Abstract

We report the fabrication of textured metal surfaces by ultrafast laser processing and its optical property characterization by measurement of reflection and scattering as a function of angle and wavelength. The ultrafast laser textured metal surface reflection combined with scattering can be reduced to low values of 3% over a broad spectral and angular range. Furthermore, it is shown that surface optical reflection and scattering can be varied by parameters like laser fluence, number of laser pulses, and coating the textured surfaces with suitable absorbers. It is also shown that ultrafast laser textured metal surfaces can have low surface reflection and scattering properties even at high temperatures (500°C) of operation.

© 2010 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. U. Bernini, U. B. Vetrella, A. Cutolo, I. de lorio, V. Tagliaferri, and E. Terzini, “Absorptance enhancement for laser metal processing: application to steel samples,” Appl. Opt. 26, 4722–4730 (1987).
    [CrossRef] [PubMed]
  2. E. Izhak, “State of the art in laser surface texturing,” J. Tribol. 127, 248–253 (2005).
    [CrossRef]
  3. S. M. Pompea and R. P. Breault, “Characterization and use of black surfaces for optical systems,” in Handbook of Optics, Volume IV: Optical Properties of Materials, Nonlinear Optics, Quantum, and Molecular Optics, 3rd ed., M.Bass, C.DeCusatis, J.Enoch, V.Lakshminarayanan, G.Li, C.MacDonald, V.Mahajan, and E. Van Stryland, eds. (Optical Society of America, 2009), pp. 6.1–6.67.
  4. S. R. Meier, “Reflectance and scattering properties of highly absorbing black appliques over a broadband spectral region,” Appl. Opt. 40, 6260–6264 (2001).
    [CrossRef]
  5. Z.-P. Yang, L. Ci, J. A. Bur, S.-Y. Lin, and P. M. Ajayan, “Experimental observation of an extremely dark material made by a low-density nanotube array,” Nano Lett. 8, 446–451(2008).
    [CrossRef] [PubMed]
  6. K. Mizuno, J. Ishii, H. Kishida, Y. Hayamizu, S. Yasuda, D. N. Futaba, M. Yumura, and K. Hata, “A black body absorber from vertically aligned single-walled carbon nanotubes,” Proc. Natl. Acad. Sci. USA 106, 6044–6047 (2009).
    [CrossRef] [PubMed]
  7. A. Y. Vorobyev and C. Guo, “Enhanced absorptance of gold following multipulse femtosecond laser ablation,” Phys. Rev. B 72, 195422 (2005).
    [CrossRef]
  8. B. K. Nayak and M. C. Gupta, “Self-organized micro/nano structures in metal surfaces by ultrafast laser irradiation,” Opt. Lasers Eng. 48, 940–949 (2010).
    [CrossRef]
  9. D. B. Betts, F. J. J. Clarke, L. J. Cox, and J. A. Larkin, “Infrared reflection properties of five types of black coating for radiometric detectors,” J. Phys. E 18, 689 (1985).
    [CrossRef]
  10. M. R. Dury, T. Theocharous, N. Harrison, N. Fox, and M. Hilton, “Common black coatings—reflectance and aging characteristics in the 0.32–14.3 υm wavelength range,” Opt. Commun. 270, 262–272 (2007).
    [CrossRef]
  11. S. M. Pompea, D. W. Bergener, D. F. Shepard, S. Russak, and W. L. Wolfe, “Reflectance measurements on an improved optical black for stray light rejection from 0.3 to 500 μm,” Opt. Eng. 23, 149–152 (1984).
  12. N. P. Harder and P. Wurfel, “Theoretical limits of thermophotovoltaic solar energy conversion,” Semicond. Sci. Technol. 18, S151–S157 (2003).
    [CrossRef]
  13. E. Rephaeli and S. Fan, “Tungsten black absorber for solar light with wide angular operation range,” Appl. Phys. Lett. 92, 211107 (2008).
    [CrossRef]
  14. A. Lasagni, F. Mücklich, M. R. Nejati, and R. Clasen, “Periodical surface structuring of metals by laser interference metallurgy as a new fabrication method of textured solar selective absorbers,” Adv. Eng. Mater. 8, 580–584 (2006).
    [CrossRef]
  15. A. Y. Vorobyev, V. S. Makin, and C. Guo, “Brighter light sources from black metal: Significant increase in emission efficiency of incandescent light sources,” Phys. Rev. Lett. 102, 234301(2009).
    [CrossRef] [PubMed]
  16. P. G. Maloney, P. Smith, V. King, C. Billman, M. Winkler, and E. Mazur, “Emissivity of microstructured silicon,” Appl. Opt. 49, 1065–1068 (2010).
    [CrossRef] [PubMed]
  17. B. K. Nayak, M. C. Gupta, and K. W. Kolasinski, “Ultrafast-laser-assisted chemical restructuring of silicon and germanium surfaces,” Appl. Surf. Sci. 253, 6580–6583 (2007).
    [CrossRef]
  18. B. K. Nayak, M. C. Gupta, and K. W. Kolasinski, “Formation of nano-textured conical microstructures in titanium metal surface by femtosecond laser irradiation,” Appl. Phys. A 90, 399–402 (2008).
    [CrossRef]
  19. H. Bao, X. Ruan, and T. S. Fisher, “Optical properties of ordered vertical arrays of multi-walled carbon nanotubes from FDTD simulations,” Opt. Express 18, 6347–6359 (2010).
    [CrossRef] [PubMed]
  20. P. Vanlaeke, A. Swinnen, I. Haeldermans, G. Vanhoyland, T. Aernouts, D. Cheyns, C. Deibel, J. D’Haen, P. Heremans, J. Poortmans, and J. V. Manca, “P3HT/PCBM bulk heterojunction solar cells: relation between morphology and electro-optical characteristics,” Sol. Energy Mater. Sol. Cells 90, 2150–2158 (2006).
    [CrossRef]
  21. A. Y. Vorobyev and C. Guo, “Effects of nanostructure-covered femtosecond laser-induced periodic surface structures on optical absorptance of metals,” Appl. Phys. A 86, 321–324 (2007).
    [CrossRef]
  22. J. Kaakkunen, K. Paivasaari, M. Kuittinen, and T. Jaaskelainen, “Morphology studies of the metal surfaces with enhanced absorption fabricated using interferometric femtosecond ablation,” Appl. Phys. A 94, 215–220 (2009).
    [CrossRef]

