Abstract

Polarization conversion cube-corner retroreflectors rotate the major axis of the incident electric field by 90°. We show that polarization conversion cube-corner retroreflectors cannot be created with isotropic reflecting surfaces, but can be created by incorporating nonisotropic reflecting surfaces. Two types are considered—cube corners with surfaces having elliptical eigenstates and cube corners having subwavelength gratings. Implementations that use subwavelength surface relief phase gratings are investigated, and three examples are shown.

© 2010 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. S. Scholl, “Ray trace through a corner-cube retroreflector with complex reflection coefficients,” J. Opt. Soc. Am. A 12, 1589–1592 (1995).
    [CrossRef]
  2. E. R. Peck, “Polarization properties of corner reflectors and cavities,” J. Opt. Soc. Am. 52, 253–257 (1962).
    [CrossRef]
  3. J. Liu and R. M. A. Azzam, “Polarization properties of corner-cube retroreflectors: theory and experiment,” Appl. Opt. 36, 1553–1559 (1997).
    [CrossRef] [PubMed]
  4. S. E. Segre and V. Zanza, “Mueller calculus of polarization change in the cube-corner retroreflector,” J. Opt. Soc. Am. A 20, 1804–1811 (2003).
    [CrossRef]
  5. R. Kalibjian, “Stokes polarization vector and Mueller matrix for a corner-cube reflector,” Opt. Commun. 240, 39–68(2004).
    [CrossRef]
  6. R. Kalibjian, “Output polarization states of a corner-cube reflector irradiated at non-normal incidence,” Opt. Laser Technol. 39, 1485–1495 (2007).
    [CrossRef]
  7. B. J. DeBoo, J. M. Sasian, and R. A. Chipman, “Depolarization of diffusely reflecting man-made objects,” Appl. Opt. 44, 5434–5445 (2005).
    [CrossRef] [PubMed]
  8. W. H. Steel, “Polarization-preserving retroreflectors,” Appl. Opt. 24, 3433–3434 (1985).
    [CrossRef] [PubMed]
  9. M. Shen, S. Wang, L. Hu, and D. Zhao, “Mode properties produced by a corner-cube cavity,” Appl. Opt. 43, 4091–4094(2004).
    [CrossRef] [PubMed]
  10. A. Minato, S. Ozawa, and N. Sugimoto, “Optical design of a hollow cube-corner retroreflector for a geosynchronous satellite,” Appl. Opt. 40, 1459–1463 (2001).
    [CrossRef]
  11. D. A. Thomas and J. C. Wyant, “Determination of the dihedral angle errors of a corner cube from its Twyman–Green interferogram,” J. Opt. Soc. Am. 67, 467–472 (1977).
    [CrossRef]
  12. D. H. Goldstein, Polarized Light (Marcel Dekker, 2003).
    [CrossRef]
  13. K. Crabtree, Polarization Conversion Cube-Corner Retroreflector (UPI, 2010).

2007

R. Kalibjian, “Output polarization states of a corner-cube reflector irradiated at non-normal incidence,” Opt. Laser Technol. 39, 1485–1495 (2007).
[CrossRef]

2005

2004

M. Shen, S. Wang, L. Hu, and D. Zhao, “Mode properties produced by a corner-cube cavity,” Appl. Opt. 43, 4091–4094(2004).
[CrossRef] [PubMed]

R. Kalibjian, “Stokes polarization vector and Mueller matrix for a corner-cube reflector,” Opt. Commun. 240, 39–68(2004).
[CrossRef]

2003

2001

1997

1995

1985

1977

1962

Azzam, R. M. A.

Chipman, R. A.

Crabtree, K.

K. Crabtree, Polarization Conversion Cube-Corner Retroreflector (UPI, 2010).

DeBoo, B. J.

Goldstein, D. H.

D. H. Goldstein, Polarized Light (Marcel Dekker, 2003).
[CrossRef]

Hu, L.

Kalibjian, R.

R. Kalibjian, “Output polarization states of a corner-cube reflector irradiated at non-normal incidence,” Opt. Laser Technol. 39, 1485–1495 (2007).
[CrossRef]

R. Kalibjian, “Stokes polarization vector and Mueller matrix for a corner-cube reflector,” Opt. Commun. 240, 39–68(2004).
[CrossRef]

Liu, J.

Minato, A.

Ozawa, S.

Peck, E. R.

Sasian, J. M.

Scholl, M. S.

Segre, S. E.

Shen, M.

Steel, W. H.

Sugimoto, N.

Thomas, D. A.

Wang, S.

Wyant, J. C.

Zanza, V.

Zhao, D.

Appl. Opt.

J. Opt. Soc. Am.

J. Opt. Soc. Am. A

Opt. Commun.

R. Kalibjian, “Stokes polarization vector and Mueller matrix for a corner-cube reflector,” Opt. Commun. 240, 39–68(2004).
[CrossRef]

Opt. Laser Technol.

R. Kalibjian, “Output polarization states of a corner-cube reflector irradiated at non-normal incidence,” Opt. Laser Technol. 39, 1485–1495 (2007).
[CrossRef]

Other

D. H. Goldstein, Polarized Light (Marcel Dekker, 2003).
[CrossRef]

K. Crabtree, Polarization Conversion Cube-Corner Retroreflector (UPI, 2010).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1

Experimental configuration for determining polarization coupling.

Fig. 2
Fig. 2

Minimum linear polarization coupling for isotropic CCR with three identical isotropic surfaces as a function of the di- attenuation and retardance of each surface.

Fig. 3
Fig. 3

Minimum linear polarization coupling for CCR having three different isotropic surfaces. Regions shown have MLPC 0.7, with the peak of each region being 0.75. Each region lies along the 12 edges of this space. Along each edge, two of the retardances are 0 or 2 π .

