Abstract

Using an iodine cell with fixed gas pressure, we built a simple frequency reference at 1064nm with 10MHz absolute accuracy and used it to demonstrate deterministic phase locking between two single-frequency lasers. The reference was designed to be as simple as possible, and it does not use a cooler or frequency modulator. This system should be useful, especially for space interferometric missions such as the Laser Interferometer Space Antenna.

© 2010 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. Bender, K. Danzmann, and the LISA Study Team, “Laser Interferometer Space Antenna for the detection of gravitational waves, pre-phase A report,” 2nd ed., Tech. Rep. MPQ233 (Max-Planck-Institut für Quantenoptik, 1998).
  2. R. Pierce, J. Leitch, M. Stephens, P. Bender, and R. Nerem, “Intersatellite range monitoring using optical interferometry,” Appl. Opt. 47, 5007–5019 (2008).
    [CrossRef] [PubMed]
  3. J. Ye, L. Robertsson, S. Picard, L.-S. Ma, and J. Hall, “Absolute frequency atlas of molecular I2 lines at 532nm,” IEEE Trans. Instrum. Meas. 48, 544–549 (1999).
    [CrossRef]
  4. J. L. Hall, L. Hollberg, T. Baer, and H. G. Robinson, “Optical heterodyne saturation spectroscopy,” Appl. Phys. Lett. 39, 680–682 (1981).
    [CrossRef]
  5. V. Leonhardt and J. Camp, “Space interferometry application of laser frequency stabilization with molecular iodine,” Appl. Opt. 45, 4142–4146 (2006).
    [CrossRef] [PubMed]
  6. F. E. Hovis, “Qualification of the laser transmitter for the CALIPSO aerosol lidar mission,” Proc. SPIE 6100, 61001X(2006).
    [CrossRef]
  7. W. J. Riley, “A rubidium clock for GPS,” in Proceedings of the 13th Precise Time and Time Interval (PPTI) Applications and Planning Meeting (IEEE, 1981), pp. 609–630.
  8. F. Cirillo and P. F. Gath, “Control system design for the constellation acquisition phase of the LISA mission,” J. Phys. Conf. Ser. 154, 012014 (2009).
    [CrossRef]

2009

F. Cirillo and P. F. Gath, “Control system design for the constellation acquisition phase of the LISA mission,” J. Phys. Conf. Ser. 154, 012014 (2009).
[CrossRef]

2008

2006

F. E. Hovis, “Qualification of the laser transmitter for the CALIPSO aerosol lidar mission,” Proc. SPIE 6100, 61001X(2006).
[CrossRef]

V. Leonhardt and J. Camp, “Space interferometry application of laser frequency stabilization with molecular iodine,” Appl. Opt. 45, 4142–4146 (2006).
[CrossRef] [PubMed]

1999

J. Ye, L. Robertsson, S. Picard, L.-S. Ma, and J. Hall, “Absolute frequency atlas of molecular I2 lines at 532nm,” IEEE Trans. Instrum. Meas. 48, 544–549 (1999).
[CrossRef]

1981

J. L. Hall, L. Hollberg, T. Baer, and H. G. Robinson, “Optical heterodyne saturation spectroscopy,” Appl. Phys. Lett. 39, 680–682 (1981).
[CrossRef]

Baer, T.

J. L. Hall, L. Hollberg, T. Baer, and H. G. Robinson, “Optical heterodyne saturation spectroscopy,” Appl. Phys. Lett. 39, 680–682 (1981).
[CrossRef]

Bender, P.

R. Pierce, J. Leitch, M. Stephens, P. Bender, and R. Nerem, “Intersatellite range monitoring using optical interferometry,” Appl. Opt. 47, 5007–5019 (2008).
[CrossRef] [PubMed]

P. Bender, K. Danzmann, and the LISA Study Team, “Laser Interferometer Space Antenna for the detection of gravitational waves, pre-phase A report,” 2nd ed., Tech. Rep. MPQ233 (Max-Planck-Institut für Quantenoptik, 1998).

Camp, J.

Cirillo, F.

F. Cirillo and P. F. Gath, “Control system design for the constellation acquisition phase of the LISA mission,” J. Phys. Conf. Ser. 154, 012014 (2009).
[CrossRef]

Danzmann, K.

P. Bender, K. Danzmann, and the LISA Study Team, “Laser Interferometer Space Antenna for the detection of gravitational waves, pre-phase A report,” 2nd ed., Tech. Rep. MPQ233 (Max-Planck-Institut für Quantenoptik, 1998).

Gath, P. F.

F. Cirillo and P. F. Gath, “Control system design for the constellation acquisition phase of the LISA mission,” J. Phys. Conf. Ser. 154, 012014 (2009).
[CrossRef]

Hall, J.

J. Ye, L. Robertsson, S. Picard, L.-S. Ma, and J. Hall, “Absolute frequency atlas of molecular I2 lines at 532nm,” IEEE Trans. Instrum. Meas. 48, 544–549 (1999).
[CrossRef]

Hall, J. L.