2010 (3)

2009 (3)

J. Kaakkunen, K. Paivasaari, M. Kuittinen, and T. Jaaskelainen, “Morphology studies of the metal surfaces with enhanced absorption fabricated using interferometric femtosecond ablation,” Appl. Phys. A 94, 215–220 (2009).
[CrossRef]

A. Y. Vorobyev, V. S. Makin, and C. Guo, “Brighter light sources from black metal: Significant increase in emission efficiency of incandescent light sources,” Phys. Rev. Lett. 102, 234301(2009).
[CrossRef] [PubMed]

K. Mizuno, J. Ishii, H. Kishida, Y. Hayamizu, S. Yasuda, D. N. Futaba, M. Yumura, and K. Hata, “A black body absorber from vertically aligned single-walled carbon nanotubes,” Proc. Natl. Acad. Sci. USA 106, 6044–6047 (2009).
[CrossRef] [PubMed]

2008 (3)

Z.-P. Yang, L. Ci, J. A. Bur, S.-Y. Lin, and P. M. Ajayan, “Experimental observation of an extremely dark material made by a low-density nanotube array,” Nano Lett. 8, 446–451(2008).
[CrossRef] [PubMed]

E. Rephaeli and S. Fan, “Tungsten black absorber for solar light with wide angular operation range,” Appl. Phys. Lett. 92, 211107 (2008).
[CrossRef]

B. K. Nayak, M. C. Gupta, and K. W. Kolasinski, “Formation of nano-textured conical microstructures in titanium metal surface by femtosecond laser irradiation,” Appl. Phys. A 90, 399–402 (2008).
[CrossRef]

2007 (3)

A. Y. Vorobyev and C. Guo, “Effects of nanostructure-covered femtosecond laser-induced periodic surface structures on optical absorptance of metals,” Appl. Phys. A 86, 321–324 (2007).
[CrossRef]

M. R. Dury, T. Theocharous, N. Harrison, N. Fox, and M. Hilton, “Common black coatings—reflectance and aging characteristics in the 0.32–14.3 υm wavelength range,” Opt. Commun. 270, 262–272 (2007).
[CrossRef]

B. K. Nayak, M. C. Gupta, and K. W. Kolasinski, “Ultrafast-laser-assisted chemical restructuring of silicon and germanium surfaces,” Appl. Surf. Sci. 253, 6580–6583 (2007).
[CrossRef]

2006 (2)

A. Lasagni, F. Mücklich, M. R. Nejati, and R. Clasen, “Periodical surface structuring of metals by laser interference metallurgy as a new fabrication method of textured solar selective absorbers,” Adv. Eng. Mater. 8, 580–584 (2006).
[CrossRef]

P. Vanlaeke, A. Swinnen, I. Haeldermans, G. Vanhoyland, T. Aernouts, D. Cheyns, C. Deibel, J. D’Haen, P. Heremans, J. Poortmans, and J. V. Manca, “P3HT/PCBM bulk heterojunction solar cells: relation between morphology and electro-optical characteristics,” Sol. Energy Mater. Sol. Cells 90, 2150–2158 (2006).
[CrossRef]

2005 (2)

E. Izhak, “State of the art in laser surface texturing,” J. Tribol. 127, 248–253 (2005).
[CrossRef]

A. Y. Vorobyev and C. Guo, “Enhanced absorptance of gold following multipulse femtosecond laser ablation,” Phys. Rev. B 72, 195422 (2005).
[CrossRef]

2003 (1)

N. P. Harder and P. Wurfel, “Theoretical limits of thermophotovoltaic solar energy conversion,” Semicond. Sci. Technol. 18, S151–S157 (2003).
[CrossRef]

2001 (1)

1987 (1)

1985 (1)

D. B. Betts, F. J. J. Clarke, L. J. Cox, and J. A. Larkin, “Infrared reflection properties of five types of black coating for radiometric detectors,” J. Phys. E 18, 689 (1985).
[CrossRef]

1984 (1)

S. M. Pompea, D. W. Bergener, D. F. Shepard, S. Russak, and W. L. Wolfe, “Reflectance measurements on an improved optical black for stray light rejection from 0.3 to 500 μm,” Opt. Eng. 23, 149–152 (1984).

