Abstract

Loose abrasive lapping is widely used to prepare optical glass before its final polishing. We carried out a comparison of 20 different slurries from four different vendors. Slurry particle sizes and morphologies were measured. Fused silica samples were lapped with these different slurries on a single side polishing machine and characterized in terms of surface roughness and depth of subsurface damage (SSD). Effects of load, rotation speed, and slurry concentration during lapping on roughness, material removal rate, and SSD were investigated.

© 2010 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. L. André, “Status of the LMJ project,” Proc. SPIE 3047, 38–42 (1997).
  2. W. H. Lowdermilk, “Status of the National Ignition Facility project,” Proc. SPIE 3047, 16–37 (1997).
  3. N. Bloembergen, “Role of cracks, pores, and absorbing inclusions on laser damage threshold at surface of transparent dielectric,” Appl. Opt. 12, 661–664 (1973).
    [CrossRef] [PubMed]
  4. F. Y. Genin, A. Salleo, T. V. Pistor, and L. L. Chase, “Role of light intensification by cracks in optical breakdown on surfaces,” J. Opt. Soc. Am. A 18, 2607–2616 (2001).
    [CrossRef]
  5. M. D. Feit and A. M. Rubenchik, “Influence of subsurface cracks on laser induced surface damage,” Proc. SPIE 5273, 264–272 (2004).
    [CrossRef]
  6. H. Bercegol, P. Grua, D. Hébert, and J. P. Morreeuw, “Progress in the understanding of fracture related damage of fused silica,” Proc. SPIE 6720, 1–12 (2007).
    [CrossRef]
  7. F. K. Aleinikov, “The effect of certain physical and mechanical properties on the grinding of brittle materials,” Sov. Phys. Tech. Phys. 2, 2529–2538 (1957).
  8. W. J. Rupp, “Mechanism of the diamond lapping process,” Appl. Opt. 13, 1264–1269 (1974).
    [CrossRef]
  9. P. Hed and D. F. Edwards, “Optical glass fabrication technology. 2. Relationship between surface roughness and subsurface damage,” Appl. Opt. 26, 4677–4680 (1987).
    [CrossRef] [PubMed]
  10. J. C. Randi, J. C. Lambropoulos, and S. D. Jacobs, “Subsurface damage in some single crystalline optical materials,” Appl. Opt. 44, 2241–2249 (2005).
    [CrossRef] [PubMed]
  11. T. Suratwala, L. Wong, P. Miller, M. D. Feit, J. Menapace, R. Steele, P. Davis, and D. Walmer, “Subsurface mechanical damage distributions during grinding of fused silica,” J. Non-Cryst. Solids 352, 5601–5617 (2006).
    [CrossRef]
  12. J. Neauport, C. Ambard, P. Cormont, N. Darbois, J. Destribats, C. Luitot, and O. Rondeau, “Subsurface damage measurement of ground fused silica parts by HF etching techniques,” Opt. Express 17, 20448–20456 (2009).
    [CrossRef] [PubMed]
  13. H. Policove and T. M. Moore, “Optics manufacturing technology moves towards automation,” Laser Focus World 27, 145–149 (1991).
  14. M. Buijs and K. Korpel-Van Houten, “A model of lapping of glass,” J. Mater. Sci. 28, 3014–3020 (1993).
    [CrossRef]
  15. T. S. Izumitani, Optical Glass (American Institute of Physics, 1986), Chap. 4, p. 91J.
  16. C. Lampbropoulos, S. Xu, and T. Fang, “Loose abrasive lapping hardness of optical glasses and its interpretation,” Appl. Opt. 36, 1501–1516 (1997).
    [CrossRef]
  17. Z. Wang, Y. Wu, Y. Dai, and S. Li, “Subsurface damage distribution in the lapping process,” Appl. Opt. 47, 1417–1426(2008).
    [CrossRef] [PubMed]
  18. Logitech Limited, Erskine Ferry Road, Old Kilpatrick, Glasgow, G60 5EU, Scotland, UK. http://www.logitech.uk.com
  19. P. E. Miller, T. I. Suratwala, L. L. Wong, M. D. Feit, J. A. Menapace, P. J. Davis, and R. A. Steele, “The distribution of subsurface damage in fused silica,” Proc. SPIE 5991, 599101 (2005).
    [CrossRef]
  20. J. C. Lambropoulos, “Micromechanics of material-removal mechanisms from brittle surfaces,” LLE Review 74, 131–138(1998).
  21. J. C. Lambropoulos, “From abrasive size to subsurface damage in grinding,” Optical Fabrication and Testing, OSA Technical Digest (Optical Society of America, 2000), pp. 17–18
  22. I. Iordanoff, A. Battentier, J. Neauport, and J. L. Charles, “A discrete element model to investigate sub surface damage due to surface polishing,” Tribol. Int. 41, 957–964 (2008).
    [CrossRef]

