Abstract

We quantitatively investigate the axial imaging properties of dynamic phase-contrast microscopy, with a special focus on typical combinations of tracer particles and magnifications that are used for velocimetry analysis. We show, for the first time, that a dynamic phase-contrast microscope, which is the integration of an all-optical novelty filter in a commercially available inverted microscope, can visualize three- dimensional velocity fields with a significantly reduced optical sectioning depth. The depth of field for dynamic phase-contrast microscopy is extracted from the three-dimensional response function and compared with the respective values for incoherent bright-field illumination. These results are then used to perform a depth-resolved particle image velocimetry analysis of Hagen–Poiseuille as well as electro-osmotically actuated flows in a microchannel.

© 2010 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. B. Kemper, D. Carl, J. Schnekenburger, I. Bredebusch, M. Schaefer, W. Domschke, and G. von Bally, “Investigation of living pancreas tumor cells by digital holographic microscopy,” J. Biomed. Opt. 11, 034005 (2006).
    [CrossRef]
  2. P. Prasad, Introduction to Biophotonics (Wiley-Interscience, 2003).
    [CrossRef]
  3. B. E. Zima-Kulisiewicz and A. Delgado, “Synergetic microorganismic convection generated by Opercularia asymmetrica ciliates living in a colony as effective fluid transport on the micro-scale,” J. Biomech. 42, 2255–2262 (2009).
    [CrossRef] [PubMed]
  4. S. T. Wereley and C. D. Meinhart, “Recent advances in micro-particle image velocimetry,” Annu. Rev. Fluid Mech. 42, 557–576 (2010).
    [CrossRef]
  5. F. Zernike, “How I discovered phase contrast,” Science 121, 345–349 (1955).
    [CrossRef] [PubMed]
  6. J. Gluckstad, “Phase contrast image synthesis,” Opt. Commun. 130, 225–230 (1996).
    [CrossRef]
  7. T. Horio and H. Hotani, “Visualization of the dynamic instability of individual microtubules by dark-field microscopy,” Nature 321, 605–607 (1986).
    [CrossRef] [PubMed]
  8. J. W. Taraskaz and W. N. Zagotta, “Fluorescence applications in molecular neurobiology,” Neuron 66, 170–189 (2010).
    [CrossRef]
  9. P. Houpt and A. Draaijer, A Real-Time Confocal Scanning Microscope for Fluorescence and Reflection, Institute of Physics Conference Series (Institute of Physics, 1990), pp. 639–642.
  10. J.B.Pawley, ed., Handbook of Biological Confocal Microscopy (Springer, 2006).
    [CrossRef]
  11. E. Wang, C. Babbey, and K. Dunn, “Performance comparison between the high-speed Yokogawa spinning disc confocal system and single-point scanning confocal systems,” J. Microsc. Oxford 218, 148–159 (2005).
    [CrossRef]
  12. B. Kemper and G. von Bally, “Digital holographic microscopy for live cell applications and technical inspection,” Appl. Opt. 47, A52–A61 (2008).
    [CrossRef] [PubMed]
  13. J. Garcia-Sucerquia, W. Xu, S. Jericho, P. Klages, M. Jericho, and H. Kreuzer, “Digital in-line holographic microscopy,” Appl. Opt. 45, 836–850 (2006).
    [CrossRef] [PubMed]