Aernouts, T.

P. Vanlaeke, A. Swinnen, I. Haeldermans, G. Vanhoyland, T. Aernouts, D. Cheyns, C. Deibel, J. D’Haen, P. Heremans, J. Poortmans, and J. V. Manca, “P3HT/PCBM bulk heterojunction solar cells: relation between morphology and electro-optical characteristics,” Sol. Energy Mater. Sol. Cells 90, 2150–2158 (2006).
[CrossRef]

Ajayan, P. M.

Z.-P. Yang, L. Ci, J. A. Bur, S.-Y. Lin, and P. M. Ajayan, “Experimental observation of an extremely dark material made by a low-density nanotube array,” Nano Lett. 8, 446–451(2008).
[CrossRef] [PubMed]

Bao, H.

Bergener, D. W.

S. M. Pompea, D. W. Bergener, D. F. Shepard, S. Russak, and W. L. Wolfe, “Reflectance measurements on an improved optical black for stray light rejection from 0.3 to 500 μm,” Opt. Eng. 23, 149–152 (1984).

Bernini, U.

Betts, D. B.

D. B. Betts, F. J. J. Clarke, L. J. Cox, and J. A. Larkin, “Infrared reflection properties of five types of black coating for radiometric detectors,” J. Phys. E 18, 689 (1985).
[CrossRef]

Billman, C.

Breault, R. P.

S. M. Pompea and R. P. Breault, “Characterization and use of black surfaces for optical systems,” in Handbook of Optics, Volume IV: Optical Properties of Materials, Nonlinear Optics, Quantum, and Molecular Optics, 3rd ed., M.Bass, C.DeCusatis, J.Enoch, V.Lakshminarayanan, G.Li, C.MacDonald, V.Mahajan, and E. Van Stryland, eds. (Optical Society of America, 2009), pp. 6.1–6.67.

Bur, J. A.

Z.-P. Yang, L. Ci, J. A. Bur, S.-Y. Lin, and P. M. Ajayan, “Experimental observation of an extremely dark material made by a low-density nanotube array,” Nano Lett. 8, 446–451(2008).
[CrossRef] [PubMed]

Cheyns, D.

P. Vanlaeke, A. Swinnen, I. Haeldermans, G. Vanhoyland, T. Aernouts, D. Cheyns, C. Deibel, J. D’Haen, P. Heremans, J. Poortmans, and J. V. Manca, “P3HT/PCBM bulk heterojunction solar cells: relation between morphology and electro-optical characteristics,” Sol. Energy Mater. Sol. Cells 90, 2150–2158 (2006).
[CrossRef]

Ci, L.

Z.-P. Yang, L. Ci, J. A. Bur, S.-Y. Lin, and P. M. Ajayan, “Experimental observation of an extremely dark material made by a low-density nanotube array,” Nano Lett. 8, 446–451(2008).
[CrossRef] [PubMed]

Clarke, F. J. J.

D. B. Betts, F. J. J. Clarke, L. J. Cox, and J. A. Larkin, “Infrared reflection properties of five types of black coating for radiometric detectors,” J. Phys. E 18, 689 (1985).
[CrossRef]

Clasen, R.

A. Lasagni, F. Mücklich, M. R. Nejati, and R. Clasen, “Periodical surface structuring of metals by laser interference metallurgy as a new fabrication method of textured solar selective absorbers,” Adv. Eng. Mater. 8, 580–584 (2006).
[CrossRef]

Cox, L. J.

D. B. Betts, F. J. J. Clarke, L. J. Cox, and J. A. Larkin, “Infrared reflection properties of five types of black coating for radiometric detectors,” J. Phys. E 18, 689 (1985).
[CrossRef]

Cutolo, A.

D’Haen, J.

P. Vanlaeke, A. Swinnen, I. Haeldermans, G. Vanhoyland, T. Aernouts, D. Cheyns, C. Deibel, J. D’Haen, P. Heremans, J. Poortmans, and J. V. Manca, “P3HT/PCBM bulk heterojunction solar cells: relation between morphology and electro-optical characteristics,” Sol. Energy Mater. Sol. Cells 90, 2150–2158 (2006).
[CrossRef]

de lorio, I.

Deibel, C.

