Abstract

An ultraviolet two-spherical-wave interferometer was developed in order to make a subwavelength structured surface on a curved surface. The change in fringe period on the curved surface was significantly suppressed compared with the two-plane-wave interferometer. The optical setup method for suppressing the change in fringe period is described. The effect of the two-spherical-wave interferometer was investigated by numerical simulations. In an experimental demonstration for a concave spherical surface with 11.1mm radius of curvature and 10mm diameter, the change in period of the photoresist pattern was reduced to 12nm for the target period of 250nm.

© 2010 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Modulation of optical intensity on curved surfaces and its application to fabricate DOEs with arbitrary profile by interference

Haozhi Zhao, Juan Liu, Ru Xiao, Xin Li, Rui Shi, Peng Liu, Haizheng Zhong, Bingsuo Zou, and Yongtian Wang
Opt. Express 21(4) 5140-5148 (2013)

Ray tracing of an aspherical lens with antireflective subwavelength structured surfaces

Akio Mizutani, Yu Kobayashi, Akira Maruyama, and Hisao Kikuta
J. Opt. Soc. Am. A 26(2) 337-341 (2009)

Highly corrected submicrometer grid patterning on curved surfaces

Kenneth M. Baker
Appl. Opt. 38(2) 339-351 (1999)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (9)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (16)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription