Abstract

High-accuracy measurements and analysis of refractive index change induced by photodarkening and thermal bleaching in ytterbium-doped fibers are presented, based on a modal interference method. Photodarkening-induced refractive index change is positive at the ytterbium lasing wavelengths near 1080nm, and it approaches a saturated level, which is in the order of 106105 for the tested fiber samples. It is found that the value of this refractive index change is linearly proportional to the photodarkening-induced excess loss at an arbitrary probe wavelength in the visible band. Thermal bleaching can only partially erase the photodarkening-induced refractive index change, leaving a residual index change of (0.20.3)×105. The influence of the photodarkening-induced refractive index change on fiber lasers is discussed.

© 2010 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. J. Koponen, M. J. Söderlund, H. J. Hoffman, and S. K. T. Tammela, “Measuring photodarkening from single-mode ytterbium doped silica fibers,” Opt. Express 14, 11539–11544(2006).
    [CrossRef] [PubMed]
  2. M. J. Söderlund, J. J. Montiel i Ponsoda, J. P. Koplow, and S. Honkanen, “Thermal bleaching of photodarkening-induced loss in ytterbium-doped fibers,” Opt. Lett. 34, 2637–2639(2009).
    [CrossRef] [PubMed]
  3. M. Leich, U. Röpke, S. Jetschke, S. Unger, V. Reichel, and J. Kirchhof, “Non-isothermal bleaching of photodarkened Yb-doped fibers,” Opt. Express 17, 12588–12593 (2009).
    [CrossRef] [PubMed]
  4. E. Bochove, “Nonlinear refractive index of a rare-earth-doped fiber laser,” Opt. Lett. 29, 2414–2416 (2004).
    [CrossRef] [PubMed]
  5. H. Garcia, A. M. Johnson, F. A. Oguama, and S. Trivedi, “Pump-induced nonlinear refractive-index change in erbium- and ytterbium-doped fibers: theory and experiment,” Opt. Lett. 30, 1261–1263 (2005).
    [CrossRef] [PubMed]
  6. A. A. Fotiadi, O. L. Antipov, and P. Mégret, “Dynamics of pump-induced refractive index changes in single-mode Yb-doped optical fibers,” Opt. Express 16, 12658–12663 (2008).
    [PubMed]
  7. M. Janos and S. C. Guy, “Signal-induced refractive index changes in erbium-doped fiber amplifiers,” J. Lightwave Technol. 16, 542–548 (1998).
    [CrossRef]
  8. J. Koponen, M. Söderlund, H. J. Hoffman, D. A. V. Kliner, J. P. Koplow, and M. Hotoleanu, “Photodarkening rate in Yb-doped silica fibers,” Appl. Opt. 47, 1247–1256 (2008).
    [CrossRef] [PubMed]
  9. S. Jetschke, S. Unger, U. Röpke, and J. Kirchhof, “Photodarkening in Yb doped fibers: experimental evidence of equilibrium states depending on the pump power,” Opt. Express 15, 14838–14843 (2007).
    [CrossRef] [PubMed]
  10. M. J. Söderlund, J. J. Montiel i Ponsoda, J. P. Koplow, and S. Honkanen, “Heat-induced darkening and spectral broadening in photodarkened ytterbium-doped fiber under thermal cycling,” Opt. Express 17, 9940–9946 (2009).
    [CrossRef] [PubMed]
  11. J. J. Montiel i Ponsoda, M. Soderlund, J. Koplow, J. Koponen, A. Iho, and S. Honkanen, “Combined photodarkening and thermal bleaching measurement of an ytterbium-doped fiber,” Proc. SPIE 7195, 71952D (2009).
    [CrossRef]
  12. J. Canning and A. L. G. Carter, “Modal interferometer for in situ measurements of induced core index change in optical fibers,” Opt. Lett. 22, 561–563 (1997).
    [CrossRef] [PubMed]
  13. J. Canning, A. L. G. Carter, and M. G. Sceats, “Correlation between photodarkening and index change during 193nmirradiation of germanosilicate and phosphosilicate fibers,” J. Lightwave Technol. 15, 1348–1356 (1997).
    [CrossRef]
  14. A. W. Snyder and J. D. Love, Optical Waveguide Theory(Chapman & Hall, 1983).
  15. T. Arai, K. Ichii, S. Tanigawa, and M. Fujimaki, “Defect Analysis of photodarkened and gamma-ray irradiated ytterbium-doped silica glasses,” in Optical Fiber Communication Conference, OSA Technical Digest (CD) (Optical Society of America, 2009), paper OWT2.
  16. J. Limpert, N. Deguil-Robin, I. Manek-Hönninger, F. Salin, F. Röser, A. Liem, T. Schreiber, S. Nolte, H. Zellmer, A. Tünnermann, J. Broeng, A. Petersson, and C. Jakobsen, “High-power rod-type photonic crystal fiber laser,” Opt. Express 13, 1055–1058 (2005).
    [CrossRef] [PubMed]
  17. A. E. Siegman, “Gain-guided, index-antiguided fiber lasers,” J. Opt. Soc. Am. B 24, 1677–1682 (2007).
    [CrossRef]
  18. N. Jovanovic, M. Aslund, A. Fuerbach, S. D. Jackson, G. D. Marshall, and M. J. Withford, “Narrow linewidth,100W CW Yb3+-doped silica fiber laser with a point-by-point Bragg grating inscribed directly into the active core,” Opt. Lett. 32, 2804–2806 (2007).
    [CrossRef] [PubMed]
  19. M. L. Aslund, N. Jovanovic, J. Canning, S. D. Jackson, G. D. Marshall, A. Fuerbach, and M. J. Withford, “Rapid decay of Type-II femtosecond laser inscribed gratings within Q-switched Yb3+-doped fiber lasers,” IEEE Photonics Technol. Lett. 22, 504–506 (2010).
    [CrossRef]
  20. A. Martinez, I. Y. Khrushchev, and I. Bennion, “Thermal properties of fiber Bragg gratings inscribed point-by-point by infrared femtosecond laser,” Electron. Lett. 41, 176–178 (2005).
    [CrossRef]

2010

M. L. Aslund, N. Jovanovic, J. Canning, S. D. Jackson, G. D. Marshall, A. Fuerbach, and M. J. Withford, “Rapid decay of Type-II femtosecond laser inscribed gratings within Q-switched Yb3+-doped fiber lasers,” IEEE Photonics Technol. Lett. 22, 504–506 (2010).
[CrossRef]

2009

2008

2007

2006

2005

2004

1998

1997

J. Canning and A. L. G. Carter, “Modal interferometer for in situ measurements of induced core index change in optical fibers,” Opt. Lett. 22, 561–563 (1997).
[CrossRef] [PubMed]

J. Canning, A. L. G. Carter, and M. G. Sceats, “Correlation between photodarkening and index change during 193nmirradiation of germanosilicate and phosphosilicate fibers,” J. Lightwave Technol. 15, 1348–1356 (1997).
[CrossRef]

Antipov, O. L.

Arai, T.

T. Arai, K. Ichii, S. Tanigawa, and M. Fujimaki, “Defect Analysis of photodarkened and gamma-ray irradiated ytterbium-doped silica glasses,” in Optical Fiber Communication Conference, OSA Technical Digest (CD) (Optical Society of America, 2009), paper OWT2.

Aslund, M.

Aslund, M. L.

M. L. Aslund, N. Jovanovic, J. Canning, S. D. Jackson, G. D. Marshall, A. Fuerbach, and M. J. Withford, “Rapid decay of Type-II femtosecond laser inscribed gratings within Q-switched Yb3+-doped fiber lasers,” IEEE Photonics Technol. Lett. 22, 504–506 (2010).
[CrossRef]

Bennion, I.

A. Martinez, I. Y. Khrushchev, and I. Bennion, “Thermal properties of fiber Bragg gratings inscribed point-by-point by infrared femtosecond laser,” Electron. Lett. 41, 176–178 (2005).
[CrossRef]

Bochove, E.

Broeng, J.

Canning, J.