  14. F. C. Cheong, B. Sun, R. Dreyfus, J. Amato-Grill, K. Xiao, L. Dixon, and D. G. Grier, “Flow visualization and flow cytometry with holographic video microscopy,” Opt. Express 17, 13071–13079 (2009).
    [CrossRef] [PubMed]
  15. W. Kowalczyk, B. Zima, and A. Delgado, “A biological seeding particle approach for μ-PIV measurements of a fluid flow provoked by microorganisms,” Exp. Fluids 43, 147–150(2007).
    [CrossRef]
  16. C. Meinhart, S. Wereley, and M. Gray, “Volume illumination for two-dimensional particle image velocimetry,” Meas. Sci. Technol. 11, 809–814 (2000).
    [CrossRef]
  17. D. Anderson, D. Lininger, and J. Feinberg, “Optical tracking novelty filter,” Opt. Lett. 12, 123–125 (1987).
    [CrossRef] [PubMed]
  18. P. Yeh, Introduction to Photorefractive Nonlinear Optics(Wiley-Interscience, 1993).
  19. R. Cudney, R. Pierce, and J. Feinberg, “The transient detection microscope,” Nature 332, 424–426 (1988).
    [CrossRef]
  20. P. Yeh, “Fundamental limit of the speed of photorefractive effect and its impact on device applications and material research,” Appl. Opt. 26, 602–604 (1987).
    [CrossRef] [PubMed]
  21. M. Woerdemann, F. Holtmann, and C. Denz, “Full-field particle velocimetry with a photorefractive optical novelty filter,” Appl. Phys. Lett. 93, 021108 (2008).
    [CrossRef]
  22. V. Krishnamachari and C. Denz, “Real-time phase measurement with a photorefractive novelty filter microscope,” J. Opt. A: Pure Appl. Opt. 5, S239–S243 (2003).
    [CrossRef]
  23. V. Krishnamachari and C. Denz, “A phase-triggering technique to extend the phase-measurement range of a photorefractive novelty filter microscope,” Appl. Phys. B 79, 497–501 (2004).
    [CrossRef]
  24. F. Holtmann, M. Eversloh, and C. Denz, “Label-free analysis of microfluidic mixing processes by dynamic phase contrast microscopy,” J. Opt. A: Pure Appl. Opt. 11, 034014(2009).
    [CrossRef]
  25. C. Willert and M. Gharib, “Digital particle image velocimetry,” Exp. Fluids 10, 181–193 (1991).
    [CrossRef]
  26. F. Holtmann, M. Oevermann, and C. Denz, “Dynamic phase-contrast stereoscopy for microflow velocimetry,” Appl. Phys. B 95, 633–636 (2009).
    [CrossRef]
  27. F. Lucas, “The architecture of living cells—recent advances in methods of biological research—optical sectioning with the ultra-violet microscope,” Proc. Natl. Acad. Sci. USA 16, 599–607 (1930).
    [CrossRef] [PubMed]
  28. M. Born and E. Wolf, Principles of Optics (Cambridge University Press, 1999).
  29. S. Inoué and K. Spring, Video Microscopy: the Fundamentals (Plenum, 1997).
    [CrossRef]
  30. M. Klein and R. Schwartz, “Photorefractive effects in BaTiO3: microscopic origins,” J. Opt. Soc. Am. B 3, 293–305(1986).
    [CrossRef]
  31. N. Mori and K.-A. Chang, “mPIV-MATLAB PIV Toolbox.”
  32. N. Nguyen and S. Wereley, Fundamentals and Applications of Microfluidics (Artech House, 2006).
  33. R. F. Probstein, Physicochemical Hydrodynamics (Wiley, 1994).
    [CrossRef]
  34. Y. Xia and G. Whitesides, “Soft lithography,” Annu. Rev. Mater. Sci. 28, 153–184 (1998).
    [CrossRef]
  35. D. Duffy, J. McDonald, O. Schueller, and G. Whitesides, “Rapid prototyping of microfluidic systems in poly(dimethylsiloxane),” Anal. Chem. 70, 4974–4984 (1998).
    [CrossRef] [PubMed]

