Abstract

We investigate the temperature effect of the unidirectional (one-way) electromagnetic mode in a symmetrical gyromagnetic photonic crystal (PhC) waveguide. The results show that the nonreciprocal properties of the one-way edge mode are insensitive to the temperature variation of the waveguide from 233 to 333K. Such a temperature-stabilized nonreciprocal PhC waveguide may have potential applications in future electromagnetic engineering.

© 2010 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. G. Johnson, S. Fan, P. R. Villeneuve, J. D. Joannopoulos, and L. A. Kolodziejski, “Guided modes in photonic crystal slabs,” Phys. Rev. B 60, 5751–5758 (1999).
    [CrossRef]
  2. S. Y. Lin, E. Chow, S. G. Johnson, and J. D. Joannopoulos, “Demonstration of highly efficient waveguiding in a photonic crystal slab at the 1.5 μm wavelength,” Opt. Lett. 25, 1297–1299 (2000).
    [CrossRef]
  3. M. Soljačić, M. Ibanescu, S. G. Johnson, Y. Fink, and J. D. Joannopoulos, “Optimal bistable switching in nonlinear photonic crystals,” Phys. Rev. E 66, 055601 (2002).
    [CrossRef]
  4. M. L. Povinelli, S. G. Johnson, J. D. Joannopoulos, and J. B. Pendry, “Toward photonic-crystal metamaterials: creating magnetic emitters in photonic crystals,” Appl. Phys. Lett. 82, 1069–1071 (2003).
    [CrossRef]
  5. M. F. Yanik, S. Fan, M. Soljacic, and J. D. Joannopoulos, “All-optical transistor action with bistable switching in a photonic crystal cross-waveguide geometry,” Opt. Lett. 28, 2506–2508(2003).
    [CrossRef] [PubMed]
  6. M. F. Yanik, W. Suh, Z. Wang, and S. Fan, “Stopping light in a waveguide with an all-optical analog of electromagnetically induced transparency,” Phys. Rev. Lett. 93, 233903 (2004).
    [CrossRef] [PubMed]
  7. J. Ma and C. Jiang, “Flatband slow light in asymmetric line-defect photonic crystal waveguide featuring low group velocity and dispersion,” IEEE J. Quantum Electron. 44, 763–769(2008).
    [CrossRef]
  8. K. Nozaki, H. Watanabe, and T. Baba, “Photonic crystal nanolaser monolithically integrated with passive waveguide for effective light extraction,” Appl. Phys. Lett. 92, 021108 (2008).
    [CrossRef]
  9. C. Jiang, M. Ibanescu, J. D. Joannopoulos, and M. Soljacic, “Zero-group-velocity modes in longitudinally uniform waveguides,” Appl. Phys. Lett. 93, 241111 (2008).
    [CrossRef]
  10. L. Dai and C. Jiang, “Low dispersion slow light waveguide with high coupling efficiency,” J. Phys. D 42, 225102 (2009).
    [CrossRef]
  11. A. Figotin and I. Vitebsky, “Nonreciprocal magnetic photonic crystals,” Phys. Rev. E 63, 066609 (2001).
    [CrossRef]
  12. A. Figotin and I. Vitebsky, “Oblique frozen modes in periodic layered media,” Phys. Rev. E 68, 036609 (2003).
    [CrossRef]
  13. J. Ballato, A. Ballato, A. Figotin, and I. Vitebsky, “Frozen light in periodic stacks of anisotropic layers,” Phys. Rev. E 71, 036612 (2005).
    [CrossRef]
  14. A. Figotin and I. Vitebsky, “Frozen light in photonic crystals with degenerate band edge,” Phys. Rev. E 74, 066613(2006).
    [CrossRef]
  15. Z. Yu, Z. Wang, and S. Fan, “One-way total reflection with one-dimensional magneto-optical photonic crystals,” Appl. Phys. Lett. 90, 121133 (2007).
    [CrossRef]
  16. Z. Yu and S. Fan, “Complete optical isolation created by indirect interband photonic transitions,” Nat. Photon. 3, 91–94(2009).
    [CrossRef]
  17. F. D. M. Haldane and S. Raghu, “Possible realization of directional optical waveguides in photonic crystals with broken time-reversal symmetry,” Phys. Rev. Lett. 100, 013904(2008).
    [CrossRef] [PubMed]
  18. S. Raghu and F. D. Haldane, “Analogs of quantum-Hall-effect edge states in photonic crystals,” Phys. Rev. A 78, 033834(2008).
    [CrossRef]
  19. B. I. Halperin, “Quantized Hall conductance, current-carrying edge states, and the existence of extended states in a two-dimensional disordered potential,” Phys. Rev. B 25, 2185–2190 (1982).
    [CrossRef]
  20. R. Rammal, G. Toulouse, M. T. Jackel, and B. I. Halperin, “Quantized Hall conductance and edge states: two-dimensional strips with a periodic potential,” Phys. Rev. B 27, 5142–5145 (1983).
    [CrossRef]
  21. X. G. Wen, “Gapless boundary excitations in the quantum Hall states and in the chiral spin states,” Phys. Rev. B 43, 11025–11036 (1991).
    [CrossRef]
  22. Z. Wang, Y. D. Chong, J. D. Joannopoulos, and M. Soljacic, “Reflection-free one-way edge modes in a gyromagnetic photonic crystal,” Phys. Rev. Lett. 100, 013905 (2008).
    [CrossRef] [PubMed]
  23. Z. Yu, G. Veronis, Z. Wang, and S. Fan, “One-way electromagnetic waveguide formatted at the interface between a plasmonic metal under a static magnetic field and a photonic crystal,” Phys. Rev. Lett. 100, 023902 (2008).
    [CrossRef] [PubMed]
  24. Z. Wang, Y. D. Chong, J. D. Joannopoulos, and M. Soljacic, “Observation of unidirectional backscattering-immune topological electromagnetic states,” Nature 461, 772–775(2009).
    [CrossRef] [PubMed]
  25. J. F. Torrado, J. B. González-Díaz, M. U. González, A. García-Martín, and G. Armellesll, “Magneto-optical effects in interacting localized and propagating surface plasmon modes,” Opt. Express 18, 15635–15642 (2010).
    [CrossRef] [PubMed]
  26. W. M. Ye, X. D. Yuan, C. C. Guo, and C. Zen “Unidirectional transmission in non-symmetric gratings made of isotropic material,” Opt. Express 18, 7590–7595 (2010).
    [CrossRef] [PubMed]
  27. J. X. Fu, R. J. Liu, and Z. Y. Li, “Robust one-way modes in gyromagnetic photonic crystal waveguides with different interfaces,” Appl. Phys. Lett. 97, 041112 (2010).
    [CrossRef]
  28. C. He, X. Chen, M. Lu, X. Li, W. Wan, X. Qian, R. Yin, and Y. Chen, “Left-handed and right-handed one-way edge modes in a gyromagnetic photonic crystal,” J. Appl. Phys. 107, 123117(2010).
    [CrossRef]

