Abstract

High birefringence induced by rhombic air-hole photonic crystal fibers (PCFs) is numerically analyzed by using the finite-element method. The birefringence of a few kinds of PCFs was investigated with different parameters related to rhombic holes, including the rhombic-hole shape, size, and spacing. It was found that the birefringence of the proposed rhombic-hole PCF in this study is relatively larger than that of an elliptical-hole PCF with the same air-filling fraction (f=0.0375) when the ratio of the rhombic-hole diagonal length is equal to the elliptical-hole ellipticity.

© 2010 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. C. Knight, T. A. Birks, P. S. J. Russell, and D. M. Atkin, “All-silica single-mode optical fiber with photonic crystal cladding,” Opt. Lett. 21, 1547–1549 (1996).
    [CrossRef] [PubMed]
  2. J. C. Knight, “Photonic crystal fibres,” Nature 424, 847–851(2003).
    [CrossRef] [PubMed]
  3. Y.-S. Sun, Y.-F. Chau, H.-H. Yeh, L.-F. Shen, T.-J. Yang, and D. P. Tsai, “High birefringence photonic crystal fiber with a complex unit cell of asymmetric elliptical air hole cladding,” Appl. Opt. 46, 5276–5281 (2007).
    [CrossRef] [PubMed]
  4. D. Chen and G. Wu, “Highly birefringent photonic crystal fiber based on a double-hole unit,” Appl. Opt. 49, 1682–1686 (2010).
    [CrossRef] [PubMed]
  5. D. N. Martin, A. M. Niels, R. F. Jacob, P. Anders, and B. Anders, “Improved all-silica endlessly single-mode photonic crystal fiber,” in Optical Fiber Communication Conference (OFC) (Optical Society of America, 2003), paper FI7.
  6. K. Saitoh, Y. Tsuchida, M. Koshiba, and N. A. Mortensen, “Endlessly single-mode holey fibers: the influence of core design,” Opt. Express 13, 10833–10839 (2005).
    [CrossRef] [PubMed]
  7. K. Saitoh, M. Koshiba, T. Hasegawa, and E. Sasaoka, “Chromatic dispersion control in photonic crystal fibers: application to ultra-flattened dispersion,” Opt. Express 11, 843–852 (2003).
    [CrossRef] [PubMed]
  8. J. C. Baggett, T. M. Monro, K. Furusawa, and D. J. Richardson, “Comparative study of large-mode holey and conventional fibers,” Opt. Lett. 26, 1045–1047 (2001).
    [CrossRef]
  9. W. Belardi, G. Bouwmans, L. Provino, V. Pureur, and M. Douay, “A large mode area elliptical hollow photonic crystal fiber,” in Optical Fiber Communication Conference (OFC)(Optical Society of America, 2006), paper OFC3.
  10. Y. C. Liu and Y. Lai, “Optical birefringence and polarization dependent loss of square- and rectangular-lattice holey fibers with elliptical air holes: numerical analysis,” Opt. Express 13, 225–235 (2005).
    [CrossRef] [PubMed]
  11. J. Ju, W. Jin, and M. S. Demokan, “Design of single-polarization single-mode photonic crystal fiber at 1.30 and 1.55µm,” J. Lightwave Technol. 24, 825–830 (2006).
    [CrossRef]
  12. K. Suzuki, H. Kubota, S. Kawanishi, M. Tanaka, and M. Fujita, “High-speed bi-directional polarisation division multiplexed optical transmission in ultra low-loss (1.3dB/km) polarisation-maintaining photonic crystal fibre,” Electron. Lett. 37, 1399–1401 (2001).
    [CrossRef]
  13. D. Chen and L. Shen, “Highly birefringent elliptical-hole photonic crystal fibers with double defect,” J. Lightwave Technol. 25, 2700–2705 (2007).
    [CrossRef]
  14. A. Ortigosa-Blanch, J. C. Knight, W. J. Wadsworth, J. Arriaga, B. J. Mangan, T. A. Birks, and P. S. J. Russell, “Highly birefringent photonic crystal fibers,” Opt. Lett. 25, 1325–1327 (2000).
    [CrossRef]
  15. M. J. Steel and J. R. M. Osgood, “Elliptical-hole photonic crystal fibers,” Opt. Lett. 26, 229–231 (2001).
    [CrossRef]
  16. Y. Yue, G. Kai, Z. Wang, T. Sun, L. Jin, Y. Lu, C. Zhang, J. Liu, Y. Li, Y. Liu, S. Yuan, and X. Dong, “Highly birefringent elliptical-hole photonic crystal fiber with squeezed hexagonal lattice,” Opt. Lett. 32, 469–471 (2007).
    [CrossRef] [PubMed]
  17. F. Zhang, X. Liu, M. Zhang, and P. Ye, “A novel design for single-polarization single-mode photonic crystal fiber at 1550nm,” Chin. Opt. Lett. 5, 260–263 (2007).
  18. S. Kim, C.-S. Kee, and C. G. Lee, “Modified rectangular lattice photonic crystal fibers with high birefringence and negative dispersion,” Opt. Express 17, 7952–7957 (2009).
    [CrossRef] [PubMed]
  19. M. J. Steel and R. M. Osgood, “Polarization and dispersive properties of elliptical-hole photonic crystal fibers,” J. Lightwave Technol. 19, 495–503 (2001).
    [CrossRef]
  20. F. Brechet, J. Marcou, D. Pagnoux, and P. Roy, “Complete analysis of the characteristics of propagation into photonic crystal fibers, by the finite element method,” Opt. Fiber Technol. 6, 181–191 (2000).
    [CrossRef]
  21. T.-Y. Cho, G.-H. Kim, K.-I. Lee, S.-B. Lee, and J.-M. Jeong, “Study on the fabrication process of polarization maintaining photonic crystal fibers and their optical properties,” J. Opt. Soc. Korea 12, 19–24 (2008).
    [CrossRef]
  22. T. B. Ryan and T. Dennis, “Solgel-derived microstructured fibers: fabrication and characterization,” in Optical Fiber Communication Conference (OFC) (Optical Society of America, 2005), paper OWL6.