2010

S. T. Wereley and C. D. Meinhart, “Recent advances in micro-particle image velocimetry,” Annu. Rev. Fluid Mech. 42, 557–576 (2010).
[CrossRef]

J. W. Taraskaz and W. N. Zagotta, “Fluorescence applications in molecular neurobiology,” Neuron 66, 170–189 (2010).
[CrossRef]

2009

B. E. Zima-Kulisiewicz and A. Delgado, “Synergetic microorganismic convection generated by Opercularia asymmetrica ciliates living in a colony as effective fluid transport on the micro-scale,” J. Biomech. 42, 2255–2262 (2009).
[CrossRef] [PubMed]

F. C. Cheong, B. Sun, R. Dreyfus, J. Amato-Grill, K. Xiao, L. Dixon, and D. G. Grier, “Flow visualization and flow cytometry with holographic video microscopy,” Opt. Express 17, 13071–13079 (2009).
[CrossRef] [PubMed]

F. Holtmann, M. Eversloh, and C. Denz, “Label-free analysis of microfluidic mixing processes by dynamic phase contrast microscopy,” J. Opt. A: Pure Appl. Opt. 11, 034014(2009).
[CrossRef]

F. Holtmann, M. Oevermann, and C. Denz, “Dynamic phase-contrast stereoscopy for microflow velocimetry,” Appl. Phys. B 95, 633–636 (2009).
[CrossRef]

2008

M. Woerdemann, F. Holtmann, and C. Denz, “Full-field particle velocimetry with a photorefractive optical novelty filter,” Appl. Phys. Lett. 93, 021108 (2008).
[CrossRef]

B. Kemper and G. von Bally, “Digital holographic microscopy for live cell applications and technical inspection,” Appl. Opt. 47, A52–A61 (2008).
[CrossRef] [PubMed]

2007

W. Kowalczyk, B. Zima, and A. Delgado, “A biological seeding particle approach for μ-PIV measurements of a fluid flow provoked by microorganisms,” Exp. Fluids 43, 147–150(2007).
[CrossRef]

2006

J. Garcia-Sucerquia, W. Xu, S. Jericho, P. Klages, M. Jericho, and H. Kreuzer, “Digital in-line holographic microscopy,” Appl. Opt. 45, 836–850 (2006).
[CrossRef] [PubMed]

B. Kemper, D. Carl, J. Schnekenburger, I. Bredebusch, M. Schaefer, W. Domschke, and G. von Bally, “Investigation of living pancreas tumor cells by digital holographic microscopy,” J. Biomed. Opt. 11, 034005 (2006).
[CrossRef]

2005

E. Wang, C. Babbey, and K. Dunn, “Performance comparison between the high-speed Yokogawa spinning disc confocal system and single-point scanning confocal systems,” J. Microsc. Oxford 218, 148–159 (2005).
[CrossRef]

2004

V. Krishnamachari and C. Denz, “A phase-triggering technique to extend the phase-measurement range of a photorefractive novelty filter microscope,” Appl. Phys. B 79, 497–501 (2004).
[CrossRef]

2003

V. Krishnamachari and C. Denz, “Real-time phase measurement with a photorefractive novelty filter microscope,” J. Opt. A: Pure Appl. Opt. 5, S239–S243 (2003).
[CrossRef]

2000

C. Meinhart, S. Wereley, and M. Gray, “Volume illumination for two-dimensional particle image velocimetry,” Meas. Sci. Technol. 11, 809–814 (2000).
[CrossRef]

1998

Y. Xia and G. Whitesides, “Soft lithography,” Annu. Rev. Mater. Sci. 28, 153–184 (1998).
[CrossRef]

D. Duffy, J. McDonald, O. Schueller, and G. Whitesides, “Rapid prototyping of microfluidic systems in poly(dimethylsiloxane),” Anal. Chem. 70, 4974–4984 (1998).
[CrossRef] [PubMed]

1996

J. Gluckstad, “Phase contrast image synthesis,” Opt. Commun. 130, 225–230 (1996).
[CrossRef]

1991

C. Willert and M. Gharib, “Digital particle image velocimetry,” Exp. Fluids 10, 181–193 (1991).
[CrossRef]

1988

R. Cudney, R. Pierce, and J. Feinberg, “The transient detection microscope,” Nature 332, 424–426 (1988).
[CrossRef]

1987

1986

T. Horio and H. Hotani, “Visualization of the dynamic instability of individual microtubules by dark-field microscopy,” Nature 321, 605–607 (1986).
[CrossRef] [PubMed]

M. Klein and R. Schwartz, “Photorefractive effects in BaTiO3: microscopic origins,” J. Opt. Soc. Am. B 3, 293–305(1986).
[CrossRef]

1955

F. Zernike, “How I discovered phase contrast,” Science 121, 345–349 (1955).
[CrossRef] [PubMed]

1930

F. Lucas, “The architecture of living cells—recent advances in methods of biological research—optical sectioning with the ultra-violet microscope,” Proc. Natl. Acad. Sci. USA 16, 599–607 (1930).
[CrossRef] [PubMed]

Amato-Grill, J.

Anderson, D.

Babbey, C.

E. Wang, C. Babbey, and K. Dunn, “Performance comparison between the high-speed Yokogawa spinning disc confocal system and single-point scanning confocal systems,” J. Microsc. Oxford 218, 148–159 (2005).
[CrossRef]

Born, M.

M. Born and E. Wolf, Principles of Optics (Cambridge University Press, 1999).

Bredebusch, I.

