Abstract

An ultraviolet two-spherical-wave interferometer was developed in order to make a subwavelength structured surface on a curved surface. The change in fringe period on the curved surface was significantly suppressed compared with the two-plane-wave interferometer. The optical setup method for suppressing the change in fringe period is described. The effect of the two-spherical-wave interferometer was investigated by numerical simulations. In an experimental demonstration for a concave spherical surface with 11.1mm radius of curvature and 10mm diameter, the change in period of the photoresist pattern was reduced to 12nm for the target period of 250nm.

© 2010 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. J. Wilson and M. C. Hutley, “The optical properties of ‘moth eye’ antireflection surfaces,” Opt. Acta 29, 993–1009 (1982).
    [CrossRef]
  2. D. H. Raguin and G. M. Morris, “Antireflection structured surfaces for the infrared spectral region,” Appl. Opt. 32, 1154–1167 (1993).
    [CrossRef] [PubMed]
  3. Y. Kanamori, M. Sasaki, and K. Hane, “Broadband antireflection gratings fabricated upon silicon substrates,” Opt. Lett. 24, 1422–1424 (1999).
    [CrossRef]
  4. H. Toyota, K. Takahara, M. Okano, T. Yotsuya, and H. Kikuta, “Fabrication of microcone array for antireflection structured surface using metal dotted pattern,” Jpn. J. Appl. Phys. 40, L747–L749 (2001).
    [CrossRef]
  5. M. Karlsson and F. Nikolajeff, “Diamond micro-optics: microlenses and antireflection structured surface for the infrared spectral region,” Opt. Express 11, 502–507 (2003).
    [CrossRef] [PubMed]
  6. A. Gombert, W. Glaubitt, K. Rose, J. Dreibholz, B. Blasi, A. Heinzel, D. Sporn, W. Doll, and V. Wittwer, “Subwavelength-structured antireflective surfaces on glass,” Thin Solid Films 351, 73–78 (1999).
    [CrossRef]
  7. C. David, P. Haberling, M. Schnierper, J. Sochtig, and C. Zschokke, “Nano-structured anti-reflective surface replicated by hot embossing,” Microelectron. Eng. 61–62, 435–440(2002).
    [CrossRef]
  8. Y. Hirai, and Y. Tanaka, “Application of nano-imprint lithography,” J. Photopolym. Sci. Technol. 15, 475–480 (2002).
    [CrossRef]
  9. Y. Kanamori, E. Roy, and Y. Chen, “Antireflection sub-wavelength gratings fabricated by spin-coating replication,” Microelectron. Eng. 78–79, 287–293 (2005).
    [CrossRef]
  10. K. M. Baker, “Highly corrected closed-packed microlens array and moth-eye structuring on curved surface,” Appl. Opt. 38, 352–356 (1999).
    [CrossRef]
  11. S. Kobayashi, A. Yamaguchi, S. Sumi, M. Higuchi, and Y. Maeno, “Production method of curved-surface metal mold having fine uneven structure and production method of optical element using this metal mold,” PCT/JP2005/005012 (2005) or U.S. patent application 10,594,154 (2007).
  12. K. Yamada, M. Umetani, T. Tamura, Y. Tanaka, H. Kasa, and J. Nishii, “Antireflective structure imprinted on the surface of optical glass by SiC mold,” Appl. Surf. Sci. 255, 4267–4270(2009).
    [CrossRef]
  13. J. Nishii, “Glass-imprinting for optical device fabrication,” in Advances in Optical Materials, OSA Technical Digest (CD) (Optical Society of America, 2009), paper AThC1.
  14. A. Mizutani, Y. Kobayashi, A. Maruyama, and H. Kikuta, “Raytracing of an aspherical lens with antireflective subwavelength structured surfaces,” J. Opt. Soc. Am. A 26, 337–341(2009).
    [CrossRef]
  15. T. Kita and T. Harada, “Ruling engine using a piezoelectric device for large and high-groove density gratings,” Appl. Opt. 31, 1399–1406 (1992).
    [CrossRef] [PubMed]
  16. C. H. Ko, B. Y. Shew, M. C. Liang, C. C. Lui, and C. K. Lo, “An x-ray-LIGA-fabricated spectrometer chip for wavelength demultiplexing,” presented at the 2004 IEEE/LEOS International Conference on Optical MEMS and Their Applications (Optical MEMS 2004), Takamatsu, Kagawa, Japan, 2004 (unpublished), p. 136.
    [PubMed]
  17. P. Ruchhoeft, M. Colburn, B. Choi, H. Nounu, S. Johnson, T. Bailey, S. Damle, M. Stewart, J. Ekerdt, S. V. Sreenivasan, J. C. Wolfe, and C. G. Willson, “Patterning curved surfaces: template generation by ion beam proximity lithography and relief transfer by step and flash imprint lithography,” J. Vac. Sci. Technol. B 17, 2965–2969 (1999).
    [CrossRef]
  18. Y. Xie, Z. Lu, and F. Li, “Lithographic fabrication of large curved hologram by laser writer,” Opt. Express 12, 1810–1814(2004).
    [CrossRef] [PubMed]
  19. D. W. Wilson, P. D. Maker, R. E. Muller, P. Z. Mouroulis, and J. Backlund, “Recent advances in blazed grating fabrication by electron-beam lithography,” Proc. SPIE 5173, 115–126(2003).
    [CrossRef]
  20. T. Yanagishita, K. Nishio, and H. Masuda, “Anti-reflection structures on lenses by nanoimprinting using ordered anodic porous alumina,” Appl. Phys. Express 2, 022001(2009).
    [CrossRef]
  21. Y.-P. Chen, Y.-P. Lee, J.-H. Chang, and L. A. Wang, “Fabrication of concave gratings by curved surface UV-nanoimprint lithography,” J. Vac. Sci. Technol. B 26, 1690–1695 (2008).
    [CrossRef]
  22. K. Kintaka, J. Nishii, and N. Tohge, “Diffraction gratings of photosensitive ZrO2 gel films fabricated with the two-ultraviolet-beam interference method,” Appl. Opt. 39, 489–493 (2000).
    [CrossRef]
  23. K. M. Baker, “Highly corrected submicrometer grid patterning on curved surfaces,” Appl. Opt. 38, 339–351 (1999).
    [CrossRef]
  24. E. Hecht, “Interference,” in Optics3rd ed. (Addison Wesley Longman, 1997), Chap. 9, p. 381.

