Abstract

An optical interrupter for high-power transfer is developed for application in laser ignition or initiation systems, to prevent unintended detonation of a laser detonator while ensuring that detonation will reliably take place when needed. The optical switch acting as a high-power optical energy interrupter is investigated through simulations and experiment. The prototype of this novel optical interrupter, which has been designed and fabricated, employs microelectromechanical system V-grooves for precise positioning of optical fibers, a miniature cam for the actuator, and a stepper motor for the drive source. The cam’s rotary movement displaces the input fiber so that it is aligned with the output fiber. The main performance parameters have been achieved. The insertion loss is found to be 0.4dB (without antireflection coatings) with a maximum power handling capacity of 2MW. Switching time is approximately 50ms with channel isolation between the on and off states of 20dB.

© 2010 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. T. Neilson and E. Schenfeld, “Free-space optical relay for the interconnection of multimode fibers,” Appl. Opt. 38, 2291–2296 (1999).
    [CrossRef]
  2. J. Duparré, B. Götz, and R. Göring, “Micro-optical 1×4 fiber switch for multimode fibers with 600μm core diameters,” Appl. Opt. 42, 6889–6896 (2003).
    [CrossRef] [PubMed]
  3. A. V. Danilyan, V. A. Shulgin, and V. E. Chernov, “Optimization of the input losses in fiber-optic communications with an acousto-optic all-optical switch,” Appl. Opt. 45, 4319–4324(2006).
    [CrossRef] [PubMed]
  4. J. J. Yang, F. H. Chu, and J. Lv, “Performance of an optical packet switch with fixed wavelength converter arrays under bursty traffic,” Appl. Opt. 48, 4885–4892 (2009).
    [CrossRef] [PubMed]
  5. K. R. Cochran, L. Fan, and D. L. Devoe, “Moving reflector type micro optical switch for high-power transfer in a MEMS-based safety and arming system,” J. Micromech. Microeng. 14, 138–146 (2004).
    [CrossRef]
  6. K. R. Cochran, L. Fan, and D. L. Devoe, “High-power optical microswitch based on direct fiber actuation,” Sens. Actuators A 119, 512–519 (2005).
    [CrossRef]
  7. M. Beamesderfer, S. Chen, D. Devoe, E. Lither, and K. Johnson, “Analysis of an optical energy interrupter for MEMS based safety and arming system,” Proc. SPIE 3880, 101–112(1999).
    [CrossRef]
  8. M. Herding, G. Somogyi, U. Mescheder, and P. Woias, “A new micromachined optical fiber switch for instrumentation purposes,” Proc. SPIE 5455, 264–273 (2004).
    [CrossRef]
  9. X. H. Zhao, Y. Gao, M. J. Xu, W. T. Duan, and H. W. Yu, “Characteristics of high-peak pulsed laser induced damage to fibers,” Proc. SPIE 6825, 682516 (2007).
    [CrossRef]
  10. X. H. Zhao, Y. Gao, M. J. Xu, W. T. Duan, and H. W. Yu, “Studies on nanosecond laser induced damage to silica fibers,” Acta Phys. Sin. 57, 5027–5034 (2008) (in Chinese).

2009

2008

X. H. Zhao, Y. Gao, M. J. Xu, W. T. Duan, and H. W. Yu, “Studies on nanosecond laser induced damage to silica fibers,” Acta Phys. Sin. 57, 5027–5034 (2008) (in Chinese).

2007

X. H. Zhao, Y. Gao, M. J. Xu, W. T. Duan, and H. W. Yu, “Characteristics of high-peak pulsed laser induced damage to fibers,” Proc. SPIE 6825, 682516 (2007).
[CrossRef]

2006

2005

K. R. Cochran, L. Fan, and D. L. Devoe, “High-power optical microswitch based on direct fiber actuation,” Sens. Actuators A 119, 512–519 (2005).
[CrossRef]

2004

K. R. Cochran, L. Fan, and D. L. Devoe, “Moving reflector type micro optical switch for high-power transfer in a MEMS-based safety and arming system,” J. Micromech. Microeng. 14, 138–146 (2004).
[CrossRef]

M. Herding, G. Somogyi, U. Mescheder, and P. Woias, “A new micromachined optical fiber switch for instrumentation purposes,” Proc. SPIE 5455, 264–273 (2004).
[CrossRef]

2003

1999

D. T. Neilson and E. Schenfeld, “Free-space optical relay for the interconnection of multimode fibers,” Appl. Opt. 38, 2291–2296 (1999).
[CrossRef]

M. Beamesderfer, S. Chen, D. Devoe, E. Lither, and K. Johnson, “Analysis of an optical energy interrupter for MEMS based safety and arming system,” Proc. SPIE 3880, 101–112(1999).
[CrossRef]

Beamesderfer, M.