J. L. Hall, L. Hollberg, T. Baer, and H. G. Robinson, “Optical heterodyne saturation spectroscopy,” Appl. Phys. Lett. 39, 680–682 (1981).
[CrossRef]

Hollberg, L.

J. L. Hall, L. Hollberg, T. Baer, and H. G. Robinson, “Optical heterodyne saturation spectroscopy,” Appl. Phys. Lett. 39, 680–682 (1981).
[CrossRef]

Hovis, F. E.

F. E. Hovis, “Qualification of the laser transmitter for the CALIPSO aerosol lidar mission,” Proc. SPIE 6100, 61001X(2006).
[CrossRef]

Leitch, J.

Leonhardt, V.

Ma, L.-S.

J. Ye, L. Robertsson, S. Picard, L.-S. Ma, and J. Hall, “Absolute frequency atlas of molecular I2 lines at 532nm,” IEEE Trans. Instrum. Meas. 48, 544–549 (1999).
[CrossRef]

Nerem, R.

Picard, S.

J. Ye, L. Robertsson, S. Picard, L.-S. Ma, and J. Hall, “Absolute frequency atlas of molecular I2 lines at 532nm,” IEEE Trans. Instrum. Meas. 48, 544–549 (1999).
[CrossRef]

Pierce, R.

Riley, W. J.

W. J. Riley, “A rubidium clock for GPS,” in Proceedings of the 13th Precise Time and Time Interval (PPTI) Applications and Planning Meeting (IEEE, 1981), pp. 609–630.

Robertsson, L.

J. Ye, L. Robertsson, S. Picard, L.-S. Ma, and J. Hall, “Absolute frequency atlas of molecular I2 lines at 532nm,” IEEE Trans. Instrum. Meas. 48, 544–549 (1999).
[CrossRef]

Robinson, H. G.

J. L. Hall, L. Hollberg, T. Baer, and H. G. Robinson, “Optical heterodyne saturation spectroscopy,” Appl. Phys. Lett. 39, 680–682 (1981).
[CrossRef]

Stephens, M.

Ye, J.

J. Ye, L. Robertsson, S. Picard, L.-S. Ma, and J. Hall, “Absolute frequency atlas of molecular I2 lines at 532nm,” IEEE Trans. Instrum. Meas. 48, 544–549 (1999).
[CrossRef]

Appl. Opt.

Appl. Phys. Lett.

J. L. Hall, L. Hollberg, T. Baer, and H. G. Robinson, “Optical heterodyne saturation spectroscopy,” Appl. Phys. Lett. 39, 680–682 (1981).
[CrossRef]

IEEE Trans. Instrum. Meas.

J. Ye, L. Robertsson, S. Picard, L.-S. Ma, and J. Hall, “Absolute frequency atlas of molecular I2 lines at 532nm,” IEEE Trans. Instrum. Meas. 48, 544–549 (1999).
[CrossRef]

J. Phys. Conf. Ser.

F. Cirillo and P. F. Gath, “Control system design for the constellation acquisition phase of the LISA mission,” J. Phys. Conf. Ser. 154, 012014 (2009).
[CrossRef]

Proc. SPIE

F. E. Hovis, “Qualification of the laser transmitter for the CALIPSO aerosol lidar mission,” Proc. SPIE 6100, 61001X(2006).
[CrossRef]

Other

W. J. Riley, “A rubidium clock for GPS,” in Proceedings of the 13th Precise Time and Time Interval (PPTI) Applications and Planning Meeting (IEEE, 1981), pp. 609–630.

P. Bender, K. Danzmann, and the LISA Study Team, “Laser Interferometer Space Antenna for the detection of gravitational waves, pre-phase A report,” 2nd ed., Tech. Rep. MPQ233 (Max-Planck-Institut für Quantenoptik, 1998).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Schematic diagram of the iodine reference and automatic phase-locking system: SHG, waveguided second harmonics generator; BS, beam splitter; PD, photodetector; ADC, analog-to-digital converter; PC, personal computer with tuning program; DAC, digital-to-analog converter; and PZT, piezoelectric transducer.

Fig. 2
Fig. 2

Doppler-broadened line of the undersaturated iodine cell and corresponding saturation error signal measured by the independent reference system. The target point was rising half-maximum of the peak, which is 34 MHz higher than a half-frequency of P(83)33-0 a 21 hyperfine transition line.

Fig. 3
Fig. 3

(A) Beatnote frequency between the reference laser and the laser tuned by going to iodine peak half-maximum. (B) Beatnote frequency between two iodine systems. These two measurements were done at the same time.

Fig. 4
Fig. 4

Beatnote frequency between two independently tuned lasers, in the (A) coarse tuning step and (B) fine-tuning step. The horizontal axis represents the time after the tuning command was sent. In the fine-tuning step, the phase-locking servo was turned on. Phase locking with a 4 MHz offset was automatically acquired at the time of 160 s .

Metrics