M. L. Aslund, N. Jovanovic, J. Canning, S. D. Jackson, G. D. Marshall, A. Fuerbach, and M. J. Withford, “Rapid decay of Type-II femtosecond laser inscribed gratings within Q-switched Yb3+-doped fiber lasers,” IEEE Photonics Technol. Lett. 22, 504–506 (2010).
[CrossRef]

J. Canning, A. L. G. Carter, and M. G. Sceats, “Correlation between photodarkening and index change during 193nmirradiation of germanosilicate and phosphosilicate fibers,” J. Lightwave Technol. 15, 1348–1356 (1997).
[CrossRef]

J. Canning and A. L. G. Carter, “Modal interferometer for in situ measurements of induced core index change in optical fibers,” Opt. Lett. 22, 561–563 (1997).
[CrossRef] [PubMed]

Carter, A. L. G.

J. Canning and A. L. G. Carter, “Modal interferometer for in situ measurements of induced core index change in optical fibers,” Opt. Lett. 22, 561–563 (1997).
[CrossRef] [PubMed]

J. Canning, A. L. G. Carter, and M. G. Sceats, “Correlation between photodarkening and index change during 193nmirradiation of germanosilicate and phosphosilicate fibers,” J. Lightwave Technol. 15, 1348–1356 (1997).
[CrossRef]

Deguil-Robin, N.

Fotiadi, A. A.

Fuerbach, A.

M. L. Aslund, N. Jovanovic, J. Canning, S. D. Jackson, G. D. Marshall, A. Fuerbach, and M. J. Withford, “Rapid decay of Type-II femtosecond laser inscribed gratings within Q-switched Yb3+-doped fiber lasers,” IEEE Photonics Technol. Lett. 22, 504–506 (2010).
[CrossRef]

N. Jovanovic, M. Aslund, A. Fuerbach, S. D. Jackson, G. D. Marshall, and M. J. Withford, “Narrow linewidth,100W CW Yb3+-doped silica fiber laser with a point-by-point Bragg grating inscribed directly into the active core,” Opt. Lett. 32, 2804–2806 (2007).
[CrossRef] [PubMed]

Fujimaki, M.

T. Arai, K. Ichii, S. Tanigawa, and M. Fujimaki, “Defect Analysis of photodarkened and gamma-ray irradiated ytterbium-doped silica glasses,” in Optical Fiber Communication Conference, OSA Technical Digest (CD) (Optical Society of America, 2009), paper OWT2.

Garcia, H.

Guy, S. C.

Hoffman, H. J.

Honkanen, S.

Hotoleanu, M.

Ichii, K.

T. Arai, K. Ichii, S. Tanigawa, and M. Fujimaki, “Defect Analysis of photodarkened and gamma-ray irradiated ytterbium-doped silica glasses,” in Optical Fiber Communication Conference, OSA Technical Digest (CD) (Optical Society of America, 2009), paper OWT2.

Iho, A.

J. J. Montiel i Ponsoda, M. Soderlund, J. Koplow, J. Koponen, A. Iho, and S. Honkanen, “Combined photodarkening and thermal bleaching measurement of an ytterbium-doped fiber,” Proc. SPIE 7195, 71952D (2009).
[CrossRef]

Jackson, S. D.

M. L. Aslund, N. Jovanovic, J. Canning, S. D. Jackson, G. D. Marshall, A. Fuerbach, and M. J. Withford, “Rapid decay of Type-II femtosecond laser inscribed gratings within Q-switched Yb3+-doped fiber lasers,” IEEE Photonics Technol. Lett. 22, 504–506 (2010).
[CrossRef]

N. Jovanovic, M. Aslund, A. Fuerbach, S. D. Jackson, G. D. Marshall, and M. J. Withford, “Narrow linewidth,100W CW Yb3+-doped silica fiber laser with a point-by-point Bragg grating inscribed directly into the active core,” Opt. Lett. 32, 2804–2806 (2007).
[CrossRef] [PubMed]

Jakobsen, C.

Janos, M.

Jetschke, S.

Johnson, A. M.

Jovanovic, N.

M. L. Aslund, N. Jovanovic, J. Canning, S. D. Jackson, G. D. Marshall, A. Fuerbach, and M. J. Withford, “Rapid decay of Type-II femtosecond laser inscribed gratings within Q-switched Yb3+-doped fiber lasers,” IEEE Photonics Technol. Lett. 22, 504–506 (2010).
[CrossRef]

N. Jovanovic, M. Aslund, A. Fuerbach, S. D. Jackson, G. D. Marshall, and M. J. Withford, “Narrow linewidth,100W CW Yb3+-doped silica fiber laser with a point-by-point Bragg grating inscribed directly into the active core,” Opt. Lett. 32, 2804–2806 (2007).
[CrossRef] [PubMed]

Khrushchev, I. Y.