2010 (4)

J. F. Torrado, J. B. González-Díaz, M. U. González, A. García-Martín, and G. Armellesll, “Magneto-optical effects in interacting localized and propagating surface plasmon modes,” Opt. Express 18, 15635–15642 (2010).
[CrossRef] [PubMed]

W. M. Ye, X. D. Yuan, C. C. Guo, and C. Zen “Unidirectional transmission in non-symmetric gratings made of isotropic material,” Opt. Express 18, 7590–7595 (2010).
[CrossRef] [PubMed]

J. X. Fu, R. J. Liu, and Z. Y. Li, “Robust one-way modes in gyromagnetic photonic crystal waveguides with different interfaces,” Appl. Phys. Lett. 97, 041112 (2010).
[CrossRef]

C. He, X. Chen, M. Lu, X. Li, W. Wan, X. Qian, R. Yin, and Y. Chen, “Left-handed and right-handed one-way edge modes in a gyromagnetic photonic crystal,” J. Appl. Phys. 107, 123117(2010).
[CrossRef]

2009 (3)

Z. Wang, Y. D. Chong, J. D. Joannopoulos, and M. Soljacic, “Observation of unidirectional backscattering-immune topological electromagnetic states,” Nature 461, 772–775(2009).
[CrossRef] [PubMed]

L. Dai and C. Jiang, “Low dispersion slow light waveguide with high coupling efficiency,” J. Phys. D 42, 225102 (2009).
[CrossRef]

Z. Yu and S. Fan, “Complete optical isolation created by indirect interband photonic transitions,” Nat. Photon. 3, 91–94(2009).
[CrossRef]

2008 (7)

F. D. M. Haldane and S. Raghu, “Possible realization of directional optical waveguides in photonic crystals with broken time-reversal symmetry,” Phys. Rev. Lett. 100, 013904(2008).
[CrossRef] [PubMed]

S. Raghu and F. D. Haldane, “Analogs of quantum-Hall-effect edge states in photonic crystals,” Phys. Rev. A 78, 033834(2008).
[CrossRef]

J. Ma and C. Jiang, “Flatband slow light in asymmetric line-defect photonic crystal waveguide featuring low group velocity and dispersion,” IEEE J. Quantum Electron. 44, 763–769(2008).
[CrossRef]

K. Nozaki, H. Watanabe, and T. Baba, “Photonic crystal nanolaser monolithically integrated with passive waveguide for effective light extraction,” Appl. Phys. Lett. 92, 021108 (2008).
[CrossRef]

C. Jiang, M. Ibanescu, J. D. Joannopoulos, and M. Soljacic, “Zero-group-velocity modes in longitudinally uniform waveguides,” Appl. Phys. Lett. 93, 241111 (2008).
[CrossRef]

Z. Wang, Y. D. Chong, J. D. Joannopoulos, and M. Soljacic, “Reflection-free one-way edge modes in a gyromagnetic photonic crystal,” Phys. Rev. Lett. 100, 013905 (2008).
[CrossRef] [PubMed]

Z. Yu, G. Veronis, Z. Wang, and S. Fan, “One-way electromagnetic waveguide formatted at the interface between a plasmonic metal under a static magnetic field and a photonic crystal,” Phys. Rev. Lett. 100, 023902 (2008).
[CrossRef] [PubMed]

2007 (1)