2009

K. Yamada, M. Umetani, T. Tamura, Y. Tanaka, H. Kasa, and J. Nishii, “Antireflective structure imprinted on the surface of optical glass by SiC mold,” Appl. Surf. Sci. 255, 4267–4270(2009).
[CrossRef]

A. Mizutani, Y. Kobayashi, A. Maruyama, and H. Kikuta, “Raytracing of an aspherical lens with antireflective subwavelength structured surfaces,” J. Opt. Soc. Am. A 26, 337–341(2009).
[CrossRef]

T. Yanagishita, K. Nishio, and H. Masuda, “Anti-reflection structures on lenses by nanoimprinting using ordered anodic porous alumina,” Appl. Phys. Express 2, 022001(2009).
[CrossRef]

2008

Y.-P. Chen, Y.-P. Lee, J.-H. Chang, and L. A. Wang, “Fabrication of concave gratings by curved surface UV-nanoimprint lithography,” J. Vac. Sci. Technol. B 26, 1690–1695 (2008).
[CrossRef]

2005

Y. Kanamori, E. Roy, and Y. Chen, “Antireflection sub-wavelength gratings fabricated by spin-coating replication,” Microelectron. Eng. 78–79, 287–293 (2005).
[CrossRef]

2004

2003

D. W. Wilson, P. D. Maker, R. E. Muller, P. Z. Mouroulis, and J. Backlund, “Recent advances in blazed grating fabrication by electron-beam lithography,” Proc. SPIE 5173, 115–126(2003).
[CrossRef]

M. Karlsson and F. Nikolajeff, “Diamond micro-optics: microlenses and antireflection structured surface for the infrared spectral region,” Opt. Express 11, 502–507 (2003).
[CrossRef] [PubMed]

2002

C. David, P. Haberling, M. Schnierper, J. Sochtig, and C. Zschokke, “Nano-structured anti-reflective surface replicated by hot embossing,” Microelectron. Eng. 61–62, 435–440(2002).
[CrossRef]

Y. Hirai, and Y. Tanaka, “Application of nano-imprint lithography,” J. Photopolym. Sci. Technol. 15, 475–480 (2002).
[CrossRef]

2001

H. Toyota, K. Takahara, M. Okano, T. Yotsuya, and H. Kikuta, “Fabrication of microcone array for antireflection structured surface using metal dotted pattern,” Jpn. J. Appl. Phys. 40, L747–L749 (2001).
[CrossRef]

2000

1999

K. M. Baker, “Highly corrected submicrometer grid patterning on curved surfaces,” Appl. Opt. 38, 339–351 (1999).
[CrossRef]

K. M. Baker, “Highly corrected closed-packed microlens array and moth-eye structuring on curved surface,” Appl. Opt. 38, 352–356 (1999).
[CrossRef]

Y. Kanamori, M. Sasaki, and K. Hane, “Broadband antireflection gratings fabricated upon silicon substrates,” Opt. Lett. 24, 1422–1424 (1999).
[CrossRef]

A. Gombert, W. Glaubitt, K. Rose, J. Dreibholz, B. Blasi, A. Heinzel, D. Sporn, W. Doll, and V. Wittwer, “Subwavelength-structured antireflective surfaces on glass,” Thin Solid Films 351, 73–78 (1999).
[CrossRef]

P. Ruchhoeft, M. Colburn, B. Choi, H. Nounu, S. Johnson, T. Bailey, S. Damle, M. Stewart, J. Ekerdt, S. V. Sreenivasan, J. C. Wolfe, and C. G. Willson, “Patterning curved surfaces: template generation by ion beam proximity lithography and relief transfer by step and flash imprint lithography,” J. Vac. Sci. Technol. B 17, 2965–2969 (1999).
[CrossRef]

1993

1992

1982

S. J. Wilson and M. C. Hutley, “The optical properties of ‘moth eye’ antireflection surfaces,” Opt. Acta 29, 993–1009 (1982).
[CrossRef]

Backlund, J.