2010 (1)

2009 (1)

2008 (1)

2007 (4)

2006 (2)

J. Ju, W. Jin, and M. S. Demokan, “Design of single-polarization single-mode photonic crystal fiber at 1.30 and 1.55µm,” J. Lightwave Technol. 24, 825–830 (2006).
[CrossRef]

W. Belardi, G. Bouwmans, L. Provino, V. Pureur, and M. Douay, “A large mode area elliptical hollow photonic crystal fiber,” in Optical Fiber Communication Conference (OFC)(Optical Society of America, 2006), paper OFC3.

2005 (3)

2003 (3)

K. Saitoh, M. Koshiba, T. Hasegawa, and E. Sasaoka, “Chromatic dispersion control in photonic crystal fibers: application to ultra-flattened dispersion,” Opt. Express 11, 843–852 (2003).
[CrossRef] [PubMed]

D. N. Martin, A. M. Niels, R. F. Jacob, P. Anders, and B. Anders, “Improved all-silica endlessly single-mode photonic crystal fiber,” in Optical Fiber Communication Conference (OFC) (Optical Society of America, 2003), paper FI7.

J. C. Knight, “Photonic crystal fibres,” Nature 424, 847–851(2003).
[CrossRef] [PubMed]

2001 (4)

2000 (2)

F. Brechet, J. Marcou, D. Pagnoux, and P. Roy, “Complete analysis of the characteristics of propagation into photonic crystal fibers, by the finite element method,” Opt. Fiber Technol. 6, 181–191 (2000).
[CrossRef]

A. Ortigosa-Blanch, J. C. Knight, W. J. Wadsworth, J. Arriaga, B. J. Mangan, T. A. Birks, and P. S. J. Russell, “Highly birefringent photonic crystal fibers,” Opt. Lett. 25, 1325–1327 (2000).
[CrossRef]

1996 (1)

Anders, B.

D. N. Martin, A. M. Niels, R. F. Jacob, P. Anders, and B. Anders, “Improved all-silica endlessly single-mode photonic crystal fiber,” in Optical Fiber Communication Conference (OFC) (Optical Society of America, 2003), paper FI7.

Anders, P.

D. N. Martin, A. M. Niels, R. F. Jacob, P. Anders, and B. Anders, “Improved all-silica endlessly single-mode photonic crystal fiber,” in Optical Fiber Communication Conference (OFC) (Optical Society of America, 2003), paper FI7.

Arriaga, J.

Atkin, D. M.

Baggett, J. C.

Belardi, W.

W. Belardi, G. Bouwmans, L. Provino, V. Pureur, and M. Douay, “A large mode area elliptical hollow photonic crystal fiber,” in Optical Fiber Communication Conference (OFC)(Optical Society of America, 2006), paper OFC3.

Birks, T. A.

Bouwmans, G.

W. Belardi, G. Bouwmans, L. Provino, V. Pureur, and M. Douay, “A large mode area elliptical hollow photonic crystal fiber,” in Optical Fiber Communication Conference (OFC)(Optical Society of America, 2006), paper OFC3.

Brechet, F.