Z. Yu, Z. Wang, and S. Fan, “One-way total reflection with one-dimensional magneto-optical photonic crystals,” Appl. Phys. Lett. 90, 121133 (2007).
[CrossRef]

2006 (1)

A. Figotin and I. Vitebsky, “Frozen light in photonic crystals with degenerate band edge,” Phys. Rev. E 74, 066613(2006).
[CrossRef]

2005 (1)

J. Ballato, A. Ballato, A. Figotin, and I. Vitebsky, “Frozen light in periodic stacks of anisotropic layers,” Phys. Rev. E 71, 036612 (2005).
[CrossRef]

2004 (1)

M. F. Yanik, W. Suh, Z. Wang, and S. Fan, “Stopping light in a waveguide with an all-optical analog of electromagnetically induced transparency,” Phys. Rev. Lett. 93, 233903 (2004).
[CrossRef] [PubMed]

2003 (3)

M. L. Povinelli, S. G. Johnson, J. D. Joannopoulos, and J. B. Pendry, “Toward photonic-crystal metamaterials: creating magnetic emitters in photonic crystals,” Appl. Phys. Lett. 82, 1069–1071 (2003).
[CrossRef]

M. F. Yanik, S. Fan, M. Soljacic, and J. D. Joannopoulos, “All-optical transistor action with bistable switching in a photonic crystal cross-waveguide geometry,” Opt. Lett. 28, 2506–2508(2003).
[CrossRef] [PubMed]

A. Figotin and I. Vitebsky, “Oblique frozen modes in periodic layered media,” Phys. Rev. E 68, 036609 (2003).
[CrossRef]

2002 (1)

M. Soljačić, M. Ibanescu, S. G. Johnson, Y. Fink, and J. D. Joannopoulos, “Optimal bistable switching in nonlinear photonic crystals,” Phys. Rev. E 66, 055601 (2002).
[CrossRef]

2001 (1)

A. Figotin and I. Vitebsky, “Nonreciprocal magnetic photonic crystals,” Phys. Rev. E 63, 066609 (2001).
[CrossRef]

2000 (1)

1999 (1)

S. G. Johnson, S. Fan, P. R. Villeneuve, J. D. Joannopoulos, and L. A. Kolodziejski, “Guided modes in photonic crystal slabs,” Phys. Rev. B 60, 5751–5758 (1999).
[CrossRef]

1991 (1)

X. G. Wen, “Gapless boundary excitations in the quantum Hall states and in the chiral spin states,” Phys. Rev. B 43, 11025–11036 (1991).
[CrossRef]

1983 (1)

R. Rammal, G. Toulouse, M. T. Jackel, and B. I. Halperin, “Quantized Hall conductance and edge states: two-dimensional strips with a periodic potential,” Phys. Rev. B 27, 5142–5145 (1983).
[CrossRef]

1982 (1)

B. I. Halperin, “Quantized Hall conductance, current-carrying edge states, and the existence of extended states in a two-dimensional disordered potential,” Phys. Rev. B 25, 2185–2190 (1982).
[CrossRef]

Armellesll, G.

Baba, T.

K. Nozaki, H. Watanabe, and T. Baba, “Photonic crystal nanolaser monolithically integrated with passive waveguide for effective light extraction,” Appl. Phys. Lett. 92, 021108 (2008).
[CrossRef]

Ballato, A.

J. Ballato, A. Ballato, A. Figotin, and I. Vitebsky, “Frozen light in periodic stacks of anisotropic layers,” Phys. Rev. E 71, 036612 (2005).
[CrossRef]

Ballato, J.

J. Ballato, A. Ballato, A. Figotin, and I. Vitebsky, “Frozen light in periodic stacks of anisotropic layers,” Phys. Rev. E 71, 036612 (2005).
[CrossRef]

Chen, X.

C. He, X. Chen, M. Lu, X. Li, W. Wan, X. Qian, R. Yin, and Y. Chen, “Left-handed and right-handed one-way edge modes in a gyromagnetic photonic crystal,” J. Appl. Phys. 107, 123117(2010).
[CrossRef]

Chen, Y.

C. He, X. Chen, M. Lu, X. Li, W. Wan, X. Qian, R. Yin, and Y. Chen, “Left-handed and right-handed one-way edge modes in a gyromagnetic photonic crystal,” J. Appl. Phys. 107, 123117(2010).
[CrossRef]

Chong, Y. D.

Z. Wang, Y. D. Chong, J. D. Joannopoulos, and M. Soljacic, “Observation of unidirectional backscattering-immune topological electromagnetic states,” Nature 461, 772–775(2009).
[CrossRef] [PubMed]

Z. Wang, Y. D. Chong, J. D. Joannopoulos, and M. Soljacic, “Reflection-free one-way edge modes in a gyromagnetic photonic crystal,” Phys. Rev. Lett. 100, 013905 (2008).
[CrossRef] [PubMed]

Chow, E.

Dai, L.

L. Dai and C. Jiang, “Low dispersion slow light waveguide with high coupling efficiency,” J. Phys. D 42, 225102 (2009).
[CrossRef]

Fan, S.