M. Beamesderfer, S. Chen, D. Devoe, E. Lither, and K. Johnson, “Analysis of an optical energy interrupter for MEMS based safety and arming system,” Proc. SPIE 3880, 101–112(1999).
[CrossRef]

Chen, S.

M. Beamesderfer, S. Chen, D. Devoe, E. Lither, and K. Johnson, “Analysis of an optical energy interrupter for MEMS based safety and arming system,” Proc. SPIE 3880, 101–112(1999).
[CrossRef]

Chernov, V. E.

Chu, F. H.

Cochran, K. R.

K. R. Cochran, L. Fan, and D. L. Devoe, “High-power optical microswitch based on direct fiber actuation,” Sens. Actuators A 119, 512–519 (2005).
[CrossRef]

K. R. Cochran, L. Fan, and D. L. Devoe, “Moving reflector type micro optical switch for high-power transfer in a MEMS-based safety and arming system,” J. Micromech. Microeng. 14, 138–146 (2004).
[CrossRef]

Danilyan, A. V.

Devoe, D.

M. Beamesderfer, S. Chen, D. Devoe, E. Lither, and K. Johnson, “Analysis of an optical energy interrupter for MEMS based safety and arming system,” Proc. SPIE 3880, 101–112(1999).
[CrossRef]

Devoe, D. L.

K. R. Cochran, L. Fan, and D. L. Devoe, “High-power optical microswitch based on direct fiber actuation,” Sens. Actuators A 119, 512–519 (2005).
[CrossRef]

K. R. Cochran, L. Fan, and D. L. Devoe, “Moving reflector type micro optical switch for high-power transfer in a MEMS-based safety and arming system,” J. Micromech. Microeng. 14, 138–146 (2004).
[CrossRef]

Duan, W. T.

X. H. Zhao, Y. Gao, M. J. Xu, W. T. Duan, and H. W. Yu, “Studies on nanosecond laser induced damage to silica fibers,” Acta Phys. Sin. 57, 5027–5034 (2008) (in Chinese).

X. H. Zhao, Y. Gao, M. J. Xu, W. T. Duan, and H. W. Yu, “Characteristics of high-peak pulsed laser induced damage to fibers,” Proc. SPIE 6825, 682516 (2007).
[CrossRef]

Duparré, J.

Fan, L.

K. R. Cochran, L. Fan, and D. L. Devoe, “High-power optical microswitch based on direct fiber actuation,” Sens. Actuators A 119, 512–519 (2005).
[CrossRef]

K. R. Cochran, L. Fan, and D. L. Devoe, “Moving reflector type micro optical switch for high-power transfer in a MEMS-based safety and arming system,” J. Micromech. Microeng. 14, 138–146 (2004).
[CrossRef]

Gao, Y.

X. H. Zhao, Y. Gao, M. J. Xu, W. T. Duan, and H. W. Yu, “Studies on nanosecond laser induced damage to silica fibers,” Acta Phys. Sin. 57, 5027–5034 (2008) (in Chinese).

X. H. Zhao, Y. Gao, M. J. Xu, W. T. Duan, and H. W. Yu, “Characteristics of high-peak pulsed laser induced damage to fibers,” Proc. SPIE 6825, 682516 (2007).
[CrossRef]

Göring, R.

Götz, B.

Herding, M.

M. Herding, G. Somogyi, U. Mescheder, and P. Woias, “A new micromachined optical fiber switch for instrumentation purposes,” Proc. SPIE 5455, 264–273 (2004).
[CrossRef]

Johnson, K.

M. Beamesderfer, S. Chen, D. Devoe, E. Lither, and K. Johnson, “Analysis of an optical energy interrupter for MEMS based safety and arming system,” Proc. SPIE 3880, 101–112(1999).
[CrossRef]

Lither, E.

M. Beamesderfer, S. Chen, D. Devoe, E. Lither, and K. Johnson, “Analysis of an optical energy interrupter for MEMS based safety and arming system,” Proc. SPIE 3880, 101–112(1999).
[CrossRef]

Lv, J.

Mescheder, U.

M. Herding, G. Somogyi, U. Mescheder, and P. Woias, “A new micromachined optical fiber switch for instrumentation purposes,” Proc. SPIE 5455, 264–273 (2004).
[CrossRef]

Neilson, D. T.

Schenfeld, E.

Shulgin, V. A.

Somogyi, G.

M. Herding, G. Somogyi, U. Mescheder, and P. Woias, “A new micromachined optical fiber switch for instrumentation purposes,” Proc. SPIE 5455, 264–273 (2004).
[CrossRef]

Woias, P.

M. Herding, G. Somogyi, U. Mescheder, and P. Woias, “A new micromachined optical fiber switch for instrumentation purposes,” Proc. SPIE 5455, 264–273 (2004).
[CrossRef]

Xu, M. J.

X. H. Zhao, Y. Gao, M. J. Xu, W. T. Duan, and H. W. Yu, “Studies on nanosecond laser induced damage to silica fibers,” Acta Phys. Sin. 57, 5027–5034 (2008) (in Chinese).