B. Kemper, D. Carl, J. Schnekenburger, I. Bredebusch, M. Schaefer, W. Domschke, and G. von Bally, “Investigation of living pancreas tumor cells by digital holographic microscopy,” J. Biomed. Opt. 11, 034005 (2006).
[CrossRef]

Carl, D.

B. Kemper, D. Carl, J. Schnekenburger, I. Bredebusch, M. Schaefer, W. Domschke, and G. von Bally, “Investigation of living pancreas tumor cells by digital holographic microscopy,” J. Biomed. Opt. 11, 034005 (2006).
[CrossRef]

Chang, K.-A.

N. Mori and K.-A. Chang, “mPIV-MATLAB PIV Toolbox.”

Cheong, F. C.

Cudney, R.

R. Cudney, R. Pierce, and J. Feinberg, “The transient detection microscope,” Nature 332, 424–426 (1988).
[CrossRef]

Delgado, A.

B. E. Zima-Kulisiewicz and A. Delgado, “Synergetic microorganismic convection generated by Opercularia asymmetrica ciliates living in a colony as effective fluid transport on the micro-scale,” J. Biomech. 42, 2255–2262 (2009).
[CrossRef] [PubMed]

W. Kowalczyk, B. Zima, and A. Delgado, “A biological seeding particle approach for μ-PIV measurements of a fluid flow provoked by microorganisms,” Exp. Fluids 43, 147–150(2007).
[CrossRef]

Denz, C.

F. Holtmann, M. Eversloh, and C. Denz, “Label-free analysis of microfluidic mixing processes by dynamic phase contrast microscopy,” J. Opt. A: Pure Appl. Opt. 11, 034014(2009).
[CrossRef]

F. Holtmann, M. Oevermann, and C. Denz, “Dynamic phase-contrast stereoscopy for microflow velocimetry,” Appl. Phys. B 95, 633–636 (2009).
[CrossRef]

M. Woerdemann, F. Holtmann, and C. Denz, “Full-field particle velocimetry with a photorefractive optical novelty filter,” Appl. Phys. Lett. 93, 021108 (2008).
[CrossRef]

V. Krishnamachari and C. Denz, “A phase-triggering technique to extend the phase-measurement range of a photorefractive novelty filter microscope,” Appl. Phys. B 79, 497–501 (2004).
[CrossRef]

V. Krishnamachari and C. Denz, “Real-time phase measurement with a photorefractive novelty filter microscope,” J. Opt. A: Pure Appl. Opt. 5, S239–S243 (2003).
[CrossRef]

Dixon, L.

Domschke, W.

B. Kemper, D. Carl, J. Schnekenburger, I. Bredebusch, M. Schaefer, W. Domschke, and G. von Bally, “Investigation of living pancreas tumor cells by digital holographic microscopy,” J. Biomed. Opt. 11, 034005 (2006).
[CrossRef]

Draaijer, A.

P. Houpt and A. Draaijer, A Real-Time Confocal Scanning Microscope for Fluorescence and Reflection, Institute of Physics Conference Series (Institute of Physics, 1990), pp. 639–642.

Dreyfus, R.

Duffy, D.

D. Duffy, J. McDonald, O. Schueller, and G. Whitesides, “Rapid prototyping of microfluidic systems in poly(dimethylsiloxane),” Anal. Chem. 70, 4974–4984 (1998).
[CrossRef] [PubMed]

Dunn, K.

E. Wang, C. Babbey, and K. Dunn, “Performance comparison between the high-speed Yokogawa spinning disc confocal system and single-point scanning confocal systems,” J. Microsc. Oxford 218, 148–159 (2005).
[CrossRef]

Eversloh, M.

F. Holtmann, M. Eversloh, and C. Denz, “Label-free analysis of microfluidic mixing processes by dynamic phase contrast microscopy,” J. Opt. A: Pure Appl. Opt. 11, 034014(2009).
[CrossRef]

Feinberg, J.

R. Cudney, R. Pierce, and J. Feinberg, “The transient detection microscope,” Nature 332, 424–426 (1988).
[CrossRef]

D. Anderson, D. Lininger, and J. Feinberg, “Optical tracking novelty filter,” Opt. Lett. 12, 123–125 (1987).
[CrossRef] [PubMed]

Garcia-Sucerquia, J.

Gharib, M.

C. Willert and M. Gharib, “Digital particle image velocimetry,” Exp. Fluids 10, 181–193 (1991).
[CrossRef]

Gluckstad, J.