Z. Yu and S. Fan, “Complete optical isolation created by indirect interband photonic transitions,” Nat. Photon. 3, 91–94(2009).
[CrossRef]

Z. Yu, G. Veronis, Z. Wang, and S. Fan, “One-way electromagnetic waveguide formatted at the interface between a plasmonic metal under a static magnetic field and a photonic crystal,” Phys. Rev. Lett. 100, 023902 (2008).
[CrossRef] [PubMed]

Z. Yu, Z. Wang, and S. Fan, “One-way total reflection with one-dimensional magneto-optical photonic crystals,” Appl. Phys. Lett. 90, 121133 (2007).
[CrossRef]

M. F. Yanik, W. Suh, Z. Wang, and S. Fan, “Stopping light in a waveguide with an all-optical analog of electromagnetically induced transparency,” Phys. Rev. Lett. 93, 233903 (2004).
[CrossRef] [PubMed]

M. F. Yanik, S. Fan, M. Soljacic, and J. D. Joannopoulos, “All-optical transistor action with bistable switching in a photonic crystal cross-waveguide geometry,” Opt. Lett. 28, 2506–2508(2003).
[CrossRef] [PubMed]

S. G. Johnson, S. Fan, P. R. Villeneuve, J. D. Joannopoulos, and L. A. Kolodziejski, “Guided modes in photonic crystal slabs,” Phys. Rev. B 60, 5751–5758 (1999).
[CrossRef]

Figotin, A.

A. Figotin and I. Vitebsky, “Frozen light in photonic crystals with degenerate band edge,” Phys. Rev. E 74, 066613(2006).
[CrossRef]

J. Ballato, A. Ballato, A. Figotin, and I. Vitebsky, “Frozen light in periodic stacks of anisotropic layers,” Phys. Rev. E 71, 036612 (2005).
[CrossRef]

A. Figotin and I. Vitebsky, “Oblique frozen modes in periodic layered media,” Phys. Rev. E 68, 036609 (2003).
[CrossRef]

A. Figotin and I. Vitebsky, “Nonreciprocal magnetic photonic crystals,” Phys. Rev. E 63, 066609 (2001).
[CrossRef]

Fink, Y.

M. Soljačić, M. Ibanescu, S. G. Johnson, Y. Fink, and J. D. Joannopoulos, “Optimal bistable switching in nonlinear photonic crystals,” Phys. Rev. E 66, 055601 (2002).
[CrossRef]

Fu, J. X.

J. X. Fu, R. J. Liu, and Z. Y. Li, “Robust one-way modes in gyromagnetic photonic crystal waveguides with different interfaces,” Appl. Phys. Lett. 97, 041112 (2010).
[CrossRef]

García-Martín, A.

González, M. U.

González-Díaz, J. B.

Guo, C. C.

Haldane, F. D.

S. Raghu and F. D. Haldane, “Analogs of quantum-Hall-effect edge states in photonic crystals,” Phys. Rev. A 78, 033834(2008).
[CrossRef]

Haldane, F. D. M.

F. D. M. Haldane and S. Raghu, “Possible realization of directional optical waveguides in photonic crystals with broken time-reversal symmetry,” Phys. Rev. Lett. 100, 013904(2008).
[CrossRef] [PubMed]

Halperin, B. I.

R. Rammal, G. Toulouse, M. T. Jackel, and B. I. Halperin, “Quantized Hall conductance and edge states: two-dimensional strips with a periodic potential,” Phys. Rev. B 27, 5142–5145 (1983).
[CrossRef]

B. I. Halperin, “Quantized Hall conductance, current-carrying edge states, and the existence of extended states in a two-dimensional disordered potential,” Phys. Rev. B 25, 2185–2190 (1982).
[CrossRef]

He, C.

C. He, X. Chen, M. Lu, X. Li, W. Wan, X. Qian, R. Yin, and Y. Chen, “Left-handed and right-handed one-way edge modes in a gyromagnetic photonic crystal,” J. Appl. Phys. 107, 123117(2010).
[CrossRef]

Ibanescu, M.

C. Jiang, M. Ibanescu, J. D. Joannopoulos, and M. Soljacic, “Zero-group-velocity modes in longitudinally uniform waveguides,” Appl. Phys. Lett. 93, 241111 (2008).
[CrossRef]

M. Soljačić, M. Ibanescu, S. G. Johnson, Y. Fink, and J. D. Joannopoulos, “Optimal bistable switching in nonlinear photonic crystals,” Phys. Rev. E 66, 055601 (2002).
[CrossRef]

Jackel, M. T.

R. Rammal, G. Toulouse, M. T. Jackel, and B. I. Halperin, “Quantized Hall conductance and edge states: two-dimensional strips with a periodic potential,” Phys. Rev. B 27, 5142–5145 (1983).
[CrossRef]

Jiang, C.

L. Dai and C. Jiang, “Low dispersion slow light waveguide with high coupling efficiency,” J. Phys. D 42, 225102 (2009).
[CrossRef]

C. Jiang, M. Ibanescu, J. D. Joannopoulos, and M. Soljacic, “Zero-group-velocity modes in longitudinally uniform waveguides,” Appl. Phys. Lett. 93, 241111 (2008).
[CrossRef]

J. Ma and C. Jiang, “Flatband slow light in asymmetric line-defect photonic crystal waveguide featuring low group velocity and dispersion,” IEEE J. Quantum Electron. 44, 763–769(2008).
[CrossRef]

Joannopoulos, J. D.