D. W. Wilson, P. D. Maker, R. E. Muller, P. Z. Mouroulis, and J. Backlund, “Recent advances in blazed grating fabrication by electron-beam lithography,” Proc. SPIE 5173, 115–126(2003).
[CrossRef]

Bailey, T.

P. Ruchhoeft, M. Colburn, B. Choi, H. Nounu, S. Johnson, T. Bailey, S. Damle, M. Stewart, J. Ekerdt, S. V. Sreenivasan, J. C. Wolfe, and C. G. Willson, “Patterning curved surfaces: template generation by ion beam proximity lithography and relief transfer by step and flash imprint lithography,” J. Vac. Sci. Technol. B 17, 2965–2969 (1999).
[CrossRef]

Baker, K. M.

Blasi, B.

A. Gombert, W. Glaubitt, K. Rose, J. Dreibholz, B. Blasi, A. Heinzel, D. Sporn, W. Doll, and V. Wittwer, “Subwavelength-structured antireflective surfaces on glass,” Thin Solid Films 351, 73–78 (1999).
[CrossRef]

Chang, J.-H.

Y.-P. Chen, Y.-P. Lee, J.-H. Chang, and L. A. Wang, “Fabrication of concave gratings by curved surface UV-nanoimprint lithography,” J. Vac. Sci. Technol. B 26, 1690–1695 (2008).
[CrossRef]

Chen, Y.

Y. Kanamori, E. Roy, and Y. Chen, “Antireflection sub-wavelength gratings fabricated by spin-coating replication,” Microelectron. Eng. 78–79, 287–293 (2005).
[CrossRef]

Chen, Y.-P.

Y.-P. Chen, Y.-P. Lee, J.-H. Chang, and L. A. Wang, “Fabrication of concave gratings by curved surface UV-nanoimprint lithography,” J. Vac. Sci. Technol. B 26, 1690–1695 (2008).
[CrossRef]

Choi, B.

P. Ruchhoeft, M. Colburn, B. Choi, H. Nounu, S. Johnson, T. Bailey, S. Damle, M. Stewart, J. Ekerdt, S. V. Sreenivasan, J. C. Wolfe, and C. G. Willson, “Patterning curved surfaces: template generation by ion beam proximity lithography and relief transfer by step and flash imprint lithography,” J. Vac. Sci. Technol. B 17, 2965–2969 (1999).
[CrossRef]

Colburn, M.

P. Ruchhoeft, M. Colburn, B. Choi, H. Nounu, S. Johnson, T. Bailey, S. Damle, M. Stewart, J. Ekerdt, S. V. Sreenivasan, J. C. Wolfe, and C. G. Willson, “Patterning curved surfaces: template generation by ion beam proximity lithography and relief transfer by step and flash imprint lithography,” J. Vac. Sci. Technol. B 17, 2965–2969 (1999).
[CrossRef]

Damle, S.

P. Ruchhoeft, M. Colburn, B. Choi, H. Nounu, S. Johnson, T. Bailey, S. Damle, M. Stewart, J. Ekerdt, S. V. Sreenivasan, J. C. Wolfe, and C. G. Willson, “Patterning curved surfaces: template generation by ion beam proximity lithography and relief transfer by step and flash imprint lithography,” J. Vac. Sci. Technol. B 17, 2965–2969 (1999).
[CrossRef]

David, C.

C. David, P. Haberling, M. Schnierper, J. Sochtig, and C. Zschokke, “Nano-structured anti-reflective surface replicated by hot embossing,” Microelectron. Eng. 61–62, 435–440(2002).
[CrossRef]

Doll, W.

A. Gombert, W. Glaubitt, K. Rose, J. Dreibholz, B. Blasi, A. Heinzel, D. Sporn, W. Doll, and V. Wittwer, “Subwavelength-structured antireflective surfaces on glass,” Thin Solid Films 351, 73–78 (1999).
[CrossRef]

Dreibholz, J.

A. Gombert, W. Glaubitt, K. Rose, J. Dreibholz, B. Blasi, A. Heinzel, D. Sporn, W. Doll, and V. Wittwer, “Subwavelength-structured antireflective surfaces on glass,” Thin Solid Films 351, 73–78 (1999).
[CrossRef]

Ekerdt, J.

P. Ruchhoeft, M. Colburn, B. Choi, H. Nounu, S. Johnson, T. Bailey, S. Damle, M. Stewart, J. Ekerdt, S. V. Sreenivasan, J. C. Wolfe, and C. G. Willson, “Patterning curved surfaces: template generation by ion beam proximity lithography and relief transfer by step and flash imprint lithography,” J. Vac. Sci. Technol. B 17, 2965–2969 (1999).
[CrossRef]

Glaubitt, W.

A. Gombert, W. Glaubitt, K. Rose, J. Dreibholz, B. Blasi, A. Heinzel, D. Sporn, W. Doll, and V. Wittwer, “Subwavelength-structured antireflective surfaces on glass,” Thin Solid Films 351, 73–78 (1999).
[CrossRef]

Gombert, A.

A. Gombert, W. Glaubitt, K. Rose, J. Dreibholz, B. Blasi, A. Heinzel, D. Sporn, W. Doll, and V. Wittwer, “Subwavelength-structured antireflective surfaces on glass,” Thin Solid Films 351, 73–78 (1999).
[CrossRef]

Haberling, P.