F. Brechet, J. Marcou, D. Pagnoux, and P. Roy, “Complete analysis of the characteristics of propagation into photonic crystal fibers, by the finite element method,” Opt. Fiber Technol. 6, 181–191 (2000).
[CrossRef]

Chau, Y.-F.

Chen, D.

Cho, T.-Y.

Demokan, M. S.

Dennis, T.

T. B. Ryan and T. Dennis, “Solgel-derived microstructured fibers: fabrication and characterization,” in Optical Fiber Communication Conference (OFC) (Optical Society of America, 2005), paper OWL6.

Dong, X.

Douay, M.

W. Belardi, G. Bouwmans, L. Provino, V. Pureur, and M. Douay, “A large mode area elliptical hollow photonic crystal fiber,” in Optical Fiber Communication Conference (OFC)(Optical Society of America, 2006), paper OFC3.

Fujita, M.

K. Suzuki, H. Kubota, S. Kawanishi, M. Tanaka, and M. Fujita, “High-speed bi-directional polarisation division multiplexed optical transmission in ultra low-loss (1.3dB/km) polarisation-maintaining photonic crystal fibre,” Electron. Lett. 37, 1399–1401 (2001).
[CrossRef]

Furusawa, K.

Hasegawa, T.

Jacob, R. F.

D. N. Martin, A. M. Niels, R. F. Jacob, P. Anders, and B. Anders, “Improved all-silica endlessly single-mode photonic crystal fiber,” in Optical Fiber Communication Conference (OFC) (Optical Society of America, 2003), paper FI7.

Jeong, J.-M.

Jin, L.

Jin, W.

Ju, J.

Kai, G.

Kawanishi, S.

K. Suzuki, H. Kubota, S. Kawanishi, M. Tanaka, and M. Fujita, “High-speed bi-directional polarisation division multiplexed optical transmission in ultra low-loss (1.3dB/km) polarisation-maintaining photonic crystal fibre,” Electron. Lett. 37, 1399–1401 (2001).
[CrossRef]

Kee, C.-S.

Kim, G.-H.

Kim, S.

Knight, J. C.

Koshiba, M.

Kubota, H.

K. Suzuki, H. Kubota, S. Kawanishi, M. Tanaka, and M. Fujita, “High-speed bi-directional polarisation division multiplexed optical transmission in ultra low-loss (1.3dB/km) polarisation-maintaining photonic crystal fibre,” Electron. Lett. 37, 1399–1401 (2001).
[CrossRef]

Lai, Y.

Lee, C. G.

Lee, K.-I.

Lee, S.-B.

Li, Y.

Liu, J.

Liu, X.

Liu, Y.

Liu, Y. C.

Lu, Y.

Mangan, B. J.

Marcou, J.

F. Brechet, J. Marcou, D. Pagnoux, and P. Roy, “Complete analysis of the characteristics of propagation into photonic crystal fibers, by the finite element method,” Opt. Fiber Technol. 6, 181–191 (2000).
[CrossRef]

Martin, D. N.

D. N. Martin, A. M. Niels, R. F. Jacob, P. Anders, and B. Anders, “Improved all-silica endlessly single-mode photonic crystal fiber,” in Optical Fiber Communication Conference (OFC) (Optical Society of America, 2003), paper FI7.

Monro, T. M.

Mortensen, N. A.

Niels, A. M.

D. N. Martin, A. M. Niels, R. F. Jacob, P. Anders, and B. Anders, “Improved all-silica endlessly single-mode photonic crystal fiber,” in Optical Fiber Communication Conference (OFC) (Optical Society of America, 2003), paper FI7.

Ortigosa-Blanch, A.

Osgood, J. R. M.

Osgood, R. M.

Pagnoux, D.

F. Brechet, J. Marcou, D. Pagnoux, and P. Roy, “Complete analysis of the characteristics of propagation into photonic crystal fibers, by the finite element method,” Opt. Fiber Technol. 6, 181–191 (2000).
[CrossRef]

Provino, L.

W. Belardi, G. Bouwmans, L. Provino, V. Pureur, and M. Douay, “A large mode area elliptical hollow photonic crystal fiber,” in Optical Fiber Communication Conference (OFC)(Optical Society of America, 2006), paper OFC3.

Pureur, V.

W. Belardi, G. Bouwmans, L. Provino, V. Pureur, and M. Douay, “A large mode area elliptical hollow photonic crystal fiber,” in Optical Fiber Communication Conference (OFC)(Optical Society of America, 2006), paper OFC3.

Richardson, D. J.

Roy, P.

F. Brechet, J. Marcou, D. Pagnoux, and P. Roy, “Complete analysis of the characteristics of propagation into photonic crystal fibers, by the finite element method,” Opt. Fiber Technol. 6, 181–191 (2000).
[CrossRef]

Russell, P. S. J.