Z. Wang, Y. D. Chong, J. D. Joannopoulos, and M. Soljacic, “Observation of unidirectional backscattering-immune topological electromagnetic states,” Nature 461, 772–775(2009).
[CrossRef] [PubMed]

C. Jiang, M. Ibanescu, J. D. Joannopoulos, and M. Soljacic, “Zero-group-velocity modes in longitudinally uniform waveguides,” Appl. Phys. Lett. 93, 241111 (2008).
[CrossRef]

Z. Wang, Y. D. Chong, J. D. Joannopoulos, and M. Soljacic, “Reflection-free one-way edge modes in a gyromagnetic photonic crystal,” Phys. Rev. Lett. 100, 013905 (2008).
[CrossRef] [PubMed]

M. F. Yanik, S. Fan, M. Soljacic, and J. D. Joannopoulos, “All-optical transistor action with bistable switching in a photonic crystal cross-waveguide geometry,” Opt. Lett. 28, 2506–2508(2003).
[CrossRef] [PubMed]

M. L. Povinelli, S. G. Johnson, J. D. Joannopoulos, and J. B. Pendry, “Toward photonic-crystal metamaterials: creating magnetic emitters in photonic crystals,” Appl. Phys. Lett. 82, 1069–1071 (2003).
[CrossRef]

M. Soljačić, M. Ibanescu, S. G. Johnson, Y. Fink, and J. D. Joannopoulos, “Optimal bistable switching in nonlinear photonic crystals,” Phys. Rev. E 66, 055601 (2002).
[CrossRef]

S. Y. Lin, E. Chow, S. G. Johnson, and J. D. Joannopoulos, “Demonstration of highly efficient waveguiding in a photonic crystal slab at the 1.5 μm wavelength,” Opt. Lett. 25, 1297–1299 (2000).
[CrossRef]

S. G. Johnson, S. Fan, P. R. Villeneuve, J. D. Joannopoulos, and L. A. Kolodziejski, “Guided modes in photonic crystal slabs,” Phys. Rev. B 60, 5751–5758 (1999).
[CrossRef]

Johnson, S. G.

M. L. Povinelli, S. G. Johnson, J. D. Joannopoulos, and J. B. Pendry, “Toward photonic-crystal metamaterials: creating magnetic emitters in photonic crystals,” Appl. Phys. Lett. 82, 1069–1071 (2003).
[CrossRef]

M. Soljačić, M. Ibanescu, S. G. Johnson, Y. Fink, and J. D. Joannopoulos, “Optimal bistable switching in nonlinear photonic crystals,” Phys. Rev. E 66, 055601 (2002).
[CrossRef]

S. Y. Lin, E. Chow, S. G. Johnson, and J. D. Joannopoulos, “Demonstration of highly efficient waveguiding in a photonic crystal slab at the 1.5 μm wavelength,” Opt. Lett. 25, 1297–1299 (2000).
[CrossRef]

S. G. Johnson, S. Fan, P. R. Villeneuve, J. D. Joannopoulos, and L. A. Kolodziejski, “Guided modes in photonic crystal slabs,” Phys. Rev. B 60, 5751–5758 (1999).
[CrossRef]

Kolodziejski, L. A.

S. G. Johnson, S. Fan, P. R. Villeneuve, J. D. Joannopoulos, and L. A. Kolodziejski, “Guided modes in photonic crystal slabs,” Phys. Rev. B 60, 5751–5758 (1999).
[CrossRef]

Li, X.

C. He, X. Chen, M. Lu, X. Li, W. Wan, X. Qian, R. Yin, and Y. Chen, “Left-handed and right-handed one-way edge modes in a gyromagnetic photonic crystal,” J. Appl. Phys. 107, 123117(2010).
[CrossRef]

Li, Z. Y.

J. X. Fu, R. J. Liu, and Z. Y. Li, “Robust one-way modes in gyromagnetic photonic crystal waveguides with different interfaces,” Appl. Phys. Lett. 97, 041112 (2010).
[CrossRef]

Lin, S. Y.

Liu, R. J.

J. X. Fu, R. J. Liu, and Z. Y. Li, “Robust one-way modes in gyromagnetic photonic crystal waveguides with different interfaces,” Appl. Phys. Lett. 97, 041112 (2010).
[CrossRef]

Lu, M.

C. He, X. Chen, M. Lu, X. Li, W. Wan, X. Qian, R. Yin, and Y. Chen, “Left-handed and right-handed one-way edge modes in a gyromagnetic photonic crystal,” J. Appl. Phys. 107, 123117(2010).
[CrossRef]

Ma, J.

J. Ma and C. Jiang, “Flatband slow light in asymmetric line-defect photonic crystal waveguide featuring low group velocity and dispersion,” IEEE J. Quantum Electron. 44, 763–769(2008).
[CrossRef]

Nozaki, K.

K. Nozaki, H. Watanabe, and T. Baba, “Photonic crystal nanolaser monolithically integrated with passive waveguide for effective light extraction,” Appl. Phys. Lett. 92, 021108 (2008).
[CrossRef]

Pendry, J. B.