P. Vanlaeke, A. Swinnen, I. Haeldermans, G. Vanhoyland, T. Aernouts, D. Cheyns, C. Deibel, J. D’Haen, P. Heremans, J. Poortmans, and J. V. Manca, “P3HT/PCBM bulk heterojunction solar cells: relation between morphology and electro-optical characteristics,” Sol. Energy Mater. Sol. Cells 90, 2150–2158 (2006).
[CrossRef]

Dury, M. R.

M. R. Dury, T. Theocharous, N. Harrison, N. Fox, and M. Hilton, “Common black coatings—reflectance and aging characteristics in the 0.32–14.3 υm wavelength range,” Opt. Commun. 270, 262–272 (2007).
[CrossRef]

Fan, S.

E. Rephaeli and S. Fan, “Tungsten black absorber for solar light with wide angular operation range,” Appl. Phys. Lett. 92, 211107 (2008).
[CrossRef]

Fisher, T. S.

Fox, N.

M. R. Dury, T. Theocharous, N. Harrison, N. Fox, and M. Hilton, “Common black coatings—reflectance and aging characteristics in the 0.32–14.3 υm wavelength range,” Opt. Commun. 270, 262–272 (2007).
[CrossRef]

Futaba, D. N.

K. Mizuno, J. Ishii, H. Kishida, Y. Hayamizu, S. Yasuda, D. N. Futaba, M. Yumura, and K. Hata, “A black body absorber from vertically aligned single-walled carbon nanotubes,” Proc. Natl. Acad. Sci. USA 106, 6044–6047 (2009).
[CrossRef] [PubMed]

Guo, C.

A. Y. Vorobyev, V. S. Makin, and C. Guo, “Brighter light sources from black metal: Significant increase in emission efficiency of incandescent light sources,” Phys. Rev. Lett. 102, 234301(2009).
[CrossRef] [PubMed]

A. Y. Vorobyev and C. Guo, “Effects of nanostructure-covered femtosecond laser-induced periodic surface structures on optical absorptance of metals,” Appl. Phys. A 86, 321–324 (2007).
[CrossRef]

A. Y. Vorobyev and C. Guo, “Enhanced absorptance of gold following multipulse femtosecond laser ablation,” Phys. Rev. B 72, 195422 (2005).
[CrossRef]

Gupta, M. C.

B. K. Nayak and M. C. Gupta, “Self-organized micro/nano structures in metal surfaces by ultrafast laser irradiation,” Opt. Lasers Eng. 48, 940–949 (2010).
[CrossRef]

B. K. Nayak, M. C. Gupta, and K. W. Kolasinski, “Formation of nano-textured conical microstructures in titanium metal surface by femtosecond laser irradiation,” Appl. Phys. A 90, 399–402 (2008).
[CrossRef]

B. K. Nayak, M. C. Gupta, and K. W. Kolasinski, “Ultrafast-laser-assisted chemical restructuring of silicon and germanium surfaces,” Appl. Surf. Sci. 253, 6580–6583 (2007).
[CrossRef]

Haeldermans, I.

P. Vanlaeke, A. Swinnen, I. Haeldermans, G. Vanhoyland, T. Aernouts, D. Cheyns, C. Deibel, J. D’Haen, P. Heremans, J. Poortmans, and J. V. Manca, “P3HT/PCBM bulk heterojunction solar cells: relation between morphology and electro-optical characteristics,” Sol. Energy Mater. Sol. Cells 90, 2150–2158 (2006).
[CrossRef]

Harder, N. P.

N. P. Harder and P. Wurfel, “Theoretical limits of thermophotovoltaic solar energy conversion,” Semicond. Sci. Technol. 18, S151–S157 (2003).
[CrossRef]

Harrison, N.

M. R. Dury, T. Theocharous, N. Harrison, N. Fox, and M. Hilton, “Common black coatings—reflectance and aging characteristics in the 0.32–14.3 υm wavelength range,” Opt. Commun. 270, 262–272 (2007).
[CrossRef]

Hata, K.

K. Mizuno, J. Ishii, H. Kishida, Y. Hayamizu, S. Yasuda, D. N. Futaba, M. Yumura, and K. Hata, “A black body absorber from vertically aligned single-walled carbon nanotubes,” Proc. Natl. Acad. Sci. USA 106, 6044–6047 (2009).
[CrossRef] [PubMed]

Hayamizu, Y.

K. Mizuno, J. Ishii, H. Kishida, Y. Hayamizu, S. Yasuda, D. N. Futaba, M. Yumura, and K. Hata, “A black body absorber from vertically aligned single-walled carbon nanotubes,” Proc. Natl. Acad. Sci. USA 106, 6044–6047 (2009).
[CrossRef] [PubMed]

Heremans, P.

P. Vanlaeke, A. Swinnen, I. Haeldermans, G. Vanhoyland, T. Aernouts, D. Cheyns, C. Deibel, J. D’Haen, P. Heremans, J. Poortmans, and J. V. Manca, “P3HT/PCBM bulk heterojunction solar cells: relation between morphology and electro-optical characteristics,” Sol. Energy Mater. Sol. Cells 90, 2150–2158 (2006).
[CrossRef]

Hilton, M.