A. Martinez, I. Y. Khrushchev, and I. Bennion, “Thermal properties of fiber Bragg gratings inscribed point-by-point by infrared femtosecond laser,” Electron. Lett. 41, 176–178 (2005).
[CrossRef]

Kirchhof, J.

Kliner, D. A. V.

Koplow, J.

J. J. Montiel i Ponsoda, M. Soderlund, J. Koplow, J. Koponen, A. Iho, and S. Honkanen, “Combined photodarkening and thermal bleaching measurement of an ytterbium-doped fiber,” Proc. SPIE 7195, 71952D (2009).
[CrossRef]

Koplow, J. P.

Koponen, J.

J. J. Montiel i Ponsoda, M. Soderlund, J. Koplow, J. Koponen, A. Iho, and S. Honkanen, “Combined photodarkening and thermal bleaching measurement of an ytterbium-doped fiber,” Proc. SPIE 7195, 71952D (2009).
[CrossRef]

J. Koponen, M. Söderlund, H. J. Hoffman, D. A. V. Kliner, J. P. Koplow, and M. Hotoleanu, “Photodarkening rate in Yb-doped silica fibers,” Appl. Opt. 47, 1247–1256 (2008).
[CrossRef] [PubMed]

Koponen, J. J.

Leich, M.

Liem, A.

Limpert, J.

Love, J. D.

A. W. Snyder and J. D. Love, Optical Waveguide Theory(Chapman & Hall, 1983).

Manek-Hönninger, I.

Marshall, G. D.

M. L. Aslund, N. Jovanovic, J. Canning, S. D. Jackson, G. D. Marshall, A. Fuerbach, and M. J. Withford, “Rapid decay of Type-II femtosecond laser inscribed gratings within Q-switched Yb3+-doped fiber lasers,” IEEE Photonics Technol. Lett. 22, 504–506 (2010).
[CrossRef]

N. Jovanovic, M. Aslund, A. Fuerbach, S. D. Jackson, G. D. Marshall, and M. J. Withford, “Narrow linewidth,100W CW Yb3+-doped silica fiber laser with a point-by-point Bragg grating inscribed directly into the active core,” Opt. Lett. 32, 2804–2806 (2007).
[CrossRef] [PubMed]

Martinez, A.

A. Martinez, I. Y. Khrushchev, and I. Bennion, “Thermal properties of fiber Bragg gratings inscribed point-by-point by infrared femtosecond laser,” Electron. Lett. 41, 176–178 (2005).
[CrossRef]

Mégret, P.

Montiel i Ponsoda, J. J.

Nolte, S.

Oguama, F. A.

Petersson, A.

Reichel, V.

Röpke, U.

Röser, F.

Salin, F.

Sceats, M. G.

J. Canning, A. L. G. Carter, and M. G. Sceats, “Correlation between photodarkening and index change during 193nmirradiation of germanosilicate and phosphosilicate fibers,” J. Lightwave Technol. 15, 1348–1356 (1997).
[CrossRef]

Schreiber, T.

Siegman, A. E.

Snyder, A. W.

A. W. Snyder and J. D. Love, Optical Waveguide Theory(Chapman & Hall, 1983).

Soderlund, M.

J. J. Montiel i Ponsoda, M. Soderlund, J. Koplow, J. Koponen, A. Iho, and S. Honkanen, “Combined photodarkening and thermal bleaching measurement of an ytterbium-doped fiber,” Proc. SPIE 7195, 71952D (2009).
[CrossRef]

Söderlund, M.

Söderlund, M. J.

Tammela, S. K. T.

Tanigawa, S.

T. Arai, K. Ichii, S. Tanigawa, and M. Fujimaki, “Defect Analysis of photodarkened and gamma-ray irradiated ytterbium-doped silica glasses,” in Optical Fiber Communication Conference, OSA Technical Digest (CD) (Optical Society of America, 2009), paper OWT2.

Trivedi, S.

Tünnermann, A.

Unger, S.

Withford, M. J.