C. David, P. Haberling, M. Schnierper, J. Sochtig, and C. Zschokke, “Nano-structured anti-reflective surface replicated by hot embossing,” Microelectron. Eng. 61–62, 435–440(2002).
[CrossRef]

Hane, K.

Harada, T.

Hecht, E.

E. Hecht, “Interference,” in Optics3rd ed. (Addison Wesley Longman, 1997), Chap. 9, p. 381.

Heinzel, A.

A. Gombert, W. Glaubitt, K. Rose, J. Dreibholz, B. Blasi, A. Heinzel, D. Sporn, W. Doll, and V. Wittwer, “Subwavelength-structured antireflective surfaces on glass,” Thin Solid Films 351, 73–78 (1999).
[CrossRef]

Higuchi, M.

S. Kobayashi, A. Yamaguchi, S. Sumi, M. Higuchi, and Y. Maeno, “Production method of curved-surface metal mold having fine uneven structure and production method of optical element using this metal mold,” PCT/JP2005/005012 (2005) or U.S. patent application 10,594,154 (2007).

Hirai, Y.

Y. Hirai, and Y. Tanaka, “Application of nano-imprint lithography,” J. Photopolym. Sci. Technol. 15, 475–480 (2002).
[CrossRef]

Hutley, M. C.

S. J. Wilson and M. C. Hutley, “The optical properties of ‘moth eye’ antireflection surfaces,” Opt. Acta 29, 993–1009 (1982).
[CrossRef]

Johnson, S.

P. Ruchhoeft, M. Colburn, B. Choi, H. Nounu, S. Johnson, T. Bailey, S. Damle, M. Stewart, J. Ekerdt, S. V. Sreenivasan, J. C. Wolfe, and C. G. Willson, “Patterning curved surfaces: template generation by ion beam proximity lithography and relief transfer by step and flash imprint lithography,” J. Vac. Sci. Technol. B 17, 2965–2969 (1999).
[CrossRef]

Kanamori, Y.

Y. Kanamori, E. Roy, and Y. Chen, “Antireflection sub-wavelength gratings fabricated by spin-coating replication,” Microelectron. Eng. 78–79, 287–293 (2005).
[CrossRef]

Y. Kanamori, M. Sasaki, and K. Hane, “Broadband antireflection gratings fabricated upon silicon substrates,” Opt. Lett. 24, 1422–1424 (1999).
[CrossRef]

Karlsson, M.

Kasa, H.

K. Yamada, M. Umetani, T. Tamura, Y. Tanaka, H. Kasa, and J. Nishii, “Antireflective structure imprinted on the surface of optical glass by SiC mold,” Appl. Surf. Sci. 255, 4267–4270(2009).
[CrossRef]

Kikuta, H.

A. Mizutani, Y. Kobayashi, A. Maruyama, and H. Kikuta, “Raytracing of an aspherical lens with antireflective subwavelength structured surfaces,” J. Opt. Soc. Am. A 26, 337–341(2009).
[CrossRef]

H. Toyota, K. Takahara, M. Okano, T. Yotsuya, and H. Kikuta, “Fabrication of microcone array for antireflection structured surface using metal dotted pattern,” Jpn. J. Appl. Phys. 40, L747–L749 (2001).
[CrossRef]

Kintaka, K.

Kita, T.

Ko, C. H.

C. H. Ko, B. Y. Shew, M. C. Liang, C. C. Lui, and C. K. Lo, “An x-ray-LIGA-fabricated spectrometer chip for wavelength demultiplexing,” presented at the 2004 IEEE/LEOS International Conference on Optical MEMS and Their Applications (Optical MEMS 2004), Takamatsu, Kagawa, Japan, 2004 (unpublished), p. 136.
[PubMed]

Kobayashi, S.

S. Kobayashi, A. Yamaguchi, S. Sumi, M. Higuchi, and Y. Maeno, “Production method of curved-surface metal mold having fine uneven structure and production method of optical element using this metal mold,” PCT/JP2005/005012 (2005) or U.S. patent application 10,594,154 (2007).

Kobayashi, Y.

Lee, Y.-P.

Y.-P. Chen, Y.-P. Lee, J.-H. Chang, and L. A. Wang, “Fabrication of concave gratings by curved surface UV-nanoimprint lithography,” J. Vac. Sci. Technol. B 26, 1690–1695 (2008).
[CrossRef]

Li, F.

Liang, M. C.

C. H. Ko, B. Y. Shew, M. C. Liang, C. C. Lui, and C. K. Lo, “An x-ray-LIGA-fabricated spectrometer chip for wavelength demultiplexing,” presented at the 2004 IEEE/LEOS International Conference on Optical MEMS and Their Applications (Optical MEMS 2004), Takamatsu, Kagawa, Japan, 2004 (unpublished), p. 136.
[PubMed]

Lo, C. K.