J. Gluckstad, “Phase contrast image synthesis,” Opt. Commun. 130, 225–230 (1996).
[CrossRef]

Gray, M.

C. Meinhart, S. Wereley, and M. Gray, “Volume illumination for two-dimensional particle image velocimetry,” Meas. Sci. Technol. 11, 809–814 (2000).
[CrossRef]

Grier, D. G.

Holtmann, F.

F. Holtmann, M. Oevermann, and C. Denz, “Dynamic phase-contrast stereoscopy for microflow velocimetry,” Appl. Phys. B 95, 633–636 (2009).
[CrossRef]

F. Holtmann, M. Eversloh, and C. Denz, “Label-free analysis of microfluidic mixing processes by dynamic phase contrast microscopy,” J. Opt. A: Pure Appl. Opt. 11, 034014(2009).
[CrossRef]

M. Woerdemann, F. Holtmann, and C. Denz, “Full-field particle velocimetry with a photorefractive optical novelty filter,” Appl. Phys. Lett. 93, 021108 (2008).
[CrossRef]

Horio, T.

T. Horio and H. Hotani, “Visualization of the dynamic instability of individual microtubules by dark-field microscopy,” Nature 321, 605–607 (1986).
[CrossRef] [PubMed]

Hotani, H.

T. Horio and H. Hotani, “Visualization of the dynamic instability of individual microtubules by dark-field microscopy,” Nature 321, 605–607 (1986).
[CrossRef] [PubMed]

Houpt, P.

P. Houpt and A. Draaijer, A Real-Time Confocal Scanning Microscope for Fluorescence and Reflection, Institute of Physics Conference Series (Institute of Physics, 1990), pp. 639–642.

Inoué, S.

S. Inoué and K. Spring, Video Microscopy: the Fundamentals (Plenum, 1997).
[CrossRef]

Jericho, M.

Jericho, S.

Kemper, B.

B. Kemper and G. von Bally, “Digital holographic microscopy for live cell applications and technical inspection,” Appl. Opt. 47, A52–A61 (2008).
[CrossRef] [PubMed]

B. Kemper, D. Carl, J. Schnekenburger, I. Bredebusch, M. Schaefer, W. Domschke, and G. von Bally, “Investigation of living pancreas tumor cells by digital holographic microscopy,” J. Biomed. Opt. 11, 034005 (2006).
[CrossRef]

Klages, P.

Klein, M.

Kowalczyk, W.

W. Kowalczyk, B. Zima, and A. Delgado, “A biological seeding particle approach for μ-PIV measurements of a fluid flow provoked by microorganisms,” Exp. Fluids 43, 147–150(2007).
[CrossRef]

Kreuzer, H.

Krishnamachari, V.

V. Krishnamachari and C. Denz, “A phase-triggering technique to extend the phase-measurement range of a photorefractive novelty filter microscope,” Appl. Phys. B 79, 497–501 (2004).
[CrossRef]

V. Krishnamachari and C. Denz, “Real-time phase measurement with a photorefractive novelty filter microscope,” J. Opt. A: Pure Appl. Opt. 5, S239–S243 (2003).
[CrossRef]

Lininger, D.

Lucas, F.

F. Lucas, “The architecture of living cells—recent advances in methods of biological research—optical sectioning with the ultra-violet microscope,” Proc. Natl. Acad. Sci. USA 16, 599–607 (1930).
[CrossRef] [PubMed]

McDonald, J.

D. Duffy, J. McDonald, O. Schueller, and G. Whitesides, “Rapid prototyping of microfluidic systems in poly(dimethylsiloxane),” Anal. Chem. 70, 4974–4984 (1998).
[CrossRef] [PubMed]

Meinhart, C.

C. Meinhart, S. Wereley, and M. Gray, “Volume illumination for two-dimensional particle image velocimetry,” Meas. Sci. Technol. 11, 809–814 (2000).
[CrossRef]

Meinhart, C. D.

S. T. Wereley and C. D. Meinhart, “Recent advances in micro-particle image velocimetry,” Annu. Rev. Fluid Mech. 42, 557–576 (2010).
[CrossRef]

Mori, N.

N. Mori and K.-A. Chang, “mPIV-MATLAB PIV Toolbox.”

Nguyen, N.