M. R. Dury, T. Theocharous, N. Harrison, N. Fox, and M. Hilton, “Common black coatings—reflectance and aging characteristics in the 0.32–14.3 υm wavelength range,” Opt. Commun. 270, 262–272 (2007).
[CrossRef]

Ishii, J.

K. Mizuno, J. Ishii, H. Kishida, Y. Hayamizu, S. Yasuda, D. N. Futaba, M. Yumura, and K. Hata, “A black body absorber from vertically aligned single-walled carbon nanotubes,” Proc. Natl. Acad. Sci. USA 106, 6044–6047 (2009).
[CrossRef] [PubMed]

Izhak, E.

E. Izhak, “State of the art in laser surface texturing,” J. Tribol. 127, 248–253 (2005).
[CrossRef]

Jaaskelainen, T.

J. Kaakkunen, K. Paivasaari, M. Kuittinen, and T. Jaaskelainen, “Morphology studies of the metal surfaces with enhanced absorption fabricated using interferometric femtosecond ablation,” Appl. Phys. A 94, 215–220 (2009).
[CrossRef]

Kaakkunen, J.

J. Kaakkunen, K. Paivasaari, M. Kuittinen, and T. Jaaskelainen, “Morphology studies of the metal surfaces with enhanced absorption fabricated using interferometric femtosecond ablation,” Appl. Phys. A 94, 215–220 (2009).
[CrossRef]

King, V.

Kishida, H.

K. Mizuno, J. Ishii, H. Kishida, Y. Hayamizu, S. Yasuda, D. N. Futaba, M. Yumura, and K. Hata, “A black body absorber from vertically aligned single-walled carbon nanotubes,” Proc. Natl. Acad. Sci. USA 106, 6044–6047 (2009).
[CrossRef] [PubMed]

Kolasinski, K. W.

B. K. Nayak, M. C. Gupta, and K. W. Kolasinski, “Formation of nano-textured conical microstructures in titanium metal surface by femtosecond laser irradiation,” Appl. Phys. A 90, 399–402 (2008).
[CrossRef]

B. K. Nayak, M. C. Gupta, and K. W. Kolasinski, “Ultrafast-laser-assisted chemical restructuring of silicon and germanium surfaces,” Appl. Surf. Sci. 253, 6580–6583 (2007).
[CrossRef]

Kuittinen, M.

J. Kaakkunen, K. Paivasaari, M. Kuittinen, and T. Jaaskelainen, “Morphology studies of the metal surfaces with enhanced absorption fabricated using interferometric femtosecond ablation,” Appl. Phys. A 94, 215–220 (2009).
[CrossRef]

Larkin, J. A.

D. B. Betts, F. J. J. Clarke, L. J. Cox, and J. A. Larkin, “Infrared reflection properties of five types of black coating for radiometric detectors,” J. Phys. E 18, 689 (1985).
[CrossRef]

Lasagni, A.

A. Lasagni, F. Mücklich, M. R. Nejati, and R. Clasen, “Periodical surface structuring of metals by laser interference metallurgy as a new fabrication method of textured solar selective absorbers,” Adv. Eng. Mater. 8, 580–584 (2006).
[CrossRef]

Lin, S.-Y.

Z.-P. Yang, L. Ci, J. A. Bur, S.-Y. Lin, and P. M. Ajayan, “Experimental observation of an extremely dark material made by a low-density nanotube array,” Nano Lett. 8, 446–451(2008).
[CrossRef] [PubMed]

Makin, V. S.

A. Y. Vorobyev, V. S. Makin, and C. Guo, “Brighter light sources from black metal: Significant increase in emission efficiency of incandescent light sources,” Phys. Rev. Lett. 102, 234301(2009).
[CrossRef] [PubMed]

Maloney, P. G.

Manca, J. V.

P. Vanlaeke, A. Swinnen, I. Haeldermans, G. Vanhoyland, T. Aernouts, D. Cheyns, C. Deibel, J. D’Haen, P. Heremans, J. Poortmans, and J. V. Manca, “P3HT/PCBM bulk heterojunction solar cells: relation between morphology and electro-optical characteristics,” Sol. Energy Mater. Sol. Cells 90, 2150–2158 (2006).
[CrossRef]

Mazur, E.

Meier, S. R.

Mizuno, K.

K. Mizuno, J. Ishii, H. Kishida, Y. Hayamizu, S. Yasuda, D. N. Futaba, M. Yumura, and K. Hata, “A black body absorber from vertically aligned single-walled carbon nanotubes,” Proc. Natl. Acad. Sci. USA 106, 6044–6047 (2009).
[CrossRef] [PubMed]

Mücklich, F.

A. Lasagni, F. Mücklich, M. R. Nejati, and R. Clasen, “Periodical surface structuring of metals by laser interference metallurgy as a new fabrication method of textured solar selective absorbers,” Adv. Eng. Mater. 8, 580–584 (2006).
[CrossRef]

Nayak, B. K.

