Abstract

Single-polarization single-mode (SPSM) fiber can efficiently eliminate polarization mode coupling, polarization mode dispersion, and polarization-dependent loss. Up to now, most single-polarization fibers have been designed based on form birefringence, which would result in a non-Gaussian field distribution and a small effective mode field area. In this paper, a novel structure of SPSM photonic crystal fibers based on the resonant coupling phenomena is proposed and analyzed by using a full-vector finite-element method with a second-order transparent boundary condition. From the numerical results it is confirmed that this fiber has a near-Gaussian mode field within the wavelength range from 1.46 to 2.2μm, where only one polarized mode exists effectively, and the mode field area is about 79μm2 at the wavelength of 1.55μm, matching that of the conventional single-mode fiber.

© 2010 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. R. Simpson, R. H. Stolen, F. M. Sears, W. Pleibel, J. B. MacChesney, and R. E. Howard, “A single-polarization fiber,” J. Lightwave Technol. 1, 370–374 (1983).
    [CrossRef]
  2. K. Okamoto, “Single-polarization operation in highly birefringent optical fibers,” Appl. Opt. 23, 2638–2642 (1984).
    [CrossRef] [PubMed]
  3. K. S. Chiang, “Stress-induced birefringence fibers designed for single-polarization single-mode operation,” J. Lightwave Technol. 7, 436–441 (1989).
    [CrossRef]
  4. I. Yokohama, K. Okamoto, and J. Noda, “Fiber-optic polarising beam splitter employing birefringent-fiber coupler,” Electron. Lett. 21, 415–416 (1985).
    [CrossRef]
  5. R. A. Bergh, H. C. Lefevre, and H. J. Shaw, “Single-mode fiber-optic polarizer,” Opt. Lett. 5, 479–481 (1980).
    [CrossRef] [PubMed]
  6. G. A. Pavlath, “Fiber-optic gyroscopes,” in Proceedings of IEEE Lasers and Electro-Optics Society Annual Meeting (IEEE, 1994), pp. 237–238.
  7. X. Peng and L. Dong, “Fundamental-mode operation in polarization maintaining ytterbium-doped fiber with an effective area of 1400μm2,” Opt. Lett. 32, 358–360 (2007).
    [CrossRef] [PubMed]
  8. J. C. Knight, T. A. Birks, P. S. J. Russell, and D. M. Atkin, “All-silica single-mode fiber with photonic crystal cladding,” Opt. Lett. 21, 1547–1549 (1996).
    [CrossRef] [PubMed]
  9. K. Saitoh and M. Koshiba, “Single-polarization single-mode photonic crystal fibers,” IEEE Photon. Technol. Lett. 15, 1384–1386 (2003).
    [CrossRef]
  10. H. Kubota and S. Kawanishi, “Absolutely single polarization photonic crystal fiber,” IEEE Photon. Technol. Lett. 16, 182–184 (2004).
    [CrossRef]
  11. K. Saitoh, N. J. Florous, T. Murao, and M. Koshiba, “Design of photonic band gap fibers with suppressed higher-order modes: towards the development of effectively single mode large hollow-core fiber platforms,” Opt. Express 14, 7342–7352 (2006).
    [CrossRef] [PubMed]
  12. Y. Tsuchida, K. Saitoh, and M. Koshiba, “Design of single-moded holey fibers with large-mode-area and low bending losses: the significance of the ring-core region,” Opt. Express 15, 1794–1803 (2007).
    [CrossRef] [PubMed]
  13. Y. Tsuchida and K. Saitoh, “A design method for single-polarization holey fibers with improved beam quality factor,” J. Lightwave Technol. 26, 2162–2167 (2008).
    [CrossRef]
  14. X. Y. Liu, F. D. Zhang, M. Zhang, and P. D. Ye, “Numerical investigation on single-mode single-polarization photonic crystal fiber using resonant absorption effect,” Acta Phys. Sin. 45, 301–307 (2007).
    [CrossRef]
  15. G. P. Agrawal, Nonlinear Fiber Optics (Academic, 1995).

