagarajah, and D. J. Booth, “Fibre optic distributed temperature sensor with an integrated background correction function,” Meas. Sci. Technol. 16, 1299–1304 (2005).
[CrossRef]

Cohen, L. G.

R. A. Lieberman, L. L. Blyler, and L. G. Cohen, “A distributed fiber optic sensor based on cladding fluorescence,” J. Lightwave Technol. 8, 212–220 (1990).
[CrossRef]

Cordero, S. R.

S. R. Cordero, H. Mukamal, A. Low, M. Beshay, D. Ruiz, and R. A. Lieberman, “Fiber optic sensor coatings with enhanced sensitivity and longevity,” Proc. SPIE 6377, 63770C (2006).
[CrossRef]

S. R. Cordero, H. Mukamal, A. Low, E. P. Locke, and R. A. Lieberman, “A fiber optic sensor for nerve agent,” Proc. SPIE 6378, 63780U (2006).
[CrossRef]

S. R. Cordero, M. Beshay, A. Low, H. Mukamal, D. Ruiz, and R. A. Lieberman, “A distributed fiber optic chemical sensor for hydrogen cyanide detection,” Proc. SPIE 5993, 599302(2005).
[CrossRef]

H. Mukamal, S. R. Cordero, D. Ruiz, M. Beshay, and R. A. Lieberman, “Distributed fiber optic chemical sensor for hydrogen sulfide and chlorine detection,” Proc. SPIE 6004, 600406(2005).
[CrossRef]

Danielson, T. L.

R. A. Potyrailo, A. W. Szumlas, T. L. Danielson, M. Johnson, and G. M. Hieftje, “A dual-parameter optical sensor fabricated by gradient axial doping of an optical fibre,” Meas. Sci. Technol. 16, 235–241 (2005).
[CrossRef]

Davis, C.

G. McAdam, P. J. Newman, I. McKenzie, C. Davis, and B. R. W. Hinton, “Fiber optic sensors for detection of corrosion within aircraft,” Struct. Health Monit. 4, 47–56 (2005).
[CrossRef]

Enomoto, S.

T. Hoshi, K. Kumagai, K. Inoue, S. Enomoto, Y. Nobe, and M. Kobayashi, “Electronic absorption and emission spectra of Alq(3) in solution with special attention to a delayed fluorescence,” J. Lumin. 128, 1353–1358 (2008).
[CrossRef]

Geissinger, P.

P. E. Henning, A. Benko, A. W. Schwabacher, P. Geissinger, and R. J. Olsson, “Apparatus and methods for optical time-of-flight discrimination in combinatorial library analysis,” Rev. Sci. Instrum. 76, 062220 (2005).
[CrossRef]

Henary, M.

H. Lee, M. Y. Berezin, M. Henary, L. Strekowski, and S. Achilefu, “Fluorescence lifetime properties of near-infrared cyanine dyes in relation to their structures,” J. Photochem. Photobiol. A 200, 438–444 (2008).
[CrossRef]

Henning, P. E.

P. E. Henning, A. Benko, A. W. Schwabacher, P. Geissinger, and R. J. Olsson, “Apparatus and methods for optical time-of-flight discrimination in combinatorial library analysis,” Rev. Sci. Instrum. 76, 062220 (2005).
[CrossRef]

Hieftje, G. M.

R. A. Potyrailo, A. W. Szumlas, T. L. Danielson, M. Johnson, and G. M. Hieftje, “A dual-parameter optical sensor fabricated by gradient axial doping of an optical fibre,” Meas. Sci. Technol. 16, 235–241 (2005).
[CrossRef]

R. A. Potyrailo and G. M. Hieftje, “Use of the original silicone cladding of an optical fiber as a reagent-immobilization medium for intrinsic chemical sensors,” Fresenius' J. Anal. Chem. 364, 32–40 (1999).
[CrossRef]

R. A. Potyrailo and G. M. Hieftje, “Optical time-of-flight chemical detection: absorption-modulated fluorescence for spatially resolved analyte mapping in a bidirectional distributed fiber-optic sensor,” Anal. Chem. 70, 3407–3412 (1998).
[CrossRef] [PubMed]

R. A. Potyrailo and G. M. Hieftje, “Optical time-of-flight chemical detection: spatially resolved analyte mapping with extended-length continuous chemically modified optical fibers,” Anal. Chem. 70, 1453–1461 (1998).
[CrossRef] [PubMed]

Hinton, B. R. W.