B. K. Nayak and M. C. Gupta, “Self-organized micro/nano structures in metal surfaces by ultrafast laser irradiation,” Opt. Lasers Eng. 48, 940–949 (2010).
[CrossRef]

B. K. Nayak, M. C. Gupta, and K. W. Kolasinski, “Formation of nano-textured conical microstructures in titanium metal surface by femtosecond laser irradiation,” Appl. Phys. A 90, 399–402 (2008).
[CrossRef]

B. K. Nayak, M. C. Gupta, and K. W. Kolasinski, “Ultrafast-laser-assisted chemical restructuring of silicon and germanium surfaces,” Appl. Surf. Sci. 253, 6580–6583 (2007).
[CrossRef]

Nejati, M. R.

A. Lasagni, F. Mücklich, M. R. Nejati, and R. Clasen, “Periodical surface structuring of metals by laser interference metallurgy as a new fabrication method of textured solar selective absorbers,” Adv. Eng. Mater. 8, 580–584 (2006).
[CrossRef]

Paivasaari, K.

J. Kaakkunen, K. Paivasaari, M. Kuittinen, and T. Jaaskelainen, “Morphology studies of the metal surfaces with enhanced absorption fabricated using interferometric femtosecond ablation,” Appl. Phys. A 94, 215–220 (2009).
[CrossRef]

Pompea, S. M.

S. M. Pompea and R. P. Breault, “Characterization and use of black surfaces for optical systems,” in Handbook of Optics, Volume IV: Optical Properties of Materials, Nonlinear Optics, Quantum, and Molecular Optics, 3rd ed., M.Bass, C.DeCusatis, J.Enoch, V.Lakshminarayanan, G.Li, C.MacDonald, V.Mahajan, and E. Van Stryland, eds. (Optical Society of America, 2009), pp. 6.1–6.67.

S. M. Pompea, D. W. Bergener, D. F. Shepard, S. Russak, and W. L. Wolfe, “Reflectance measurements on an improved optical black for stray light rejection from 0.3 to 500 μm,” Opt. Eng. 23, 149–152 (1984).

Poortmans, J.

P. Vanlaeke, A. Swinnen, I. Haeldermans, G. Vanhoyland, T. Aernouts, D. Cheyns, C. Deibel, J. D’Haen, P. Heremans, J. Poortmans, and J. V. Manca, “P3HT/PCBM bulk heterojunction solar cells: relation between morphology and electro-optical characteristics,” Sol. Energy Mater. Sol. Cells 90, 2150–2158 (2006).
[CrossRef]

Rephaeli, E.

E. Rephaeli and S. Fan, “Tungsten black absorber for solar light with wide angular operation range,” Appl. Phys. Lett. 92, 211107 (2008).
[CrossRef]

Ruan, X.

Russak, S.

S. M. Pompea, D. W. Bergener, D. F. Shepard, S. Russak, and W. L. Wolfe, “Reflectance measurements on an improved optical black for stray light rejection from 0.3 to 500 μm,” Opt. Eng. 23, 149–152 (1984).

Shepard, D. F.

S. M. Pompea, D. W. Bergener, D. F. Shepard, S. Russak, and W. L. Wolfe, “Reflectance measurements on an improved optical black for stray light rejection from 0.3 to 500 μm,” Opt. Eng. 23, 149–152 (1984).

Smith, P.

Swinnen, A.

P. Vanlaeke, A. Swinnen, I. Haeldermans, G. Vanhoyland, T. Aernouts, D. Cheyns, C. Deibel, J. D’Haen, P. Heremans, J. Poortmans, and J. V. Manca, “P3HT/PCBM bulk heterojunction solar cells: relation between morphology and electro-optical characteristics,” Sol. Energy Mater. Sol. Cells 90, 2150–2158 (2006).
[CrossRef]

Tagliaferri, V.

Terzini, E.

Theocharous, T.

M. R. Dury, T. Theocharous, N. Harrison, N. Fox, and M. Hilton, “Common black coatings—reflectance and aging characteristics in the 0.32–14.3 υm wavelength range,” Opt. Commun. 270, 262–272 (2007).
[CrossRef]

Vanhoyland, G.

P. Vanlaeke, A. Swinnen, I. Haeldermans, G. Vanhoyland, T. Aernouts, D. Cheyns, C. Deibel, J. D’Haen, P. Heremans, J. Poortmans, and J. V. Manca, “P3HT/PCBM bulk heterojunction solar cells: relation between morphology and electro-optical characteristics,” Sol. Energy Mater. Sol. Cells 90, 2150–2158 (2006).
[CrossRef]

Vanlaeke, P.

P. Vanlaeke, A. Swinnen, I. Haeldermans, G. Vanhoyland, T. Aernouts, D. Cheyns, C. Deibel, J. D’Haen, P. Heremans, J. Poortmans, and J. V. Manca, “P3HT/PCBM bulk heterojunction solar cells: relation between morphology and electro-optical characteristics,” Sol. Energy Mater. Sol. Cells 90, 2150–2158 (2006).
[CrossRef]

Vetrella, U. B.

Vorobyev, A. Y.

