A. P. Rathnayake, H. Kadono, S. Toyooka, and M. Miwa, “A novel optical interference method to measure minute elongations in Japanese red pine (Pinus densiflora) seedling roots grown under ectomycorrhizal infection,” Environ. Exp. Bot. 64, 314–321 (2008).

[CrossRef]

A. P. Rathnayake, H. Kadono, S. Toyooka, and M. Miwa, “Statistical interferometric investigation of nano-scale root growth: effects of short-term ozone exposure on ectomycorrhizal pine (Pinus densiflora) seedlings,” J. For. Res. 12, 393–402 (2007).

[CrossRef]

A. Oulamara, G. Tribillion, and J. Duvernoy, “Biological activity measurement on botanical specimen surfaces using a temporal decorrelation effect of laser speckle,” J. Mod. Opt. 36, 165–179 (1989).

[CrossRef]

K. Creath, “Phase-measurement interferometry techniques,” in Progress in Optics, E.Wolf, ed. (North-Holland, 1988), pp. 349–399.

[CrossRef]

A. Oulamara, G. Tribillion, and J. Duvernoy, “Biological activity measurement on botanical specimen surfaces using a temporal decorrelation effect of laser speckle,” J. Mod. Opt. 36, 165–179 (1989).

[CrossRef]

A. P. Rathnayake, H. Kadono, S. Toyooka, and M. Miwa, “A novel optical interference method to measure minute elongations in Japanese red pine (Pinus densiflora) seedling roots grown under ectomycorrhizal infection,” Environ. Exp. Bot. 64, 314–321 (2008).

[CrossRef]

A. P. Rathnayake, H. Kadono, S. Toyooka, and M. Miwa, “Statistical interferometric investigation of nano-scale root growth: effects of short-term ozone exposure on ectomycorrhizal pine (Pinus densiflora) seedlings,” J. For. Res. 12, 393–402 (2007).

[CrossRef]

H. Kadono, Y. Bitoh, and S. Toyooka, “Statistical interferometry based on a fully developed speckle field: an experimental demonstration with noise analysis,” J. Opt. Soc. Am. A 18, 1267–1274 (2001).

[CrossRef]

H. Kadono and S. Toyooka, “Statistical interferometry based on statistics of speckle phase,” Opt. Lett. 16, 883–885 (1991).

[CrossRef]
[PubMed]

H. Kadono, S. Toyooka, and Y. Iwasaki, “Speckle-shearing interferometry using a liquid-crystal cell as a phase modulator,” J. Opt. Soc. Am. A 8, 2001–2008 (1991).

[CrossRef]

A. P. Rathnayake, H. Kadono, S. Toyooka, and M. Miwa, “A novel optical interference method to measure minute elongations in Japanese red pine (Pinus densiflora) seedling roots grown under ectomycorrhizal infection,” Environ. Exp. Bot. 64, 314–321 (2008).

[CrossRef]

A. P. Rathnayake, H. Kadono, S. Toyooka, and M. Miwa, “Statistical interferometric investigation of nano-scale root growth: effects of short-term ozone exposure on ectomycorrhizal pine (Pinus densiflora) seedlings,” J. For. Res. 12, 393–402 (2007).

[CrossRef]

A. Oulamara, G. Tribillion, and J. Duvernoy, “Biological activity measurement on botanical specimen surfaces using a temporal decorrelation effect of laser speckle,” J. Mod. Opt. 36, 165–179 (1989).

[CrossRef]

A. P. Rathnayake, H. Kadono, S. Toyooka, and M. Miwa, “A novel optical interference method to measure minute elongations in Japanese red pine (Pinus densiflora) seedling roots grown under ectomycorrhizal infection,” Environ. Exp. Bot. 64, 314–321 (2008).

[CrossRef]

A. P. Rathnayake, H. Kadono, S. Toyooka, and M. Miwa, “Statistical interferometric investigation of nano-scale root growth: effects of short-term ozone exposure on ectomycorrhizal pine (Pinus densiflora) seedlings,” J. For. Res. 12, 393–402 (2007).

[CrossRef]

A. P. Rathnayake, H. Kadono, S. Toyooka, and M. Miwa, “A novel optical interference method to measure minute elongations in Japanese red pine (Pinus densiflora) seedling roots grown under ectomycorrhizal infection,” Environ. Exp. Bot. 64, 314–321 (2008).

[CrossRef]

A. P. Rathnayake, H. Kadono, S. Toyooka, and M. Miwa, “Statistical interferometric investigation of nano-scale root growth: effects of short-term ozone exposure on ectomycorrhizal pine (Pinus densiflora) seedlings,” J. For. Res. 12, 393–402 (2007).

[CrossRef]

H. Kadono, Y. Bitoh, and S. Toyooka, “Statistical interferometry based on a fully developed speckle field: an experimental demonstration with noise analysis,” J. Opt. Soc. Am. A 18, 1267–1274 (2001).

[CrossRef]

H. Kadono and S. Toyooka, “Statistical interferometry based on statistics of speckle phase,” Opt. Lett. 16, 883–885 (1991).

[CrossRef]
[PubMed]

H. Kadono, S. Toyooka, and Y. Iwasaki, “Speckle-shearing interferometry using a liquid-crystal cell as a phase modulator,” J. Opt. Soc. Am. A 8, 2001–2008 (1991).

[CrossRef]

A. Oulamara, G. Tribillion, and J. Duvernoy, “Biological activity measurement on botanical specimen surfaces using a temporal decorrelation effect of laser speckle,” J. Mod. Opt. 36, 165–179 (1989).

[CrossRef]

A. P. Rathnayake, H. Kadono, S. Toyooka, and M. Miwa, “A novel optical interference method to measure minute elongations in Japanese red pine (Pinus densiflora) seedling roots grown under ectomycorrhizal infection,” Environ. Exp. Bot. 64, 314–321 (2008).

[CrossRef]

A. P. Rathnayake, H. Kadono, S. Toyooka, and M. Miwa, “Statistical interferometric investigation of nano-scale root growth: effects of short-term ozone exposure on ectomycorrhizal pine (Pinus densiflora) seedlings,” J. For. Res. 12, 393–402 (2007).

[CrossRef]

A. Oulamara, G. Tribillion, and J. Duvernoy, “Biological activity measurement on botanical specimen surfaces using a temporal decorrelation effect of laser speckle,” J. Mod. Opt. 36, 165–179 (1989).

[CrossRef]

H. Kadono, Y. Bitoh, and S. Toyooka, “Statistical interferometry based on a fully developed speckle field: an experimental demonstration with noise analysis,” J. Opt. Soc. Am. A 18, 1267–1274 (2001).

[CrossRef]

H. Kadono, S. Toyooka, and Y. Iwasaki, “Speckle-shearing interferometry using a liquid-crystal cell as a phase modulator,” J. Opt. Soc. Am. A 8, 2001–2008 (1991).

[CrossRef]

K. Creath, “Phase-measurement interferometry techniques,” in Progress in Optics, E.Wolf, ed. (North-Holland, 1988), pp. 349–399.

[CrossRef]

J.C.Dainty, ed., Laser Speckle and Related Phenomena (Springer-Velag, 1975).