G. McAdam, P. J. Newman, I. McKenzie, C. Davis, and B. R. W. Hinton, “Fiber optic sensors for detection of corrosion within aircraft,” Struct. Health Monit. 4, 47–56 (2005).
[CrossRef]

Hoshi, T.

T. Hoshi, K. Kumagai, K. Inoue, S. Enomoto, Y. Nobe, and M. Kobayashi, “Electronic absorption and emission spectra of Alq(3) in solution with special attention to a delayed fluorescence,” J. Lumin. 128, 1353–1358 (2008).
[CrossRef]

Inoue, K.

T. Hoshi, K. Kumagai, K. Inoue, S. Enomoto, Y. Nobe, and M. Kobayashi, “Electronic absorption and emission spectra of Alq(3) in solution with special attention to a delayed fluorescence,” J. Lumin. 128, 1353–1358 (2008).
[CrossRef]

Johnson, M.

R. A. Potyrailo, A. W. Szumlas, T. L. Danielson, M. Johnson, and G. M. Hieftje, “A dual-parameter optical sensor fabricated by gradient axial doping of an optical fibre,” Meas. Sci. Technol. 16, 235–241 (2005).
[CrossRef]

Kishore, V. V. N. R.

V. V. N. R. Kishore, K. L. Narasimhan, and N. Periasamy, “On the radiative lifetime, quantum yield and fluorescence decay of Alq in thin films,” Phys. Chem. Chem. Phys. 5, 1386–1391(2003).
[CrossRef]

Kobayashi, M.

T. Hoshi, K. Kumagai, K. Inoue, S. Enomoto, Y. Nobe, and M. Kobayashi, “Electronic absorption and emission spectra of Alq(3) in solution with special attention to a delayed fluorescence,” J. Lumin. 128, 1353–1358 (2008).
[CrossRef]

Kumagai, K.

T. Hoshi, K. Kumagai, K. Inoue, S. Enomoto, Y. Nobe, and M. Kobayashi, “Electronic absorption and emission spectra of Alq(3) in solution with special attention to a delayed fluorescence,” J. Lumin. 128, 1353–1358 (2008).
[CrossRef]

Lee, H.

H. Lee, M. Y. Berezin, M. Henary, L. Strekowski, and S. Achilefu, “Fluorescence lifetime properties of near-infrared cyanine dyes in relation to their structures,” J. Photochem. Photobiol. A 200, 438–444 (2008).
[CrossRef]

Lieberman, R. A.

S. R. Cordero, H. Mukamal, A. Low, M. Beshay, D. Ruiz, and R. A. Lieberman, “Fiber optic sensor coatings with enhanced sensitivity and longevity,” Proc. SPIE 6377, 63770C (2006).
[CrossRef]

S. R. Cordero, H. Mukamal, A. Low, E. P. Locke, and R. A. Lieberman, “A fiber optic sensor for nerve agent,” Proc. SPIE 6378, 63780U (2006).
[CrossRef]

S. R. Cordero, M. Beshay, A. Low, H. Mukamal, D. Ruiz, and R. A. Lieberman, “A distributed fiber optic chemical sensor for hydrogen cyanide detection,” Proc. SPIE 5993, 599302(2005).
[CrossRef]

H. Mukamal, S. R. Cordero, D. Ruiz, M. Beshay, and R. A. Lieberman, “Distributed fiber optic chemical sensor for hydrogen sulfide and chlorine detection,” Proc. SPIE 6004, 600406(2005).
[CrossRef]

R. A. Lieberman, L. L. Blyler, and L. G. Cohen, “A distributed fiber optic sensor based on cladding fluorescence,” J. Lightwave Technol. 8, 212–220 (1990).
[CrossRef]

Locke, E. P.

S. R. Cordero, H. Mukamal, A. Low, E. P. Locke, and R. A. Lieberman, “A fiber optic sensor for nerve agent,” Proc. SPIE 6378, 63780U (2006).
[CrossRef]

Low, A.