A. Y. Vorobyev, V. S. Makin, and C. Guo, “Brighter light sources from black metal: Significant increase in emission efficiency of incandescent light sources,” Phys. Rev. Lett. 102, 234301(2009).
[CrossRef] [PubMed]

A. Y. Vorobyev and C. Guo, “Effects of nanostructure-covered femtosecond laser-induced periodic surface structures on optical absorptance of metals,” Appl. Phys. A 86, 321–324 (2007).
[CrossRef]

A. Y. Vorobyev and C. Guo, “Enhanced absorptance of gold following multipulse femtosecond laser ablation,” Phys. Rev. B 72, 195422 (2005).
[CrossRef]

Winkler, M.

Wolfe, W. L.

S. M. Pompea, D. W. Bergener, D. F. Shepard, S. Russak, and W. L. Wolfe, “Reflectance measurements on an improved optical black for stray light rejection from 0.3 to 500 μm,” Opt. Eng. 23, 149–152 (1984).

Wurfel, P.

N. P. Harder and P. Wurfel, “Theoretical limits of thermophotovoltaic solar energy conversion,” Semicond. Sci. Technol. 18, S151–S157 (2003).
[CrossRef]

Yang, Z.-P.

Z.-P. Yang, L. Ci, J. A. Bur, S.-Y. Lin, and P. M. Ajayan, “Experimental observation of an extremely dark material made by a low-density nanotube array,” Nano Lett. 8, 446–451(2008).
[CrossRef] [PubMed]

Yasuda, S.

K. Mizuno, J. Ishii, H. Kishida, Y. Hayamizu, S. Yasuda, D. N. Futaba, M. Yumura, and K. Hata, “A black body absorber from vertically aligned single-walled carbon nanotubes,” Proc. Natl. Acad. Sci. USA 106, 6044–6047 (2009).
[CrossRef] [PubMed]

Yumura, M.

K. Mizuno, J. Ishii, H. Kishida, Y. Hayamizu, S. Yasuda, D. N. Futaba, M. Yumura, and K. Hata, “A black body absorber from vertically aligned single-walled carbon nanotubes,” Proc. Natl. Acad. Sci. USA 106, 6044–6047 (2009).
[CrossRef] [PubMed]

Adv. Eng. Mater. (1)

A. Lasagni, F. Mücklich, M. R. Nejati, and R. Clasen, “Periodical surface structuring of metals by laser interference metallurgy as a new fabrication method of textured solar selective absorbers,” Adv. Eng. Mater. 8, 580–584 (2006).
[CrossRef]

Appl. Opt. (3)

Appl. Phys. A (3)

B. K. Nayak, M. C. Gupta, and K. W. Kolasinski, “Formation of nano-textured conical microstructures in titanium metal surface by femtosecond laser irradiation,” Appl. Phys. A 90, 399–402 (2008).
[CrossRef]

A. Y. Vorobyev and C. Guo, “Effects of nanostructure-covered femtosecond laser-induced periodic surface structures on optical absorptance of metals,” Appl. Phys. A 86, 321–324 (2007).
[CrossRef]

J. Kaakkunen, K. Paivasaari, M. Kuittinen, and T. Jaaskelainen, “Morphology studies of the metal surfaces with enhanced absorption fabricated using interferometric femtosecond ablation,” Appl. Phys. A 94, 215–220 (2009).
[CrossRef]

Appl. Phys. Lett. (1)

E. Rephaeli and S. Fan, “Tungsten black absorber for solar light with wide angular operation range,” Appl. Phys. Lett. 92, 211107 (2008).
[CrossRef]

Appl. Surf. Sci. (1)

B. K. Nayak, M. C. Gupta, and K. W. Kolasinski, “Ultrafast-laser-assisted chemical restructuring of silicon and germanium surfaces,” Appl. Surf. Sci. 253, 6580–6583 (2007).
[CrossRef]

J. Phys. E (1)

D. B. Betts, F. J. J. Clarke, L. J. Cox, and J. A. Larkin, “Infrared reflection properties of five types of black coating for radiometric detectors,” J. Phys. E 18, 689 (1985).
[CrossRef]

J. Tribol. (1)

E. Izhak, “State of the art in laser surface texturing,” J. Tribol. 127, 248–253 (2005).
[CrossRef]

Nano Lett. (1)

Z.-P. Yang, L. Ci, J. A. Bur, S.-Y. Lin, and P. M. Ajayan, “Experimental observation of an extremely dark material made by a low-density nanotube array,” Nano Lett. 8, 446–451(2008).
[CrossRef] [PubMed]

Opt. Commun. (1)

M. R. Dury, T. Theocharous, N. Harrison, N. Fox, and M. Hilton, “Common black coatings—reflectance and aging characteristics in the 0.32–14.3 υm wavelength range,” Opt. Commun. 270, 262–272 (2007).
[CrossRef]

Opt. Eng. (1)

S. M. Pompea, D. W. Bergener, D. F. Shepard, S. Russak, and W. L. Wolfe, “Reflectance measurements on an improved optical black for stray light rejection from 0.3 to 500 μm,” Opt. Eng. 23, 149–152 (1984).