C. H. Ko, B. Y. Shew, M. C. Liang, C. C. Lui, and C. K. Lo, “An x-ray-LIGA-fabricated spectrometer chip for wavelength demultiplexing,” presented at the 2004 IEEE/LEOS International Conference on Optical MEMS and Their Applications (Optical MEMS 2004), Takamatsu, Kagawa, Japan, 2004 (unpublished), p. 136.
[PubMed]

Lu, Z.

Lui, C. C.

C. H. Ko, B. Y. Shew, M. C. Liang, C. C. Lui, and C. K. Lo, “An x-ray-LIGA-fabricated spectrometer chip for wavelength demultiplexing,” presented at the 2004 IEEE/LEOS International Conference on Optical MEMS and Their Applications (Optical MEMS 2004), Takamatsu, Kagawa, Japan, 2004 (unpublished), p. 136.
[PubMed]

Maeno, Y.

S. Kobayashi, A. Yamaguchi, S. Sumi, M. Higuchi, and Y. Maeno, “Production method of curved-surface metal mold having fine uneven structure and production method of optical element using this metal mold,” PCT/JP2005/005012 (2005) or U.S. patent application 10,594,154 (2007).

Maker, P. D.

D. W. Wilson, P. D. Maker, R. E. Muller, P. Z. Mouroulis, and J. Backlund, “Recent advances in blazed grating fabrication by electron-beam lithography,” Proc. SPIE 5173, 115–126(2003).
[CrossRef]

Maruyama, A.

Masuda, H.

T. Yanagishita, K. Nishio, and H. Masuda, “Anti-reflection structures on lenses by nanoimprinting using ordered anodic porous alumina,” Appl. Phys. Express 2, 022001(2009).
[CrossRef]

Mizutani, A.

Morris, G. M.

Mouroulis, P. Z.

D. W. Wilson, P. D. Maker, R. E. Muller, P. Z. Mouroulis, and J. Backlund, “Recent advances in blazed grating fabrication by electron-beam lithography,” Proc. SPIE 5173, 115–126(2003).
[CrossRef]

Muller, R. E.

D. W. Wilson, P. D. Maker, R. E. Muller, P. Z. Mouroulis, and J. Backlund, “Recent advances in blazed grating fabrication by electron-beam lithography,” Proc. SPIE 5173, 115–126(2003).
[CrossRef]

Nikolajeff, F.

Nishii, J.

K. Yamada, M. Umetani, T. Tamura, Y. Tanaka, H. Kasa, and J. Nishii, “Antireflective structure imprinted on the surface of optical glass by SiC mold,” Appl. Surf. Sci. 255, 4267–4270(2009).
[CrossRef]

K. Kintaka, J. Nishii, and N. Tohge, “Diffraction gratings of photosensitive ZrO2 gel films fabricated with the two-ultraviolet-beam interference method,” Appl. Opt. 39, 489–493 (2000).
[CrossRef]

J. Nishii, “Glass-imprinting for optical device fabrication,” in Advances in Optical Materials, OSA Technical Digest (CD) (Optical Society of America, 2009), paper AThC1.

Nishio, K.

T. Yanagishita, K. Nishio, and H. Masuda, “Anti-reflection structures on lenses by nanoimprinting using ordered anodic porous alumina,” Appl. Phys. Express 2, 022001(2009).
[CrossRef]

Nounu, H.

P. Ruchhoeft, M. Colburn, B. Choi, H. Nounu, S. Johnson, T. Bailey, S. Damle, M. Stewart, J. Ekerdt, S. V. Sreenivasan, J. C. Wolfe, and C. G. Willson, “Patterning curved surfaces: template generation by ion beam proximity lithography and relief transfer by step and flash imprint lithography,” J. Vac. Sci. Technol. B 17, 2965–2969 (1999).
[CrossRef]

Okano, M.

H. Toyota, K. Takahara, M. Okano, T. Yotsuya, and H. Kikuta, “Fabrication of microcone array for antireflection structured surface using metal dotted pattern,” Jpn. J. Appl. Phys. 40, L747–L749 (2001).
[CrossRef]

Raguin, D. H.

Rose, K.

A. Gombert, W. Glaubitt, K. Rose, J. Dreibholz, B. Blasi, A. Heinzel, D. Sporn, W. Doll, and V. Wittwer, “Subwavelength-structured antireflective surfaces on glass,” Thin Solid Films 351, 73–78 (1999).
[CrossRef]

Roy, E.

Y. Kanamori, E. Roy, and Y. Chen, “Antireflection sub-wavelength gratings fabricated by spin-coating replication,” Microelectron. Eng. 78–79, 287–293 (2005).
[CrossRef]

Ruchhoeft, P.

P. Ruchhoeft, M. Colburn, B. Choi, H. Nounu, S. Johnson, T. Bailey, S. Damle, M. Stewart, J. Ekerdt, S. V. Sreenivasan, J. C. Wolfe, and C. G. Willson, “Patterning curved surfaces: template generation by ion beam proximity lithography and relief transfer by step and flash imprint lithography,” J. Vac. Sci. Technol. B 17, 2965–2969 (1999).
[CrossRef]

Sasaki, M.

Schnierper, M.

C. David, P. Haberling, M. Schnierper, J. Sochtig, and C. Zschokke, “Nano-structured anti-reflective surface replicated by hot embossing,” Microelectron. Eng. 61–62, 435–440(2002).
[CrossRef]

Shew, B. Y.