S. R. Cordero, H. Mukamal, A. Low, E. P. Locke, and R. A. Lieberman, “A fiber optic sensor for nerve agent,” Proc. SPIE 6378, 63780U (2006).
[CrossRef]

S. R. Cordero, H. Mukamal, A. Low, M. Beshay, D. Ruiz, and R. A. Lieberman, “Fiber optic sensor coatings with enhanced sensitivity and longevity,” Proc. SPIE 6377, 63770C (2006).
[CrossRef]

S. R. Cordero, M. Beshay, A. Low, H. Mukamal, D. Ruiz, and R. A. Lieberman, “A distributed fiber optic chemical sensor for hydrogen cyanide detection,” Proc. SPIE 5993, 599302(2005).
[CrossRef]

Mattingly, Q. L.

S. A. Soper and Q. L. Mattingly, “Steady-state and picosecond laser fluorescence studies of nonradiative pathways in tricarbocyanine dyes—implications to the design of near-IR fluorochromes with high fluorescence efficiencies,” J. Am. Chem. Soc. 116, 3744–3752 (1994).
[CrossRef]

McAdam, G.

G. McAdam, P. J. Newman, I. McKenzie, C. Davis, and B. R. W. Hinton, “Fiber optic sensors for detection of corrosion within aircraft,” Struct. Health Monit. 4, 47–56 (2005).
[CrossRef]

McKenzie, I.

G. McAdam, P. J. Newman, I. McKenzie, C. Davis, and B. R. W. Hinton, “Fiber optic sensors for detection of corrosion within aircraft,” Struct. Health Monit. 4, 47–56 (2005).
[CrossRef]

Mukamal, H.

S. R. Cordero, H. Mukamal, A. Low, E. P. Locke, and R. A. Lieberman, “A fiber optic sensor for nerve agent,” Proc. SPIE 6378, 63780U (2006).
[CrossRef]

S. R. Cordero, H. Mukamal, A. Low, M. Beshay, D. Ruiz, and R. A. Lieberman, “Fiber optic sensor coatings with enhanced sensitivity and longevity,” Proc. SPIE 6377, 63770C (2006).
[CrossRef]

H. Mukamal, S. R. Cordero, D. Ruiz, M. Beshay, and R. A. Lieberman, “Distributed fiber optic chemical sensor for hydrogen sulfide and chlorine detection,” Proc. SPIE 6004, 600406(2005).
[CrossRef]

S. R. Cordero, M. Beshay, A. Low, H. Mukamal, D. Ruiz, and R. A. Lieberman, “A distributed fiber optic chemical sensor for hydrogen cyanide detection,” Proc. SPIE 5993, 599302(2005).
[CrossRef]

Nagarajah, C. R.

P. R. Stoddart, P. J. Cadusch, J. B. Pearce, D. Vukovic, C. R. Nagarajah, and D. J. Booth, “Fibre optic distributed temperature sensor with an integrated background correction function,” Meas. Sci. Technol. 16, 1299–1304 (2005).
[CrossRef]

Narasimhan, K. L.

V. V. N. R. Kishore, K. L. Narasimhan, and N. Periasamy, “On the radiative lifetime, quantum yield and fluorescence decay of Alq in thin films,” Phys. Chem. Chem. Phys. 5, 1386–1391(2003).
[CrossRef]

Newman, P. J.

G. McAdam, P. J. Newman, I. McKenzie, C. Davis, and B. R. W. Hinton, “Fiber optic sensors for detection of corrosion within aircraft,” Struct. Health Monit. 4, 47–56 (2005).
[CrossRef]

Nobe, Y.

T. Hoshi, K. Kumagai, K. Inoue, S. Enomoto, Y. Nobe, and M. Kobayashi, “Electronic absorption and emission spectra of Alq(3) in solution with special attention to a delayed fluorescence,” J. Lumin. 128, 1353–1358 (2008).
[CrossRef]

Olsson, R. J.