2008 (1)

2007 (3)

2006 (1)

2004 (1)

H. Kubota and S. Kawanishi, “Absolutely single polarization photonic crystal fiber,” IEEE Photon. Technol. Lett. 16, 182–184 (2004).
[CrossRef]

2003 (1)

K. Saitoh and M. Koshiba, “Single-polarization single-mode photonic crystal fibers,” IEEE Photon. Technol. Lett. 15, 1384–1386 (2003).
[CrossRef]

1996 (1)

1989 (1)

K. S. Chiang, “Stress-induced birefringence fibers designed for single-polarization single-mode operation,” J. Lightwave Technol. 7, 436–441 (1989).
[CrossRef]

1985 (1)

I. Yokohama, K. Okamoto, and J. Noda, “Fiber-optic polarising beam splitter employing birefringent-fiber coupler,” Electron. Lett. 21, 415–416 (1985).
[CrossRef]

1984 (1)

1983 (1)

J. R. Simpson, R. H. Stolen, F. M. Sears, W. Pleibel, J. B. MacChesney, and R. E. Howard, “A single-polarization fiber,” J. Lightwave Technol. 1, 370–374 (1983).
[CrossRef]

1980 (1)

Agrawal, G. P.

G. P. Agrawal, Nonlinear Fiber Optics (Academic, 1995).

Atkin, D. M.

Bergh, R. A.

Birks, T. A.

Chiang, K. S.

K. S. Chiang, “Stress-induced birefringence fibers designed for single-polarization single-mode operation,” J. Lightwave Technol. 7, 436–441 (1989).
[CrossRef]

Dong, L.

Florous, N. J.

Howard, R. E.

J. R. Simpson, R. H. Stolen, F. M. Sears, W. Pleibel, J. B. MacChesney, and R. E. Howard, “A single-polarization fiber,” J. Lightwave Technol. 1, 370–374 (1983).
[CrossRef]

Kawanishi, S.

H. Kubota and S. Kawanishi, “Absolutely single polarization photonic crystal fiber,” IEEE Photon. Technol. Lett. 16, 182–184 (2004).
[CrossRef]

Knight, J. C.

Koshiba, M.

Kubota, H.

H. Kubota and S. Kawanishi, “Absolutely single polarization photonic crystal fiber,” IEEE Photon. Technol. Lett. 16, 182–184 (2004).
[CrossRef]

Lefevre, H. C.

Liu, X. Y.

X. Y. Liu, F. D. Zhang, M. Zhang, and P. D. Ye, “Numerical investigation on single-mode single-polarization photonic crystal fiber using resonant absorption effect,” Acta Phys. Sin. 45, 301–307 (2007).
[CrossRef]

MacChesney, J. B.

J. R. Simpson, R. H. Stolen, F. M. Sears, W. Pleibel, J. B. MacChesney, and R. E. Howard, “A single-polarization fiber,” J. Lightwave Technol. 1, 370–374 (1983).
[CrossRef]

Murao, T.

Noda, J.

I. Yokohama, K. Okamoto, and J. Noda, “Fiber-optic polarising beam splitter employing birefringent-fiber coupler,” Electron. Lett. 21, 415–416 (1985).
[CrossRef]

Okamoto, K.

I. Yokohama, K. Okamoto, and J. Noda, “Fiber-optic polarising beam splitter employing birefringent-fiber coupler,” Electron. Lett. 21, 415–416 (1985).
[CrossRef]

K. Okamoto, “Single-polarization operation in highly birefringent optical fibers,” Appl. Opt. 23, 2638–2642 (1984).
[CrossRef] [PubMed]

Pavlath, G. A.

G. A. Pavlath, “Fiber-optic gyroscopes,” in Proceedings of IEEE Lasers and Electro-Optics Society Annual Meeting (IEEE, 1994), pp. 237–238.

Peng, X.

Pleibel, W.

J. R. Simpson, R. H. Stolen, F. M. Sears, W. Pleibel, J. B. MacChesney, and R. E. Howard, “A single-polarization fiber,” J. Lightwave Technol. 1, 370–374 (1983).
[CrossRef]

Russell, P. S. J.

Saitoh, K.

Sears, F. M.

J. R. Simpson, R. H. Stolen, F. M. Sears, W. Pleibel, J. B. MacChesney, and R. E. Howard, “A single-polarization fiber,” J. Lightwave Technol. 1, 370–374 (1983).
[CrossRef]

Shaw, H. J.

Simpson, J. R.

J. R. Simpson, R. H. Stolen, F. M. Sears, W. Pleibel, J. B. MacChesney, and R. E. Howard, “A single-polarization fiber,” J. Lightwave Technol. 1, 370–374 (1983).
[CrossRef]

Stolen, R. H.

J. R. Simpson, R. H. Stolen, F. M. Sears, W. Pleibel, J. B. MacChesney, and R. E. Howard, “A single-polarization fiber,” J. Lightwave Technol. 1, 370–374 (1983).
[CrossRef]

Tsuchida, Y.