C. H. Ko, B. Y. Shew, M. C. Liang, C. C. Lui, and C. K. Lo, “An x-ray-LIGA-fabricated spectrometer chip for wavelength demultiplexing,” presented at the 2004 IEEE/LEOS International Conference on Optical MEMS and Their Applications (Optical MEMS 2004), Takamatsu, Kagawa, Japan, 2004 (unpublished), p. 136.
[PubMed]

Sochtig, J.

C. David, P. Haberling, M. Schnierper, J. Sochtig, and C. Zschokke, “Nano-structured anti-reflective surface replicated by hot embossing,” Microelectron. Eng. 61–62, 435–440(2002).
[CrossRef]

Sporn, D.

A. Gombert, W. Glaubitt, K. Rose, J. Dreibholz, B. Blasi, A. Heinzel, D. Sporn, W. Doll, and V. Wittwer, “Subwavelength-structured antireflective surfaces on glass,” Thin Solid Films 351, 73–78 (1999).
[CrossRef]

Sreenivasan, S. V.

P. Ruchhoeft, M. Colburn, B. Choi, H. Nounu, S. Johnson, T. Bailey, S. Damle, M. Stewart, J. Ekerdt, S. V. Sreenivasan, J. C. Wolfe, and C. G. Willson, “Patterning curved surfaces: template generation by ion beam proximity lithography and relief transfer by step and flash imprint lithography,” J. Vac. Sci. Technol. B 17, 2965–2969 (1999).
[CrossRef]

Stewart, M.

P. Ruchhoeft, M. Colburn, B. Choi, H. Nounu, S. Johnson, T. Bailey, S. Damle, M. Stewart, J. Ekerdt, S. V. Sreenivasan, J. C. Wolfe, and C. G. Willson, “Patterning curved surfaces: template generation by ion beam proximity lithography and relief transfer by step and flash imprint lithography,” J. Vac. Sci. Technol. B 17, 2965–2969 (1999).
[CrossRef]

Sumi, S.

S. Kobayashi, A. Yamaguchi, S. Sumi, M. Higuchi, and Y. Maeno, “Production method of curved-surface metal mold having fine uneven structure and production method of optical element using this metal mold,” PCT/JP2005/005012 (2005) or U.S. patent application 10,594,154 (2007).

Takahara, K.

H. Toyota, K. Takahara, M. Okano, T. Yotsuya, and H. Kikuta, “Fabrication of microcone array for antireflection structured surface using metal dotted pattern,” Jpn. J. Appl. Phys. 40, L747–L749 (2001).
[CrossRef]

Tamura, T.

K. Yamada, M. Umetani, T. Tamura, Y. Tanaka, H. Kasa, and J. Nishii, “Antireflective structure imprinted on the surface of optical glass by SiC mold,” Appl. Surf. Sci. 255, 4267–4270(2009).
[CrossRef]

Tanaka, Y.

K. Yamada, M. Umetani, T. Tamura, Y. Tanaka, H. Kasa, and J. Nishii, “Antireflective structure imprinted on the surface of optical glass by SiC mold,” Appl. Surf. Sci. 255, 4267–4270(2009).
[CrossRef]

Y. Hirai, and Y. Tanaka, “Application of nano-imprint lithography,” J. Photopolym. Sci. Technol. 15, 475–480 (2002).
[CrossRef]

Tohge, N.

Toyota, H.

H. Toyota, K. Takahara, M. Okano, T. Yotsuya, and H. Kikuta, “Fabrication of microcone array for antireflection structured surface using metal dotted pattern,” Jpn. J. Appl. Phys. 40, L747–L749 (2001).
[CrossRef]

Umetani, M.

K. Yamada, M. Umetani, T. Tamura, Y. Tanaka, H. Kasa, and J. Nishii, “Antireflective structure imprinted on the surface of optical glass by SiC mold,” Appl. Surf. Sci. 255, 4267–4270(2009).
[CrossRef]

Wang, L. A.

Y.-P. Chen, Y.-P. Lee, J.-H. Chang, and L. A. Wang, “Fabrication of concave gratings by curved surface UV-nanoimprint lithography,” J. Vac. Sci. Technol. B 26, 1690–1695 (2008).
[CrossRef]

Willson, C. G.

P. Ruchhoeft, M. Colburn, B. Choi, H. Nounu, S. Johnson, T. Bailey, S. Damle, M. Stewart, J. Ekerdt, S. V. Sreenivasan, J. C. Wolfe, and C. G. Willson, “Patterning curved surfaces: template generation by ion beam proximity lithography and relief transfer by step and flash imprint lithography,” J. Vac. Sci. Technol. B 17, 2965–2969 (1999).
[CrossRef]

Wilson, D. W.

D. W. Wilson, P. D. Maker, R. E. Muller, P. Z. Mouroulis, and J. Backlund, “Recent advances in blazed grating fabrication by electron-beam lithography,” Proc. SPIE 5173, 115–126(2003).
[CrossRef]

Wilson, S. J.

S. J. Wilson and M. C. Hutley, “The optical properties of ‘moth eye’ antireflection surfaces,” Opt. Acta 29, 993–1009 (1982).
[CrossRef]

Wittwer, V.