P. E. Henning, A. Benko, A. W. Schwabacher, P. Geissinger, and R. J. Olsson, “Apparatus and methods for optical time-of-flight discrimination in combinatorial library analysis,” Rev. Sci. Instrum. 76, 062220 (2005).
[CrossRef]

Pearce, J. B.

P. R. Stoddart, P. J. Cadusch, J. B. Pearce, D. Vukovic, C. R. Nagarajah, and D. J. Booth, “Fibre optic distributed temperature sensor with an integrated background correction function,” Meas. Sci. Technol. 16, 1299–1304 (2005).
[CrossRef]

Penzkofer, A.

R. Philip, A. Penzkofer, W. Bäumler, R. M. Szeimies, and C. Abels, “Absorption and fluorescence spectroscopic investigation of indocyanine green,” J. Photochem. Photobiol. A 96, 137–148(1996).
[CrossRef]

Periasamy, N.

V. V. N. R. Kishore, K. L. Narasimhan, and N. Periasamy, “On the radiative lifetime, quantum yield and fluorescence decay of Alq in thin films,” Phys. Chem. Chem. Phys. 5, 1386–1391(2003).
[CrossRef]

Philip, R.

R. Philip, A. Penzkofer, W. Bäumler, R. M. Szeimies, and C. Abels, “Absorption and fluorescence spectroscopic investigation of indocyanine green,” J. Photochem. Photobiol. A 96, 137–148(1996).
[CrossRef]

Potyrailo, R. A.

R. A. Potyrailo, A. W. Szumlas, T. L. Danielson, M. Johnson, and G. M. Hieftje, “A dual-parameter optical sensor fabricated by gradient axial doping of an optical fibre,” Meas. Sci. Technol. 16, 235–241 (2005).
[CrossRef]

R. A. Potyrailo and G. M. Hieftje, “Use of the original silicone cladding of an optical fiber as a reagent-immobilization medium for intrinsic chemical sensors,” Fresenius' J. Anal. Chem. 364, 32–40 (1999).
[CrossRef]

R. A. Potyrailo and G. M. Hieftje, “Optical time-of-flight chemical detection: absorption-modulated fluorescence for spatially resolved analyte mapping in a bidirectional distributed fiber-optic sensor,” Anal. Chem. 70, 3407–3412 (1998).
[CrossRef] [PubMed]

R. A. Potyrailo and G. M. Hieftje, “Optical time-of-flight chemical detection: spatially resolved analyte mapping with extended-length continuous chemically modified optical fibers,” Anal. Chem. 70, 1453–1461 (1998).
[CrossRef] [PubMed]

Ruiz, D.

S. R. Cordero, H. Mukamal, A. Low, M. Beshay, D. Ruiz, and R. A. Lieberman, “Fiber optic sensor coatings with enhanced sensitivity and longevity,” Proc. SPIE 6377, 63770C (2006).
[CrossRef]

H. Mukamal, S. R. Cordero, D. Ruiz, M. Beshay, and R. A. Lieberman, “Distributed fiber optic chemical sensor for hydrogen sulfide and chlorine detection,” Proc. SPIE 6004, 600406(2005).
[CrossRef]

S. R. Cordero, M. Beshay, A. Low, H. Mukamal, D. Ruiz, and R. A. Lieberman, “A distributed fiber optic chemical sensor for hydrogen cyanide detection,” Proc. SPIE 5993, 599302(2005).
[CrossRef]

Schwabacher, A. W.

P. E. Henning, A. Benko, A. W. Schwabacher, P. Geissinger, and R. J. Olsson, “Apparatus and methods for optical time-of-flight discrimination in combinatorial library analysis,” Rev. Sci. Instrum. 76, 062220 (2005).
[CrossRef]

Soper, S. A.

S. A. Soper and Q. L. Mattingly, “Steady-state and picosecond laser fluorescence studies of nonradiative pathways in tricarbocyanine dyes—implications to the design of near-IR fluorochromes with high fluorescence efficiencies,” J. Am. Chem. Soc. 116, 3744–3752 (1994).
[CrossRef]

Stoddart, P. R.