X. H. Zhao, Y. Gao, M. J. Xu, W. T. Duan, and H. W. Yu, “Characteristics of high-peak pulsed laser induced damage to fibers,” Proc. SPIE 6825, 682516 (2007).
[CrossRef]

Yang, J. J.

Yu, H. W.

X. H. Zhao, Y. Gao, M. J. Xu, W. T. Duan, and H. W. Yu, “Studies on nanosecond laser induced damage to silica fibers,” Acta Phys. Sin. 57, 5027–5034 (2008) (in Chinese).

X. H. Zhao, Y. Gao, M. J. Xu, W. T. Duan, and H. W. Yu, “Characteristics of high-peak pulsed laser induced damage to fibers,” Proc. SPIE 6825, 682516 (2007).
[CrossRef]

Zhao, X. H.

X. H. Zhao, Y. Gao, M. J. Xu, W. T. Duan, and H. W. Yu, “Studies on nanosecond laser induced damage to silica fibers,” Acta Phys. Sin. 57, 5027–5034 (2008) (in Chinese).

X. H. Zhao, Y. Gao, M. J. Xu, W. T. Duan, and H. W. Yu, “Characteristics of high-peak pulsed laser induced damage to fibers,” Proc. SPIE 6825, 682516 (2007).
[CrossRef]

Acta Phys. Sin.

X. H. Zhao, Y. Gao, M. J. Xu, W. T. Duan, and H. W. Yu, “Studies on nanosecond laser induced damage to silica fibers,” Acta Phys. Sin. 57, 5027–5034 (2008) (in Chinese).

Appl. Opt.

J. Micromech. Microeng.

K. R. Cochran, L. Fan, and D. L. Devoe, “Moving reflector type micro optical switch for high-power transfer in a MEMS-based safety and arming system,” J. Micromech. Microeng. 14, 138–146 (2004).
[CrossRef]

Proc. SPIE

M. Beamesderfer, S. Chen, D. Devoe, E. Lither, and K. Johnson, “Analysis of an optical energy interrupter for MEMS based safety and arming system,” Proc. SPIE 3880, 101–112(1999).
[CrossRef]

M. Herding, G. Somogyi, U. Mescheder, and P. Woias, “A new micromachined optical fiber switch for instrumentation purposes,” Proc. SPIE 5455, 264–273 (2004).
[CrossRef]

X. H. Zhao, Y. Gao, M. J. Xu, W. T. Duan, and H. W. Yu, “Characteristics of high-peak pulsed laser induced damage to fibers,” Proc. SPIE 6825, 682516 (2007).
[CrossRef]

Sens. Actuators A

K. R. Cochran, L. Fan, and D. L. Devoe, “High-power optical microswitch based on direct fiber actuation,” Sens. Actuators A 119, 512–519 (2005).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (16)

Fig. 1
Fig. 1

Schematic of three types of fiber-optical switch. (a) Direct fiber–fiber coupling type; (b) moving reflector type; (c) light path shutter type.

Fig. 2
Fig. 2

Schematic illustration of the laser initiation system.

Fig. 3
Fig. 3

Schematic of the fiber-optical switch using cam driven by stepper motor.

Fig. 4
Fig. 4

Photograph of the cam.

Fig. 5
Fig. 5

Simulation model of the fiber-optical switch. x, longitudinal offset; y, lateral misalignment; θ, angular misalignment.

Fig. 6
Fig. 6

Fiber–fiber coupling efficiency versus mechanical misalignments ( fiber core diameter = 600 μm ). (a) Longitudinal effect, (b) lateral misalignment effect, (c) angular misalignment effect.

Fig. 7
Fig. 7

Structure of optical switch based on fiber bending.

Fig. 8
Fig. 8

Schematic fiber cantilevered beam model.

Fig. 9
Fig. 9

Required actuator force versus fiber cantilever length ( D = d = 660 μm ).

Fig. 10
Fig. 10

Optical switch in (a) off state and (b) on state.

Fig. 11
Fig. 11

Image of V-groove.

Fig. 12
Fig. 12

Experimental setup for fiber-optical switch tests.

Fig. 13
Fig. 13

Comparison of undamaged and damaged fiber endfaces (a) after mechanical polishing, (b) after laser damage.

Fig. 14
Fig. 14

Light intensity of input beam.

Fig. 15
Fig. 15

Beam profiles 10 mm downstream of the fiber exit.

Fig. 16
Fig. 16

Output beam sizes from a single fiber and the optical switch.

Tables (3)

Tables Icon

Table 1 Stepper Motor Parameters

Tables Icon

Table 2 Electromechanical Characteristics of Fiber-Optical Switch

Tables Icon

Table 3 Optical Characteristics of Fiber-Optical Switch

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

R F = ( n f n n f + n ) 2
F = 3 D E I L 3 ,

Metrics