Fig. 4
Fig. 4

Minimum linear polarization coupling for CCR having surfaces with elliptical retardance. Regions shown have 90% MLPC.

Fig. 5
Fig. 5

Minimum linear polarization coupling for all possible TIR CCRs with SWG surfaces as a function of the retardance for 0 and 90 ° azimuthal angles.

Fig. 6
Fig. 6

Profiles of the SWG surfaces for three PCCCR designs.

Fig. 7
Fig. 7

Angle of incidence and azimuthal angles for Fig. 8.

Fig. 8
Fig. 8

Intensity reflection coefficient and MLPC as a function angle of incidence and azimuthal angle for the three PCCCR solutions. The color scaling is the same in all figures.

Fig. 9
Fig. 9

Intensity reflectivity and MLPC of the SWG CCR as the wavelength is varied.

Fig. 10
Fig. 10

Cube-corner retroreflector is the result of cutting one corner off a cube whose interior is reflective.

Fig. 11
Fig. 11

Corner-cube retroreflector showing the vertex V, the center of the front face O, the other three corners (A, B, and C), and the centers of the edges of the front face (E, F, and G).

Tables (8)

Tables Icon

Table 1 Lengths of CCR Line Segments

Tables Icon

Table 2 Primary Points on CCR

Tables Icon

Table 3 CCR Surface Normal Vectors

Tables Icon

Table 4 Surface Anisotropy Vectors

Tables Icon

Table 5 Ray Propagation Vectors

Tables Icon

Table 6 s-Polarization Vectors

Tables Icon

Table 7 Rotation Angles between Surfaces

Tables Icon

Table 8 Azimuthal Angles

Equations (20)

Equations on this page are rendered with MathJax. Learn more.

MM PCCCR = ( 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 ) .
MM mirror = ( 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 ) .
LPC ( MM , θ ) = 1 2 ( 1 , cos ( 2 * θ ) , sin ( 2 * θ ) , 0 ) · MM · ( 1 , cos ( 2 * θ ) , sin ( 2 * θ ) , 0 ) .
( m 00 0 0 0 0 m 11 0 0 0 0 m 22 0 0 0 0 m 33 ) ,
m 00 = 1 , m 11 = 1 16 sin 2 ( δ 2 ) ( 4 cos ( δ ) + cos ( 2 δ ) 21 ) , m 22 = m 11 , m 33 = 1 16 ( 15 cos ( δ ) + 6 cos ( 2 δ ) + cos ( 3 δ ) 6 ) ,
m 00 = 1 , m 11 = 1 16 sin 2 ( δ 1 2 ) ( 60 cos ( δ 1 ) + 9 cos ( 2 δ 1 ) + 35 ) , m 22 = m 11 , m 33 = 1 16 ( 7 cos ( δ 1 ) + 6 cos ( 2 δ 1 ) + 9 cos ( 3 δ 1 ) 6 ) .
( 1 0 0 0 0 1 0 0 0 0 0 1 0 0 1 0 ) .
( 1 0 0 0 0 0 1 0 0 1 0 0 0 0 0 1 ) .
MM path = R ( θ 6 ) · F 2 · R ( θ 5 ) · T 3 · R ( θ 4 ) · T 2 · R ( θ 3 ) · T 1 · R ( θ 2 ) · F 1 · R ( θ 1 ) ,
R ( θ ) = ( 1 0 0 0 0 cos ( 2 θ ) sin ( 2 θ ) 0 0 sin ( 2 θ ) cos ( 2 θ ) 0 0 0 0 1 )
T = F = 1 2 ( | r s | 2 + | r p | 2 | r s | 2 | r p | 2 0 0 | r s | 2 | r p | 2 | r s | 2 + | r p | 2 0 0 0 0 2 | r s | | r p | cos ( δ ) 2 | r s | | r p | sin ( δ ) 0 0 2 | r s | | r p | sin ( δ ) 2 | r s | | r p | cos ( δ ) ) ,
k exit q = N [ k inc q 2 ( n q · k inc q ) n q ] ,
s q = N [ k inc q × n q ] .
θ = arccos ( s q · s q + 1 ) .
AOI q = arccos ( n q · k q ) ,
ψ q = arcsin ( N [ s q × n q ] · an q ) ,
MM mean = 1 6 ( MM 123 + MM 231 + MM 312 + MM 321 + MM 132 + MM 213 ) .
MM 123 = R ( 120 ° ) · T 3 · R ( 60 ° ) · T 2 · R ( 60 ° ) · T 1 · R ( 60 ° ) , MM 231 = R ( 120 ° ) · T 1 · R ( 60 ° ) · T 3 · R ( 60 ° ) · T 2 · R ( 180 ° ) , MM 312 = R ( 0 ° ) · T 2 · R ( 60 ° ) · T 1 · R ( 60 ° ) · T 3 · R ( 60 ° ) , MM 321 = R ( 60 ° ) · T 1 · R ( 60 ° ) · T 2 · R ( 60 ° ) · T 3 · R ( 120 ° ) , MM 132 = R ( 180 ° ) · T 2 · R ( 60 ° ) · T 3 · R ( 60 ° ) · T 1 · R ( 120 ° ) , MM 213 = R ( 60 ° ) · T 3 · R ( 60 ° ) · T 1 · R ( 60 ° ) · T 3 · R ( 0 ° ) .
MM 123 = ( 1. 0 0 0 0 0.838872 0.311394 0.446462 0 0.311394 0.398206 0.862824 0 0.446462 0.862824 0.237077 ) .
MM mean NBK 7 = ( 1. 0 0 0 0 0.220333 0 0 0 0 0.220333 0 0 0 0 0.237077 ) .

Metrics