P. R. Stoddart, P. J. Cadusch, J. B. Pearce, D. Vukovic, C. R. Nagarajah, and D. J. Booth, “Fibre optic distributed temperature sensor with an integrated background correction function,” Meas. Sci. Technol. 16, 1299–1304 (2005).
[CrossRef]

Strekowski, L.

H. Lee, M. Y. Berezin, M. Henary, L. Strekowski, and S. Achilefu, “Fluorescence lifetime properties of near-infrared cyanine dyes in relation to their structures,” J. Photochem. Photobiol. A 200, 438–444 (2008).
[CrossRef]

Szeimies, R. M.

R. Philip, A. Penzkofer, W. Bäumler, R. M. Szeimies, and C. Abels, “Absorption and fluorescence spectroscopic investigation of indocyanine green,” J. Photochem. Photobiol. A 96, 137–148(1996).
[CrossRef]

Szumlas, A. W.

R. A. Potyrailo, A. W. Szumlas, T. L. Danielson, M. Johnson, and G. M. Hieftje, “A dual-parameter optical sensor fabricated by gradient axial doping of an optical fibre,” Meas. Sci. Technol. 16, 235–241 (2005).
[CrossRef]

Vukovic, D.

P. R. Stoddart, P. J. Cadusch, J. B. Pearce, D. Vukovic, C. R. Nagarajah, and D. J. Booth, “Fibre optic distributed temperature sensor with an integrated background correction function,” Meas. Sci. Technol. 16, 1299–1304 (2005).
[CrossRef]

Anal. Chem. (2)

R. A. Potyrailo and G. M. Hieftje, “Optical time-of-flight chemical detection: absorption-modulated fluorescence for spatially resolved analyte mapping in a bidirectional distributed fiber-optic sensor,” Anal. Chem. 70, 3407–3412 (1998).
[CrossRef] [PubMed]

R. A. Potyrailo and G. M. Hieftje, “Optical time-of-flight chemical detection: spatially resolved analyte mapping with extended-length continuous chemically modified optical fibers,” Anal. Chem. 70, 1453–1461 (1998).
[CrossRef] [PubMed]

Fresenius' J. Anal. Chem. (1)

R. A. Potyrailo and G. M. Hieftje, “Use of the original silicone cladding of an optical fiber as a reagent-immobilization medium for intrinsic chemical sensors,” Fresenius' J. Anal. Chem. 364, 32–40 (1999).
[CrossRef]

J. Am. Chem. Soc. (1)

S. A. Soper and Q. L. Mattingly, “Steady-state and picosecond laser fluorescence studies of nonradiative pathways in tricarbocyanine dyes—implications to the design of near-IR fluorochromes with high fluorescence efficiencies,” J. Am. Chem. Soc. 116, 3744–3752 (1994).
[CrossRef]

J. Lightwave Technol. (1)

R. A. Lieberman, L. L. Blyler, and L. G. Cohen, “A distributed fiber optic sensor based on cladding fluorescence,” J. Lightwave Technol. 8, 212–220 (1990).
[CrossRef]

J. Lumin. (1)

T. Hoshi, K. Kumagai, K. Inoue, S. Enomoto, Y. Nobe, and M. Kobayashi, “Electronic absorption and emission spectra of Alq(3) in solution with special attention to a delayed fluorescence,” J. Lumin. 128, 1353–1358 (2008).
[CrossRef]

J. Photochem. Photobiol. A (2)

R. Philip, A. Penzkofer, W. Bäumler, R. M. Szeimies, and C. Abels, “Absorption and fluorescence spectroscopic investigation of indocyanine green,” J. Photochem. Photobiol. A 96, 137–148(1996).
[CrossRef]

H. Lee, M. Y. Berezin, M. Henary, L. Strekowski, and S. Achilefu, “Fluorescence lifetime properties of near-infrared cyanine dyes in relation to their structures,” J. Photochem. Photobiol. A 200, 438–444 (2008).
[CrossRef]

Meas. Sci. Technol. (2)

P. R. Stoddart, P. J. Cadusch, J. B. Pearce, D. Vukovic, C. R. Nagarajah, and D. J. Booth, “Fibre optic distributed temperature sensor with an integrated background correction function,” Meas. Sci. Technol. 16, 1299–1304 (2005).
[CrossRef]