N. Nguyen and S. Wereley, Fundamentals and Applications of Microfluidics (Artech House, 2006).

Oevermann, M.

F. Holtmann, M. Oevermann, and C. Denz, “Dynamic phase-contrast stereoscopy for microflow velocimetry,” Appl. Phys. B 95, 633–636 (2009).
[CrossRef]

Pierce, R.

R. Cudney, R. Pierce, and J. Feinberg, “The transient detection microscope,” Nature 332, 424–426 (1988).
[CrossRef]

Prasad, P.

P. Prasad, Introduction to Biophotonics (Wiley-Interscience, 2003).
[CrossRef]

Probstein, R. F.

R. F. Probstein, Physicochemical Hydrodynamics (Wiley, 1994).
[CrossRef]

Schaefer, M.

B. Kemper, D. Carl, J. Schnekenburger, I. Bredebusch, M. Schaefer, W. Domschke, and G. von Bally, “Investigation of living pancreas tumor cells by digital holographic microscopy,” J. Biomed. Opt. 11, 034005 (2006).
[CrossRef]

Schnekenburger, J.

B. Kemper, D. Carl, J. Schnekenburger, I. Bredebusch, M. Schaefer, W. Domschke, and G. von Bally, “Investigation of living pancreas tumor cells by digital holographic microscopy,” J. Biomed. Opt. 11, 034005 (2006).
[CrossRef]

Schueller, O.

D. Duffy, J. McDonald, O. Schueller, and G. Whitesides, “Rapid prototyping of microfluidic systems in poly(dimethylsiloxane),” Anal. Chem. 70, 4974–4984 (1998).
[CrossRef] [PubMed]

Schwartz, R.

Spring, K.

S. Inoué and K. Spring, Video Microscopy: the Fundamentals (Plenum, 1997).
[CrossRef]

Sun, B.

Taraskaz, J. W.

J. W. Taraskaz and W. N. Zagotta, “Fluorescence applications in molecular neurobiology,” Neuron 66, 170–189 (2010).
[CrossRef]

von Bally, G.

B. Kemper and G. von Bally, “Digital holographic microscopy for live cell applications and technical inspection,” Appl. Opt. 47, A52–A61 (2008).
[CrossRef] [PubMed]

B. Kemper, D. Carl, J. Schnekenburger, I. Bredebusch, M. Schaefer, W. Domschke, and G. von Bally, “Investigation of living pancreas tumor cells by digital holographic microscopy,” J. Biomed. Opt. 11, 034005 (2006).
[CrossRef]

Wang, E.

E. Wang, C. Babbey, and K. Dunn, “Performance comparison between the high-speed Yokogawa spinning disc confocal system and single-point scanning confocal systems,” J. Microsc. Oxford 218, 148–159 (2005).
[CrossRef]

Wereley, S.

C. Meinhart, S. Wereley, and M. Gray, “Volume illumination for two-dimensional particle image velocimetry,” Meas. Sci. Technol. 11, 809–814 (2000).
[CrossRef]

N. Nguyen and S. Wereley, Fundamentals and Applications of Microfluidics (Artech House, 2006).

Wereley, S. T.

S. T. Wereley and C. D. Meinhart, “Recent advances in micro-particle image velocimetry,” Annu. Rev. Fluid Mech. 42, 557–576 (2010).
[CrossRef]

Whitesides, G.

D. Duffy, J. McDonald, O. Schueller, and G. Whitesides, “Rapid prototyping of microfluidic systems in poly(dimethylsiloxane),” Anal. Chem. 70, 4974–4984 (1998).
[CrossRef] [PubMed]

Y. Xia and G. Whitesides, “Soft lithography,” Annu. Rev. Mater. Sci. 28, 153–184 (1998).
[CrossRef]

Willert, C.

C. Willert and M. Gharib, “Digital particle image velocimetry,” Exp. Fluids 10, 181–193 (1991).
[CrossRef]

Woerdemann, M.

M. Woerdemann, F. Holtmann, and C. Denz, “Full-field particle velocimetry with a photorefractive optical novelty filter,” Appl. Phys. Lett. 93, 021108 (2008).
[CrossRef]

Wolf, E.

M. Born and E. Wolf, Principles of Optics (Cambridge University Press, 1999).

Xia, Y.