Ye, P. D.

X. Y. Liu, F. D. Zhang, M. Zhang, and P. D. Ye, “Numerical investigation on single-mode single-polarization photonic crystal fiber using resonant absorption effect,” Acta Phys. Sin. 45, 301–307 (2007).
[CrossRef]

Yokohama, I.

I. Yokohama, K. Okamoto, and J. Noda, “Fiber-optic polarising beam splitter employing birefringent-fiber coupler,” Electron. Lett. 21, 415–416 (1985).
[CrossRef]

Zhang, F. D.

X. Y. Liu, F. D. Zhang, M. Zhang, and P. D. Ye, “Numerical investigation on single-mode single-polarization photonic crystal fiber using resonant absorption effect,” Acta Phys. Sin. 45, 301–307 (2007).
[CrossRef]

Zhang, M

X. Y. Liu, F. D. Zhang, M. Zhang, and P. D. Ye, “Numerical investigation on single-mode single-polarization photonic crystal fiber using resonant absorption effect,” Acta Phys. Sin. 45, 301–307 (2007).
[CrossRef]

Acta Phys. Sin. (1)

X. Y. Liu, F. D. Zhang, M. Zhang, and P. D. Ye, “Numerical investigation on single-mode single-polarization photonic crystal fiber using resonant absorption effect,” Acta Phys. Sin. 45, 301–307 (2007).
[CrossRef]

Appl. Opt. (1)

Electron. Lett. (1)

I. Yokohama, K. Okamoto, and J. Noda, “Fiber-optic polarising beam splitter employing birefringent-fiber coupler,” Electron. Lett. 21, 415–416 (1985).
[CrossRef]

IEEE Photon. Technol. Lett. (2)

K. Saitoh and M. Koshiba, “Single-polarization single-mode photonic crystal fibers,” IEEE Photon. Technol. Lett. 15, 1384–1386 (2003).
[CrossRef]

H. Kubota and S. Kawanishi, “Absolutely single polarization photonic crystal fiber,” IEEE Photon. Technol. Lett. 16, 182–184 (2004).
[CrossRef]

J. Lightwave Technol. (3)

K. S. Chiang, “Stress-induced birefringence fibers designed for single-polarization single-mode operation,” J. Lightwave Technol. 7, 436–441 (1989).
[CrossRef]

J. R. Simpson, R. H. Stolen, F. M. Sears, W. Pleibel, J. B. MacChesney, and R. E. Howard, “A single-polarization fiber,” J. Lightwave Technol. 1, 370–374 (1983).
[CrossRef]

Y. Tsuchida and K. Saitoh, “A design method for single-polarization holey fibers with improved beam quality factor,” J. Lightwave Technol. 26, 2162–2167 (2008).
[CrossRef]

Opt. Express (2)

Opt. Lett. (3)

Other (2)

G. P. Agrawal, Nonlinear Fiber Optics (Academic, 1995).

G. A. Pavlath, “Fiber-optic gyroscopes,” in Proceedings of IEEE Lasers and Electro-Optics Society Annual Meeting (IEEE, 1994), pp. 237–238.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

(a) Cross section of SPSM-PCF. Effective fiber for the (b) central and (c) side cores.

Fig. 2
Fig. 2

Schematic diagram for the resonant coupling mechanism of the SPSM-PCF.

Fig. 3
Fig. 3

Modal dispersion curves as a function of wavelength for the x and y polarization of the fundamental mode of the central and side cores, respectively.

Fig. 4
Fig. 4

Modal dispersion curves as a function of wavelength for the second-order modes of the central and side cores, respectively.

Fig. 5
Fig. 5

Wavelength dependence of the relative effective indices for the fundamental mode of the SPSM-PCF.

Fig. 6
Fig. 6

Electric fields of the (a)–(c) x- and (d)–(f) y-polarized modes of the fundamental mode of the SPSM-PCF at wavelengths of 1, 1.55, and 2.5 μm , respectively.

Fig. 7
Fig. 7

Wavelength dependence of the confinement loss in the effective SPSM bandwidth for the SPSM-PCF.

Fig. 8
Fig. 8

Wavelength dependence of the effective mode field area for the SPSM-PCF.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

confinement loss = 8.686 × k 0 × Im [ n spsm - pcf y ] dB / m ,
A eff = [ + + | E ( x , y ) | 2 d x d y ] 2 + + | E ( x , y ) | 4 d x d y ,

Metrics