R. A. Potyrailo, A. W. Szumlas, T. L. Danielson, M. Johnson, and G. M. Hieftje, “A dual-parameter optical sensor fabricated by gradient axial doping of an optical fibre,” Meas. Sci. Technol. 16, 235–241 (2005).
[CrossRef]

Phys. Chem. Chem. Phys. (1)

V. V. N. R. Kishore, K. L. Narasimhan, and N. Periasamy, “On the radiative lifetime, quantum yield and fluorescence decay of Alq in thin films,” Phys. Chem. Chem. Phys. 5, 1386–1391(2003).
[CrossRef]

Proc. SPIE (4)

H. Mukamal, S. R. Cordero, D. Ruiz, M. Beshay, and R. A. Lieberman, “Distributed fiber optic chemical sensor for hydrogen sulfide and chlorine detection,” Proc. SPIE 6004, 600406(2005).
[CrossRef]

S. R. Cordero, M. Beshay, A. Low, H. Mukamal, D. Ruiz, and R. A. Lieberman, “A distributed fiber optic chemical sensor for hydrogen cyanide detection,” Proc. SPIE 5993, 599302(2005).
[CrossRef]

S. R. Cordero, H. Mukamal, A. Low, E. P. Locke, and R. A. Lieberman, “A fiber optic sensor for nerve agent,” Proc. SPIE 6378, 63780U (2006).
[CrossRef]

S. R. Cordero, H. Mukamal, A. Low, M. Beshay, D. Ruiz, and R. A. Lieberman, “Fiber optic sensor coatings with enhanced sensitivity and longevity,” Proc. SPIE 6377, 63770C (2006).
[CrossRef]

Rev. Sci. Instrum. (1)

P. E. Henning, A. Benko, A. W. Schwabacher, P. Geissinger, and R. J. Olsson, “Apparatus and methods for optical time-of-flight discrimination in combinatorial library analysis,” Rev. Sci. Instrum. 76, 062220 (2005).
[CrossRef]

Struct. Health Monit. (1)

G. McAdam, P. J. Newman, I. McKenzie, C. Davis, and B. R. W. Hinton, “Fiber optic sensors for detection of corrosion within aircraft,” Struct. Health Monit. 4, 47–56 (2005).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Experimental arrangement: LP, long-pass filter; Con, temporary connector.

Fig. 2
Fig. 2

Time-resolved response of the distributed sensor, plotted in terms of distance traveled in the optical fiber.

Fig. 3
Fig. 3

Alq 3 fluorescence waveforms for range of concentrations. The solid curve represents background signal from the ethanol solvent. The waveform for the concentration of 0.1 × 10 3 M has been excluded for the sake of clarity.

Fig. 4
Fig. 4

Alq 3 fluorescence ( 9.4 × 10 3 M , circles) after subtraction of the background component due to the ethanol solvent. The model fit [Eq. (2), solid curve] is shown together with a reconstruction of the excitation pulse from the fitted parameters (dashed curve).

Fig. 5
Fig. 5

Concentration dependence of the Alq 3 fluorescence decay rate. The zero concentration intercept corresponds to an intrinsic lifetime of 18.2 ± 0.9 ns .

Fig. 6
Fig. 6

Dependence of peak Alq 3 fluorescence on concentration (circles) together with a linear fit.

Fig. 7
Fig. 7

Fluorescence waveform for the IR-125 dye at a concentration 5 × 10 5 M (circles) together with the model fit [Eq. (2)].

Tables (1)

Tables Icon

Table 1 Fitted Model Parameters for Alq 3 Fluorescence Waveforms for the Concentrations Shown Together with the Delay of the Fluorescence Peak From the Peak of the Reconstructed Gaussian Input a

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

n ˙ n τ = k NI 0 exp ( 1 2 ( t T σ ) 2 ) ,
n ( t ) = k σ NI 0 π 2 exp ( 2 σ 2 τ 2 ) exp ( t T σ ) [ 1 + erf ( 1 2 ( t T σ σ τ ) ) ] .
I t ( t ) = K exp ( t T σ ) [ 1 + erf ( 1 2 ( t T σ σ τ ) ) ] ,

Metrics