M. L. Povinelli, S. G. Johnson, J. D. Joannopoulos, and J. B. Pendry, “Toward photonic-crystal metamaterials: creating magnetic emitters in photonic crystals,” Appl. Phys. Lett. 82, 1069–1071 (2003).
[CrossRef]

Povinelli, M. L.

M. L. Povinelli, S. G. Johnson, J. D. Joannopoulos, and J. B. Pendry, “Toward photonic-crystal metamaterials: creating magnetic emitters in photonic crystals,” Appl. Phys. Lett. 82, 1069–1071 (2003).
[CrossRef]

Qian, X.

C. He, X. Chen, M. Lu, X. Li, W. Wan, X. Qian, R. Yin, and Y. Chen, “Left-handed and right-handed one-way edge modes in a gyromagnetic photonic crystal,” J. Appl. Phys. 107, 123117(2010).
[CrossRef]

Raghu, S.

F. D. M. Haldane and S. Raghu, “Possible realization of directional optical waveguides in photonic crystals with broken time-reversal symmetry,” Phys. Rev. Lett. 100, 013904(2008).
[CrossRef] [PubMed]

S. Raghu and F. D. Haldane, “Analogs of quantum-Hall-effect edge states in photonic crystals,” Phys. Rev. A 78, 033834(2008).
[CrossRef]

Rammal, R.

R. Rammal, G. Toulouse, M. T. Jackel, and B. I. Halperin, “Quantized Hall conductance and edge states: two-dimensional strips with a periodic potential,” Phys. Rev. B 27, 5142–5145 (1983).
[CrossRef]

Soljacic, M.

Z. Wang, Y. D. Chong, J. D. Joannopoulos, and M. Soljacic, “Observation of unidirectional backscattering-immune topological electromagnetic states,” Nature 461, 772–775(2009).
[CrossRef] [PubMed]

Z. Wang, Y. D. Chong, J. D. Joannopoulos, and M. Soljacic, “Reflection-free one-way edge modes in a gyromagnetic photonic crystal,” Phys. Rev. Lett. 100, 013905 (2008).
[CrossRef] [PubMed]

C. Jiang, M. Ibanescu, J. D. Joannopoulos, and M. Soljacic, “Zero-group-velocity modes in longitudinally uniform waveguides,” Appl. Phys. Lett. 93, 241111 (2008).
[CrossRef]

M. F. Yanik, S. Fan, M. Soljacic, and J. D. Joannopoulos, “All-optical transistor action with bistable switching in a photonic crystal cross-waveguide geometry,” Opt. Lett. 28, 2506–2508(2003).
[CrossRef] [PubMed]

M. Soljačić, M. Ibanescu, S. G. Johnson, Y. Fink, and J. D. Joannopoulos, “Optimal bistable switching in nonlinear photonic crystals,” Phys. Rev. E 66, 055601 (2002).
[CrossRef]

Suh, W.

M. F. Yanik, W. Suh, Z. Wang, and S. Fan, “Stopping light in a waveguide with an all-optical analog of electromagnetically induced transparency,” Phys. Rev. Lett. 93, 233903 (2004).
[CrossRef] [PubMed]

Torrado, J. F.

Toulouse, G.

R. Rammal, G. Toulouse, M. T. Jackel, and B. I. Halperin, “Quantized Hall conductance and edge states: two-dimensional strips with a periodic potential,” Phys. Rev. B 27, 5142–5145 (1983).
[CrossRef]

Veronis, G.

Z. Yu, G. Veronis, Z. Wang, and S. Fan, “One-way electromagnetic waveguide formatted at the interface between a plasmonic metal under a static magnetic field and a photonic crystal,” Phys. Rev. Lett. 100, 023902 (2008).
[CrossRef] [PubMed]

Villeneuve, P. R.

S. G. Johnson, S. Fan, P. R. Villeneuve, J. D. Joannopoulos, and L. A. Kolodziejski, “Guided modes in photonic crystal slabs,” Phys. Rev. B 60, 5751–5758 (1999).
[CrossRef]

Vitebsky, I.

A. Figotin and I. Vitebsky, “Frozen light in photonic crystals with degenerate band edge,” Phys. Rev. E 74, 066613(2006).
[CrossRef]

J. Ballato, A. Ballato, A. Figotin, and I. Vitebsky, “Frozen light in periodic stacks of anisotropic layers,” Phys. Rev. E 71, 036612 (2005).
[CrossRef]

A. Figotin and I. Vitebsky, “Oblique frozen modes in periodic layered media,” Phys. Rev. E 68, 036609 (2003).
[CrossRef]

A. Figotin and I. Vitebsky, “Nonreciprocal magnetic photonic crystals,” Phys. Rev. E 63, 066609 (2001).
[CrossRef]

Wan, W.

C. He, X. Chen, M. Lu, X. Li, W. Wan, X. Qian, R. Yin, and Y. Chen, “Left-handed and right-handed one-way edge modes in a gyromagnetic photonic crystal,” J. Appl. Phys. 107, 123117(2010).
[CrossRef]

Wang, Z.