M. L. Aslund, N. Jovanovic, J. Canning, S. D. Jackson, G. D. Marshall, A. Fuerbach, and M. J. Withford, “Rapid decay of Type-II femtosecond laser inscribed gratings within Q-switched Yb3+-doped fiber lasers,” IEEE Photonics Technol. Lett. 22, 504–506 (2010).
[CrossRef]

N. Jovanovic, M. Aslund, A. Fuerbach, S. D. Jackson, G. D. Marshall, and M. J. Withford, “Narrow linewidth,100W CW Yb3+-doped silica fiber laser with a point-by-point Bragg grating inscribed directly into the active core,” Opt. Lett. 32, 2804–2806 (2007).
[CrossRef] [PubMed]

Zellmer, H.

Appl. Opt.

Electron. Lett.

A. Martinez, I. Y. Khrushchev, and I. Bennion, “Thermal properties of fiber Bragg gratings inscribed point-by-point by infrared femtosecond laser,” Electron. Lett. 41, 176–178 (2005).
[CrossRef]

IEEE Photonics Technol. Lett.

M. L. Aslund, N. Jovanovic, J. Canning, S. D. Jackson, G. D. Marshall, A. Fuerbach, and M. J. Withford, “Rapid decay of Type-II femtosecond laser inscribed gratings within Q-switched Yb3+-doped fiber lasers,” IEEE Photonics Technol. Lett. 22, 504–506 (2010).
[CrossRef]

J. Lightwave Technol.

J. Canning, A. L. G. Carter, and M. G. Sceats, “Correlation between photodarkening and index change during 193nmirradiation of germanosilicate and phosphosilicate fibers,” J. Lightwave Technol. 15, 1348–1356 (1997).
[CrossRef]

M. Janos and S. C. Guy, “Signal-induced refractive index changes in erbium-doped fiber amplifiers,” J. Lightwave Technol. 16, 542–548 (1998).
[CrossRef]

J. Opt. Soc. Am. B

Opt. Express

Opt. Lett.

Proc. SPIE

J. J. Montiel i Ponsoda, M. Soderlund, J. Koplow, J. Koponen, A. Iho, and S. Honkanen, “Combined photodarkening and thermal bleaching measurement of an ytterbium-doped fiber,” Proc. SPIE 7195, 71952D (2009).
[CrossRef]

Other

A. W. Snyder and J. D. Love, Optical Waveguide Theory(Chapman & Hall, 1983).

T. Arai, K. Ichii, S. Tanigawa, and M. Fujimaki, “Defect Analysis of photodarkened and gamma-ray irradiated ytterbium-doped silica glasses,” in Optical Fiber Communication Conference, OSA Technical Digest (CD) (Optical Society of America, 2009), paper OWT2.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Experimental setup for RIC measurement. YDF, Yb-doped fiber; BPF, bandpass filter; WLS, white light source; OSA, optical spectrum analyzer.

Fig. 2
Fig. 2

Transmission spectra of Yb-doped fiber samples with offset splices.

Fig. 3
Fig. 3

PD-induced absorption coefficient change at 600 nm as a function of time, and the stretched exponential function fitting.

Fig. 4
Fig. 4

Observed phase shift in the modal interference fringes at various PD loss levels and corresponding times. (a) Fiber #1, (b) Fiber #2.

Fig. 5
Fig. 5

Scattered points: measured RIC by modal interference at the saturated PD loss level. Lines: PD-induced RIC as a function of wavelength, calculated by KKR.

Fig. 6
Fig. 6

Measured PD-induced absorption spectrum and Gaussian fitting.

Fig. 7
Fig. 7

Measured RIC near 1080 nm versus PD- induced loss at 600 nm , during PD.

Fig. 8
Fig. 8

Measured RIC near 1080 nm versus PD- induced loss at 600 nm , during TB.

Tables (1)

Tables Icon

Table 1 Properties of the Ytterbium-Doped Fiber Samples Being Tested

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

Δ n ( ω ) = c 0 π p . v . 0 Δ α ( ω ) ω 2 ω 2 d ω ,
β i = β i + 2 π λ η i Δ n PD ( i = 1 , 2 ) ,
Δ n PD = λ 2 π l ( η 1 η 2 ) Δ ϕ .
Δ n PD 1080 nm = C ( λ probe ) · α PD ( λ probe ) ,

Metrics