Y. Xia and G. Whitesides, “Soft lithography,” Annu. Rev. Mater. Sci. 28, 153–184 (1998).
[CrossRef]

Xiao, K.

Xu, W.

Yeh, P.

Zagotta, W. N.

J. W. Taraskaz and W. N. Zagotta, “Fluorescence applications in molecular neurobiology,” Neuron 66, 170–189 (2010).
[CrossRef]

Zernike, F.

F. Zernike, “How I discovered phase contrast,” Science 121, 345–349 (1955).
[CrossRef] [PubMed]

Zima, B.

W. Kowalczyk, B. Zima, and A. Delgado, “A biological seeding particle approach for μ-PIV measurements of a fluid flow provoked by microorganisms,” Exp. Fluids 43, 147–150(2007).
[CrossRef]

Zima-Kulisiewicz, B. E.

B. E. Zima-Kulisiewicz and A. Delgado, “Synergetic microorganismic convection generated by Opercularia asymmetrica ciliates living in a colony as effective fluid transport on the micro-scale,” J. Biomech. 42, 2255–2262 (2009).
[CrossRef] [PubMed]

Anal. Chem.

D. Duffy, J. McDonald, O. Schueller, and G. Whitesides, “Rapid prototyping of microfluidic systems in poly(dimethylsiloxane),” Anal. Chem. 70, 4974–4984 (1998).
[CrossRef] [PubMed]

Annu. Rev. Fluid Mech.

S. T. Wereley and C. D. Meinhart, “Recent advances in micro-particle image velocimetry,” Annu. Rev. Fluid Mech. 42, 557–576 (2010).
[CrossRef]

Annu. Rev. Mater. Sci.

Y. Xia and G. Whitesides, “Soft lithography,” Annu. Rev. Mater. Sci. 28, 153–184 (1998).
[CrossRef]

Appl. Opt.

Appl. Phys. B

F. Holtmann, M. Oevermann, and C. Denz, “Dynamic phase-contrast stereoscopy for microflow velocimetry,” Appl. Phys. B 95, 633–636 (2009).
[CrossRef]

V. Krishnamachari and C. Denz, “A phase-triggering technique to extend the phase-measurement range of a photorefractive novelty filter microscope,” Appl. Phys. B 79, 497–501 (2004).
[CrossRef]

Appl. Phys. Lett.

M. Woerdemann, F. Holtmann, and C. Denz, “Full-field particle velocimetry with a photorefractive optical novelty filter,” Appl. Phys. Lett. 93, 021108 (2008).
[CrossRef]

Exp. Fluids

C. Willert and M. Gharib, “Digital particle image velocimetry,” Exp. Fluids 10, 181–193 (1991).
[CrossRef]

W. Kowalczyk, B. Zima, and A. Delgado, “A biological seeding particle approach for μ-PIV measurements of a fluid flow provoked by microorganisms,” Exp. Fluids 43, 147–150(2007).
[CrossRef]

J. Biomech.

B. E. Zima-Kulisiewicz and A. Delgado, “Synergetic microorganismic convection generated by Opercularia asymmetrica ciliates living in a colony as effective fluid transport on the micro-scale,” J. Biomech. 42, 2255–2262 (2009).
[CrossRef] [PubMed]

J. Biomed. Opt.

B. Kemper, D. Carl, J. Schnekenburger, I. Bredebusch, M. Schaefer, W. Domschke, and G. von Bally, “Investigation of living pancreas tumor cells by digital holographic microscopy,” J. Biomed. Opt. 11, 034005 (2006).
[CrossRef]

J. Microsc. Oxford

E. Wang, C. Babbey, and K. Dunn, “Performance comparison between the high-speed Yokogawa spinning disc confocal system and single-point scanning confocal systems,” J. Microsc. Oxford 218, 148–159 (2005).
[CrossRef]

J. Opt. A: Pure Appl. Opt.

V. Krishnamachari and C. Denz, “Real-time phase measurement with a photorefractive novelty filter microscope,” J. Opt. A: Pure Appl. Opt. 5, S239–S243 (2003).
[CrossRef]

F. Holtmann, M. Eversloh, and C. Denz, “Label-free analysis of microfluidic mixing processes by dynamic phase contrast microscopy,” J. Opt. A: Pure Appl. Opt. 11, 034014(2009).
[CrossRef]

J. Opt. Soc. Am. B

Meas. Sci. Technol.