Z. Wang, Y. D. Chong, J. D. Joannopoulos, and M. Soljacic, “Observation of unidirectional backscattering-immune topological electromagnetic states,” Nature 461, 772–775(2009).
[CrossRef] [PubMed]

Z. Yu, G. Veronis, Z. Wang, and S. Fan, “One-way electromagnetic waveguide formatted at the interface between a plasmonic metal under a static magnetic field and a photonic crystal,” Phys. Rev. Lett. 100, 023902 (2008).
[CrossRef] [PubMed]

Z. Wang, Y. D. Chong, J. D. Joannopoulos, and M. Soljacic, “Reflection-free one-way edge modes in a gyromagnetic photonic crystal,” Phys. Rev. Lett. 100, 013905 (2008).
[CrossRef] [PubMed]

Z. Yu, Z. Wang, and S. Fan, “One-way total reflection with one-dimensional magneto-optical photonic crystals,” Appl. Phys. Lett. 90, 121133 (2007).
[CrossRef]

M. F. Yanik, W. Suh, Z. Wang, and S. Fan, “Stopping light in a waveguide with an all-optical analog of electromagnetically induced transparency,” Phys. Rev. Lett. 93, 233903 (2004).
[CrossRef] [PubMed]

Watanabe, H.

K. Nozaki, H. Watanabe, and T. Baba, “Photonic crystal nanolaser monolithically integrated with passive waveguide for effective light extraction,” Appl. Phys. Lett. 92, 021108 (2008).
[CrossRef]

Wen, X. G.

X. G. Wen, “Gapless boundary excitations in the quantum Hall states and in the chiral spin states,” Phys. Rev. B 43, 11025–11036 (1991).
[CrossRef]

Yanik, M. F.

M. F. Yanik, W. Suh, Z. Wang, and S. Fan, “Stopping light in a waveguide with an all-optical analog of electromagnetically induced transparency,” Phys. Rev. Lett. 93, 233903 (2004).
[CrossRef] [PubMed]

M. F. Yanik, S. Fan, M. Soljacic, and J. D. Joannopoulos, “All-optical transistor action with bistable switching in a photonic crystal cross-waveguide geometry,” Opt. Lett. 28, 2506–2508(2003).
[CrossRef] [PubMed]

Ye, W. M.

Yin, R.

C. He, X. Chen, M. Lu, X. Li, W. Wan, X. Qian, R. Yin, and Y. Chen, “Left-handed and right-handed one-way edge modes in a gyromagnetic photonic crystal,” J. Appl. Phys. 107, 123117(2010).
[CrossRef]

Yu, Z.

Z. Yu and S. Fan, “Complete optical isolation created by indirect interband photonic transitions,” Nat. Photon. 3, 91–94(2009).
[CrossRef]

Z. Yu, G. Veronis, Z. Wang, and S. Fan, “One-way electromagnetic waveguide formatted at the interface between a plasmonic metal under a static magnetic field and a photonic crystal,” Phys. Rev. Lett. 100, 023902 (2008).
[CrossRef] [PubMed]

Z. Yu, Z. Wang, and S. Fan, “One-way total reflection with one-dimensional magneto-optical photonic crystals,” Appl. Phys. Lett. 90, 121133 (2007).
[CrossRef]

Yuan, X. D.

Zen, C.

Appl. Phys. Lett. (5)

M. L. Povinelli, S. G. Johnson, J. D. Joannopoulos, and J. B. Pendry, “Toward photonic-crystal metamaterials: creating magnetic emitters in photonic crystals,” Appl. Phys. Lett. 82, 1069–1071 (2003).
[CrossRef]

K. Nozaki, H. Watanabe, and T. Baba, “Photonic crystal nanolaser monolithically integrated with passive waveguide for effective light extraction,” Appl. Phys. Lett. 92, 021108 (2008).
[CrossRef]

C. Jiang, M. Ibanescu, J. D. Joannopoulos, and M. Soljacic, “Zero-group-velocity modes in longitudinally uniform waveguides,” Appl. Phys. Lett. 93, 241111 (2008).
[CrossRef]

Z. Yu, Z. Wang, and S. Fan, “One-way total reflection with one-dimensional magneto-optical photonic crystals,” Appl. Phys. Lett. 90, 121133 (2007).
[CrossRef]

J. X. Fu, R. J. Liu, and Z. Y. Li, “Robust one-way modes in gyromagnetic photonic crystal waveguides with different interfaces,” Appl. Phys. Lett. 97, 041112 (2010).
[CrossRef]

IEEE J. Quantum Electron. (1)

J. Ma and C. Jiang, “Flatband slow light in asymmetric line-defect photonic crystal waveguide featuring low group velocity and dispersion,” IEEE J. Quantum Electron. 44, 763–769(2008).
[CrossRef]

J. Appl. Phys. (1)

C. He, X. Chen, M. Lu, X. Li, W. Wan, X. Qian, R. Yin, and Y. Chen, “Left-handed and right-handed one-way edge modes in a gyromagnetic photonic crystal,” J. Appl. Phys. 107, 123117(2010).
[CrossRef]

J. Phys. D (1)

L. Dai and C. Jiang, “Low dispersion slow light waveguide with high coupling efficiency,” J. Phys. D 42, 225102 (2009).
[CrossRef]

Nat. Photon. (1)