Opt. Express (1)

Opt. Lasers Eng. (1)

B. K. Nayak and M. C. Gupta, “Self-organized micro/nano structures in metal surfaces by ultrafast laser irradiation,” Opt. Lasers Eng. 48, 940–949 (2010).
[CrossRef]

Phys. Rev. B (1)

A. Y. Vorobyev and C. Guo, “Enhanced absorptance of gold following multipulse femtosecond laser ablation,” Phys. Rev. B 72, 195422 (2005).
[CrossRef]

Phys. Rev. Lett. (1)

A. Y. Vorobyev, V. S. Makin, and C. Guo, “Brighter light sources from black metal: Significant increase in emission efficiency of incandescent light sources,” Phys. Rev. Lett. 102, 234301(2009).
[CrossRef] [PubMed]

Proc. Natl. Acad. Sci. USA (1)

K. Mizuno, J. Ishii, H. Kishida, Y. Hayamizu, S. Yasuda, D. N. Futaba, M. Yumura, and K. Hata, “A black body absorber from vertically aligned single-walled carbon nanotubes,” Proc. Natl. Acad. Sci. USA 106, 6044–6047 (2009).
[CrossRef] [PubMed]

Semicond. Sci. Technol. (1)

N. P. Harder and P. Wurfel, “Theoretical limits of thermophotovoltaic solar energy conversion,” Semicond. Sci. Technol. 18, S151–S157 (2003).
[CrossRef]

Sol. Energy Mater. Sol. Cells (1)

P. Vanlaeke, A. Swinnen, I. Haeldermans, G. Vanhoyland, T. Aernouts, D. Cheyns, C. Deibel, J. D’Haen, P. Heremans, J. Poortmans, and J. V. Manca, “P3HT/PCBM bulk heterojunction solar cells: relation between morphology and electro-optical characteristics,” Sol. Energy Mater. Sol. Cells 90, 2150–2158 (2006).
[CrossRef]

Other (1)

S. M. Pompea and R. P. Breault, “Characterization and use of black surfaces for optical systems,” in Handbook of Optics, Volume IV: Optical Properties of Materials, Nonlinear Optics, Quantum, and Molecular Optics, 3rd ed., M.Bass, C.DeCusatis, J.Enoch, V.Lakshminarayanan, G.Li, C.MacDonald, V.Mahajan, and E. Van Stryland, eds. (Optical Society of America, 2009), pp. 6.1–6.67.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

(a) Schematic of the integrating sphere setup to measure total reflection for incident angle θ i = ± ( 10 ° , 20 ° , 30 ° , 40 ° , 50 ° ) and (b) top view schematic of the experimental setup to characterize scattering for detection angles, θ d = ± ( 15 ° , 30 ° , 45 ° , 60 ° ) . The light is incident normal to the sample.

Fig. 2
Fig. 2

SEM images of ultrafast textured titanium under (a) low magnification ( laser fluence = 0.48 J / cm 2 ; number of laser pulses = 500 ) and (b) high magnification ( laser fluence = 0.84 J / cm 2 ; number of laser pulses = 500 ). Images of ultrafast laser textured (c) copper ( laser fluence = 0.2 J / cm 2 ; number of laser pulses = 2000 ), (d) aluminum ( laser fluence = 0.2 J / cm 2 ; number of laser pulses = 600 ), and (e) stainless steel ( laser fluence = 1.2 J / cm 2 ; number of laser pulses = 100 ) are also included. All surfaces appear black to the bare eye.

Fig. 3
Fig. 3

Total reflection, including scattering of ultrafast textured titanium ( laser fluence = 0.9 J / cm 2 ; number of laser pulses = 500 ) as a function of incidence angle θ i for different wavelengths. The figure also includes data for a CNT array, which represents a near-ideal absorber.

Fig. 4
Fig. 4

Total reflection including scattering of titanium ( laser fluence = 0.9 J / cm 2 ; number of laser pulses = 500 ) as a function of wavelength for different angles of incidence.

Fig. 5
Fig. 5

Total reflection of ultrafast laser textured titanium at λ = 633 nm and θ i = 8 ° as function of (a) average number of laser pulses for a fixed laser fluence of 1 J / cm 2 and (b) laser fluence for a fixed number of laser pulses of 450. The data points are fitted using linear regression.

Fig. 6
Fig. 6

Angular scattering characteristics of the laser textured titanium surface ( laser fluence = 1.2 J / cm 2 ; number of laser pulses = 500 ) at a wavelength of 633 nm ; the solid angle ( Δ Ω ) corresponding to the active area of the detectors is calculated to be Δ Ω = 0.0146 sr .

Tables (1)

Tables Icon

Table 1 Total Absorption of Ultrafast Laser Textured Titanium for Different Wavelengths at Incidence Angle θ i = 8 ° .

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

R ( λ ) = R std ( λ ) [ P s ( λ ) P dark P std ( λ ) P dark ] ,

Metrics