Ryan, T. B.

T. B. Ryan and T. Dennis, “Solgel-derived microstructured fibers: fabrication and characterization,” in Optical Fiber Communication Conference (OFC) (Optical Society of America, 2005), paper OWL6.

Saitoh, K.

Sasaoka, E.

Shen, L.

Shen, L.-F.

Steel, M. J.

Sun, T.

Sun, Y.-S.

Suzuki, K.

K. Suzuki, H. Kubota, S. Kawanishi, M. Tanaka, and M. Fujita, “High-speed bi-directional polarisation division multiplexed optical transmission in ultra low-loss (1.3dB/km) polarisation-maintaining photonic crystal fibre,” Electron. Lett. 37, 1399–1401 (2001).
[CrossRef]

Tanaka, M.

K. Suzuki, H. Kubota, S. Kawanishi, M. Tanaka, and M. Fujita, “High-speed bi-directional polarisation division multiplexed optical transmission in ultra low-loss (1.3dB/km) polarisation-maintaining photonic crystal fibre,” Electron. Lett. 37, 1399–1401 (2001).
[CrossRef]

Tsai, D. P.

Tsuchida, Y.

Wadsworth, W. J.

Wang, Z.

Wu, G.

Yang, T.-J.

Ye, P.

Yeh, H.-H.

Yuan, S.

Yue, Y.

Zhang, C.

Zhang, F.

Zhang, M.

Appl. Opt. (2)

Chin. Opt. Lett. (1)

Electron. Lett. (1)

K. Suzuki, H. Kubota, S. Kawanishi, M. Tanaka, and M. Fujita, “High-speed bi-directional polarisation division multiplexed optical transmission in ultra low-loss (1.3dB/km) polarisation-maintaining photonic crystal fibre,” Electron. Lett. 37, 1399–1401 (2001).
[CrossRef]

J. Lightwave Technol. (3)

J. Opt. Soc. Korea (1)

Nature (1)

J. C. Knight, “Photonic crystal fibres,” Nature 424, 847–851(2003).
[CrossRef] [PubMed]

Opt. Express (4)

Opt. Fiber Technol. (1)

F. Brechet, J. Marcou, D. Pagnoux, and P. Roy, “Complete analysis of the characteristics of propagation into photonic crystal fibers, by the finite element method,” Opt. Fiber Technol. 6, 181–191 (2000).
[CrossRef]

Opt. Lett. (5)

Other (3)

T. B. Ryan and T. Dennis, “Solgel-derived microstructured fibers: fabrication and characterization,” in Optical Fiber Communication Conference (OFC) (Optical Society of America, 2005), paper OWL6.

D. N. Martin, A. M. Niels, R. F. Jacob, P. Anders, and B. Anders, “Improved all-silica endlessly single-mode photonic crystal fiber,” in Optical Fiber Communication Conference (OFC) (Optical Society of America, 2003), paper FI7.

W. Belardi, G. Bouwmans, L. Provino, V. Pureur, and M. Douay, “A large mode area elliptical hollow photonic crystal fiber,” in Optical Fiber Communication Conference (OFC)(Optical Society of America, 2006), paper OFC3.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

(a) Cross section of the rhombic-hole PCF, (b) one-quarter of the fiber cross section.

Fig. 2
Fig. 2

Birefringence as a function of wavelength for two orthogonal polarization modes with different A ( Λ = 2.48 μm , Γ = ( 3 ) / 2 , γ = 2 ).

Fig. 3
Fig. 3

Birefringence as a function of wavelength for two orthogonal polarization modes with different γ ( A = 0.2 , Γ = ( 3 ) / 2 , Λ = 2.48 ).

Fig. 4
Fig. 4

Birefringence as a function of wavelength for two orthogonal polarization modes with different Λ ( A = 0.2 μ m 2 , Γ = ( 3 ) / 2 , γ = 3 ).

Fig. 5
Fig. 5

Birefringence as a function of wavelength for two orthogonal polarization modes with different Γ ( Λ = 2.48 μm , γ = 3 , A = 0.2 μm 2 ).

Fig. 6
Fig. 6

Intensity distribution profiles of the fundamental modes of a rhombic-hole PCF: (a) x-polarized and (b) y-polarized state.

Fig. 7
Fig. 7

Birefringence property of the proposed rhombic-hole PCF ( γ = 2 , γ = 3 , γ = 5 ) and the elliptical-hole PCF ( η = 2 , η = 3 , η = 5 ).

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

Δ n = n eff y n eff x ,

Metrics