Z. Yu and S. Fan, “Complete optical isolation created by indirect interband photonic transitions,” Nat. Photon. 3, 91–94(2009).
[CrossRef]

Nature (1)

Z. Wang, Y. D. Chong, J. D. Joannopoulos, and M. Soljacic, “Observation of unidirectional backscattering-immune topological electromagnetic states,” Nature 461, 772–775(2009).
[CrossRef] [PubMed]

Opt. Express (2)

Opt. Lett. (2)

Phys. Rev. A (1)

S. Raghu and F. D. Haldane, “Analogs of quantum-Hall-effect edge states in photonic crystals,” Phys. Rev. A 78, 033834(2008).
[CrossRef]

Phys. Rev. B (4)

B. I. Halperin, “Quantized Hall conductance, current-carrying edge states, and the existence of extended states in a two-dimensional disordered potential,” Phys. Rev. B 25, 2185–2190 (1982).
[CrossRef]

R. Rammal, G. Toulouse, M. T. Jackel, and B. I. Halperin, “Quantized Hall conductance and edge states: two-dimensional strips with a periodic potential,” Phys. Rev. B 27, 5142–5145 (1983).
[CrossRef]

X. G. Wen, “Gapless boundary excitations in the quantum Hall states and in the chiral spin states,” Phys. Rev. B 43, 11025–11036 (1991).
[CrossRef]

S. G. Johnson, S. Fan, P. R. Villeneuve, J. D. Joannopoulos, and L. A. Kolodziejski, “Guided modes in photonic crystal slabs,” Phys. Rev. B 60, 5751–5758 (1999).
[CrossRef]

Phys. Rev. E (5)

M. Soljačić, M. Ibanescu, S. G. Johnson, Y. Fink, and J. D. Joannopoulos, “Optimal bistable switching in nonlinear photonic crystals,” Phys. Rev. E 66, 055601 (2002).
[CrossRef]

A. Figotin and I. Vitebsky, “Nonreciprocal magnetic photonic crystals,” Phys. Rev. E 63, 066609 (2001).
[CrossRef]

A. Figotin and I. Vitebsky, “Oblique frozen modes in periodic layered media,” Phys. Rev. E 68, 036609 (2003).
[CrossRef]

J. Ballato, A. Ballato, A. Figotin, and I. Vitebsky, “Frozen light in periodic stacks of anisotropic layers,” Phys. Rev. E 71, 036612 (2005).
[CrossRef]

A. Figotin and I. Vitebsky, “Frozen light in photonic crystals with degenerate band edge,” Phys. Rev. E 74, 066613(2006).
[CrossRef]

Phys. Rev. Lett. (4)

M. F. Yanik, W. Suh, Z. Wang, and S. Fan, “Stopping light in a waveguide with an all-optical analog of electromagnetically induced transparency,” Phys. Rev. Lett. 93, 233903 (2004).
[CrossRef] [PubMed]

F. D. M. Haldane and S. Raghu, “Possible realization of directional optical waveguides in photonic crystals with broken time-reversal symmetry,” Phys. Rev. Lett. 100, 013904(2008).
[CrossRef] [PubMed]

Z. Wang, Y. D. Chong, J. D. Joannopoulos, and M. Soljacic, “Reflection-free one-way edge modes in a gyromagnetic photonic crystal,” Phys. Rev. Lett. 100, 013905 (2008).
[CrossRef] [PubMed]

Z. Yu, G. Veronis, Z. Wang, and S. Fan, “One-way electromagnetic waveguide formatted at the interface between a plasmonic metal under a static magnetic field and a photonic crystal,” Phys. Rev. Lett. 100, 023902 (2008).
[CrossRef] [PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

MO one-way waveguide. (a) Steady-state field distribution of E z . The blue and red represent positive and negative fields, respectively. The mode propagates along only one direction (from left to right). (b) Projected band diagram showing the normalized frequencies versus normalized wave vectors for the structure (the red curve represents the guide mode).

Fig. 2
Fig. 2

Band structure of the gyromagnetic PhC (a) without applying an external magnetic field and (b) when applying an external magnetic field of 1600 G . (c) Frequency width of the bandgap between the second band and the third band versus temperature. (d) Center frequency of the bandgap between the second band and the third band versus temperature.

Fig. 3
Fig. 3

(a) Guide mode at 233 (blue curve), 258 (black curve), 283 (yellow curve), 308 (green curve), and 333 K (red curve). (b) and (c) correspond to insets A and B in (a), respectively.

Fig. 4
Fig. 4

Steady-state field distribution of E z at (a) 233, (b) 258, (c) 283, (d) 308, and (e) 333 K .

Fig. 5
Fig. 5

(a) Guide mode at 233 K (green curve) with substrate, at 333 K without substrate (blue curve) or with substrate (red curve). (b) and (c) correspond to insets A and B in (a), respectively.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

ω ( k ) = ω ( k ) .
ω ( k ) ω ( k ) .
μ ( r ) = ( μ ± i k 0 i k μ 0 0 0 μ 0 ) ,
μ = 1 + ω m ( ω 0 i α ω ) ( ω 0 i α ω ) 2 ω 2 , k = ω m ω [ ( ω 0 i α ω ) 2 ω 2 ] ,

Metrics