A. Gombert, W. Glaubitt, K. Rose, J. Dreibholz, B. Blasi, A. Heinzel, D. Sporn, W. Doll, and V. Wittwer, “Subwavelength-structured antireflective surfaces on glass,” Thin Solid Films 351, 73–78 (1999).
[CrossRef]

Wolfe, J. C.

P. Ruchhoeft, M. Colburn, B. Choi, H. Nounu, S. Johnson, T. Bailey, S. Damle, M. Stewart, J. Ekerdt, S. V. Sreenivasan, J. C. Wolfe, and C. G. Willson, “Patterning curved surfaces: template generation by ion beam proximity lithography and relief transfer by step and flash imprint lithography,” J. Vac. Sci. Technol. B 17, 2965–2969 (1999).
[CrossRef]

Xie, Y.

Yamada, K.

K. Yamada, M. Umetani, T. Tamura, Y. Tanaka, H. Kasa, and J. Nishii, “Antireflective structure imprinted on the surface of optical glass by SiC mold,” Appl. Surf. Sci. 255, 4267–4270(2009).
[CrossRef]

Yamaguchi, A.

S. Kobayashi, A. Yamaguchi, S. Sumi, M. Higuchi, and Y. Maeno, “Production method of curved-surface metal mold having fine uneven structure and production method of optical element using this metal mold,” PCT/JP2005/005012 (2005) or U.S. patent application 10,594,154 (2007).

Yanagishita, T.

T. Yanagishita, K. Nishio, and H. Masuda, “Anti-reflection structures on lenses by nanoimprinting using ordered anodic porous alumina,” Appl. Phys. Express 2, 022001(2009).
[CrossRef]

Yotsuya, T.

H. Toyota, K. Takahara, M. Okano, T. Yotsuya, and H. Kikuta, “Fabrication of microcone array for antireflection structured surface using metal dotted pattern,” Jpn. J. Appl. Phys. 40, L747–L749 (2001).
[CrossRef]

Zschokke, C.

C. David, P. Haberling, M. Schnierper, J. Sochtig, and C. Zschokke, “Nano-structured anti-reflective surface replicated by hot embossing,” Microelectron. Eng. 61–62, 435–440(2002).
[CrossRef]

Appl. Opt.

Appl. Phys. Express

T. Yanagishita, K. Nishio, and H. Masuda, “Anti-reflection structures on lenses by nanoimprinting using ordered anodic porous alumina,” Appl. Phys. Express 2, 022001(2009).
[CrossRef]

Appl. Surf. Sci.

K. Yamada, M. Umetani, T. Tamura, Y. Tanaka, H. Kasa, and J. Nishii, “Antireflective structure imprinted on the surface of optical glass by SiC mold,” Appl. Surf. Sci. 255, 4267–4270(2009).
[CrossRef]

J. Opt. Soc. Am. A

J. Photopolym. Sci. Technol.

Y. Hirai, and Y. Tanaka, “Application of nano-imprint lithography,” J. Photopolym. Sci. Technol. 15, 475–480 (2002).
[CrossRef]

J. Vac. Sci. Technol. B

P. Ruchhoeft, M. Colburn, B. Choi, H. Nounu, S. Johnson, T. Bailey, S. Damle, M. Stewart, J. Ekerdt, S. V. Sreenivasan, J. C. Wolfe, and C. G. Willson, “Patterning curved surfaces: template generation by ion beam proximity lithography and relief transfer by step and flash imprint lithography,” J. Vac. Sci. Technol. B 17, 2965–2969 (1999).
[CrossRef]

Y.-P. Chen, Y.-P. Lee, J.-H. Chang, and L. A. Wang, “Fabrication of concave gratings by curved surface UV-nanoimprint lithography,” J. Vac. Sci. Technol. B 26, 1690–1695 (2008).
[CrossRef]

Jpn. J. Appl. Phys.

H. Toyota, K. Takahara, M. Okano, T. Yotsuya, and H. Kikuta, “Fabrication of microcone array for antireflection structured surface using metal dotted pattern,” Jpn. J. Appl. Phys. 40, L747–L749 (2001).
[CrossRef]

Microelectron. Eng.

Y. Kanamori, E. Roy, and Y. Chen, “Antireflection sub-wavelength gratings fabricated by spin-coating replication,” Microelectron. Eng. 78–79, 287–293 (2005).
[CrossRef]

C. David, P. Haberling, M. Schnierper, J. Sochtig, and C. Zschokke, “Nano-structured anti-reflective surface replicated by hot embossing,” Microelectron. Eng. 61–62, 435–440(2002).
[CrossRef]

Opt. Acta

S. J. Wilson and M. C. Hutley, “The optical properties of ‘moth eye’ antireflection surfaces,” Opt. Acta 29, 993–1009 (1982).
[CrossRef]

Opt. Express

Opt. Lett.