C. Meinhart, S. Wereley, and M. Gray, “Volume illumination for two-dimensional particle image velocimetry,” Meas. Sci. Technol. 11, 809–814 (2000).
[CrossRef]

Nature

T. Horio and H. Hotani, “Visualization of the dynamic instability of individual microtubules by dark-field microscopy,” Nature 321, 605–607 (1986).
[CrossRef] [PubMed]

R. Cudney, R. Pierce, and J. Feinberg, “The transient detection microscope,” Nature 332, 424–426 (1988).
[CrossRef]

Neuron

J. W. Taraskaz and W. N. Zagotta, “Fluorescence applications in molecular neurobiology,” Neuron 66, 170–189 (2010).
[CrossRef]

Opt. Commun.

J. Gluckstad, “Phase contrast image synthesis,” Opt. Commun. 130, 225–230 (1996).
[CrossRef]

Opt. Express

Opt. Lett.

Proc. Natl. Acad. Sci. USA

F. Lucas, “The architecture of living cells—recent advances in methods of biological research—optical sectioning with the ultra-violet microscope,” Proc. Natl. Acad. Sci. USA 16, 599–607 (1930).
[CrossRef] [PubMed]

Science

F. Zernike, “How I discovered phase contrast,” Science 121, 345–349 (1955).
[CrossRef] [PubMed]

Other

P. Prasad, Introduction to Biophotonics (Wiley-Interscience, 2003).
[CrossRef]

P. Houpt and A. Draaijer, A Real-Time Confocal Scanning Microscope for Fluorescence and Reflection, Institute of Physics Conference Series (Institute of Physics, 1990), pp. 639–642.

J.B.Pawley, ed., Handbook of Biological Confocal Microscopy (Springer, 2006).
[CrossRef]

P. Yeh, Introduction to Photorefractive Nonlinear Optics(Wiley-Interscience, 1993).

M. Born and E. Wolf, Principles of Optics (Cambridge University Press, 1999).

S. Inoué and K. Spring, Video Microscopy: the Fundamentals (Plenum, 1997).
[CrossRef]

N. Mori and K.-A. Chang, “mPIV-MATLAB PIV Toolbox.”

N. Nguyen and S. Wereley, Fundamentals and Applications of Microfluidics (Artech House, 2006).

R. F. Probstein, Physicochemical Hydrodynamics (Wiley, 1994).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1

Experimental setup for measurement of the PRF.

Fig. 2
Fig. 2

Schematic workflow for composition of the z stack and z cut from fluorescent particle images.

Fig. 3
Fig. 3

PRF and z cut of dynamic phase-contrast setup with incoherent illumination (a) and (b) and in DynPCM mode [(c) and (d)]: magnification, 10 × ; NA, 0.25; and particle size, 1 μm .

Fig. 4
Fig. 4

Particle-response function and z cut of dynamic phase-contrast setup with incoherent illumination (a) and (b) and in DynPCM mode [(c) and (d)]: magnification, 20 × ; NA, 0.45; and particle size 1 μm .

Fig. 5
Fig. 5

Particle-response function and z cut of dynamic phase-contrast setup with incoherent illumination (a) and (b) and in DynPCM mode [(c) and (d)]: magnification, 60 × ; NA, 0.70; and particle size 0.725 μm .

Fig. 6
Fig. 6

Basic layout of electrophoresis microchannel and measurement area (circle) with obstruction.

Fig. 7
Fig. 7

Flow profile inside the CE microchannel at z = 10 μm ; note the erroneous area in the circle, where the PIV algorithm was unable to determine valid velocity vectors.

Fig. 8
Fig. 8

Depth-resolved velocity profile of the flow in the CE microchannel: axial separation between velocity errors, 2 μm .

Fig. 9
Fig. 9

Velocity profile of the EOF at a distance of 5.3 μm from the bottom of the channel.

Fig. 10
Fig. 10

Mean velocity in the electro-osmosis channel at different heights; error bars indicate standard deviation.

Tables (1)

Tables Icon

Table 1 Depth of Field and Signal-to-Noise Ratio for Incoherent Illumination and DynPCM

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

I ( u ) = I 0 sin ( u 4 ) u 4 ,
Δ z = ± 3.2 λ 2 π ( f a ) 2 ± λ 2 ( f a ) 2 .
δ z = 2 Δ z n λ 0 NA 2 .

Metrics