Proc. SPIE

D. W. Wilson, P. D. Maker, R. E. Muller, P. Z. Mouroulis, and J. Backlund, “Recent advances in blazed grating fabrication by electron-beam lithography,” Proc. SPIE 5173, 115–126(2003).
[CrossRef]

Thin Solid Films

A. Gombert, W. Glaubitt, K. Rose, J. Dreibholz, B. Blasi, A. Heinzel, D. Sporn, W. Doll, and V. Wittwer, “Subwavelength-structured antireflective surfaces on glass,” Thin Solid Films 351, 73–78 (1999).
[CrossRef]

Other

C. H. Ko, B. Y. Shew, M. C. Liang, C. C. Lui, and C. K. Lo, “An x-ray-LIGA-fabricated spectrometer chip for wavelength demultiplexing,” presented at the 2004 IEEE/LEOS International Conference on Optical MEMS and Their Applications (Optical MEMS 2004), Takamatsu, Kagawa, Japan, 2004 (unpublished), p. 136.
[PubMed]

J. Nishii, “Glass-imprinting for optical device fabrication,” in Advances in Optical Materials, OSA Technical Digest (CD) (Optical Society of America, 2009), paper AThC1.

S. Kobayashi, A. Yamaguchi, S. Sumi, M. Higuchi, and Y. Maeno, “Production method of curved-surface metal mold having fine uneven structure and production method of optical element using this metal mold,” PCT/JP2005/005012 (2005) or U.S. patent application 10,594,154 (2007).

E. Hecht, “Interference,” in Optics3rd ed. (Addison Wesley Longman, 1997), Chap. 9, p. 381.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

Schematic diagram of the two-spherical-wave interfero meter. The thick curves are interference fringes, which produce a hyperboloidal surface. The X and Z axes are the coordinates for the curved surface.

Fig. 2
Fig. 2

Calculated periods of the interference fringes on a concave spherical surface with a radius of curvature of 11.1 mm . 266 nm wavelength light was assumed for exposure. (a) Numerically calculated periods on the surface as a function of position on the X axis for different separation distances of the point sources. The upper horizontal axis is the inclination angle θ of the surface. (b) Maximum change in period as a function of separation dis tance 2 x 0 .

Fig. 3
Fig. 3

Optimal optical setup for suppressing the change in fringe period on a concave spherical surface. (a) Circle for a constant value of the gradient of phase difference Φ ( x , y ) . Thin curves are the interference fringes. The arrows show the direction of the gradient of phase difference Φ ( x , y ) . (b) Calculated periods of the fringes on the curved surface. The inset shows a top view of the fringes and the X and Z axes on the surface.

Fig. 4
Fig. 4

Angle γ between the directions of Φ and the tangential line of the circle for 2 π / | Φ | = 200 nm .

Fig. 5
Fig. 5

Patterned periods on different concave surfaces. (a) Concave surfaces of sphere and parabola, and trajectory of vector Φ . Dashed curves are schematic interference fringes. (b) Numerically calculated periods on different surfaces as a function of position on the X axis.

Fig. 6
Fig. 6

Two-spherical-wave interferometer for a convex curved substrate. L, focus lens.

Fig. 7
Fig. 7

Experimental optical setup for the two-spherical-wave interferometer: PBS, polarization beam splitter; M, mirror; HWP, half-wave plate; L, objective lens. The wavelength of the ultraviolet laser was 266 nm . Two point sources were produced with two objective lenses.

Fig. 8
Fig. 8

Measured periods of the photoresist exposed by two spherical waves. (a) Scanning electron micrograph images of the photoresist and (b) measured periods on the curved surface. The solid curves are theoretical periods on the X and Z axes. The dashed curve is the period for the two-plane-wave interference.

Fig. 9
Fig. 9

Calculated periods on the sample surface as a function of position on the X axis for setup errors of 1 mm lateral shift, 0.9 mm distance error for h, and 1.2 mm separation error for 2 x 0 .

Equations (16)

Equations on this page are rendered with MathJax. Learn more.

Λ < λ in n 2 + n 1 sin θ ,
Φ ( x , y ) = 2 π λ [ ( x + x 0 ) 2 + y 2 ( x x 0 ) 2 + y 2 ] ,
x 2 ( m 2 λ ) 2 + y 2 ( m 2 λ ) 2 x 0 2 = 1 .
x 2 + ( y h + R ) 2 = R 2 .
Λ ( x , y ) = 2 π | Φ ( x , y ) | ,
( Φ x ) 2 + ( Φ y ) 2 = ( 2 π Λ ) 2 .
α 1 1 2 ( λ Λ ) 2 , ( 0 α 1 ) ,
( 1 α 2 ) ( x 2 x 0 2 1 ) 2 + 2 ( 1 α 2 ) x 2 x 0 2 y 2 x 0 2 2 ( 1 + α 2 ) y 2 x 0 2 + ( 1 α 2 ) y 4 x 0 4 = 0 .
[ x 2 + ( y y 0 ) 2 r 2 ] [ x 2 + ( y + y 0 ) 2 r 2 ] = 0 ,
y 0 = x 0 α 1 α 2 ,
r = x 0 1 1 α 2 .
x 2 + ( y y 0 ) 2 r 2 = 0 .
V = [ x , y y 0 ] .
cos ( γ + π 2 ) = V · Φ | V | | Φ | .
sin γ = ( x R + x 0 R ) 2 + y 2 R 2 ( x R x 0 R ) 2 + y 2 R 2 2 2 ( 1 α ) .
y = h 1 2 R x 2 .

Metrics