2009 (1)

2008 (2)

Z. Wang, Y. Wu, Y. Dai, and S. Li, “Subsurface damage distribution in the lapping process,” Appl. Opt. 47, 1417–1426(2008).
[CrossRef] [PubMed]

I. Iordanoff, A. Battentier, J. Neauport, and J. L. Charles, “A discrete element model to investigate sub surface damage due to surface polishing,” Tribol. Int. 41, 957–964 (2008).
[CrossRef]

2007 (1)

H. Bercegol, P. Grua, D. Hébert, and J. P. Morreeuw, “Progress in the understanding of fracture related damage of fused silica,” Proc. SPIE 6720, 1–12 (2007).
[CrossRef]

2006 (1)

T. Suratwala, L. Wong, P. Miller, M. D. Feit, J. Menapace, R. Steele, P. Davis, and D. Walmer, “Subsurface mechanical damage distributions during grinding of fused silica,” J. Non-Cryst. Solids 352, 5601–5617 (2006).
[CrossRef]

2005 (2)

J. C. Randi, J. C. Lambropoulos, and S. D. Jacobs, “Subsurface damage in some single crystalline optical materials,” Appl. Opt. 44, 2241–2249 (2005).
[CrossRef] [PubMed]

P. E. Miller, T. I. Suratwala, L. L. Wong, M. D. Feit, J. A. Menapace, P. J. Davis, and R. A. Steele, “The distribution of subsurface damage in fused silica,” Proc. SPIE 5991, 599101 (2005).
[CrossRef]

2004 (1)

M. D. Feit and A. M. Rubenchik, “Influence of subsurface cracks on laser induced surface damage,” Proc. SPIE 5273, 264–272 (2004).
[CrossRef]

2001 (1)

1998 (1)

J. C. Lambropoulos, “Micromechanics of material-removal mechanisms from brittle surfaces,” LLE Review 74, 131–138(1998).

1997 (3)

C. Lampbropoulos, S. Xu, and T. Fang, “Loose abrasive lapping hardness of optical glasses and its interpretation,” Appl. Opt. 36, 1501–1516 (1997).
[CrossRef]

M. L. André, “Status of the LMJ project,” Proc. SPIE 3047, 38–42 (1997).

W. H. Lowdermilk, “Status of the National Ignition Facility project,” Proc. SPIE 3047, 16–37 (1997).

1993 (1)

M. Buijs and K. Korpel-Van Houten, “A model of lapping of glass,” J. Mater. Sci. 28, 3014–3020 (1993).
[CrossRef]

1991 (1)

H. Policove and T. M. Moore, “Optics manufacturing technology moves towards automation,” Laser Focus World 27, 145–149 (1991).

1987 (1)

1974 (1)

1973 (1)

1957 (1)

F. K. Aleinikov, “The effect of certain physical and mechanical properties on the grinding of brittle materials,” Sov. Phys. Tech. Phys. 2, 2529–2538 (1957).

Aleinikov, F. K.

F. K. Aleinikov, “The effect of certain physical and mechanical properties on the grinding of brittle materials,” Sov. Phys. Tech. Phys. 2, 2529–2538 (1957).

Ambard, C.

André, M. L.

M. L. André, “Status of the LMJ project,” Proc. SPIE 3047, 38–42 (1997).

Battentier, A.

I. Iordanoff, A. Battentier, J. Neauport, and J. L. Charles, “A discrete element model to investigate sub surface damage due to surface polishing,” Tribol. Int. 41, 957–964 (2008).
[CrossRef]

Bercegol, H.

H. Bercegol, P. Grua, D. Hébert, and J. P. Morreeuw, “Progress in the understanding of fracture related damage of fused silica,” Proc. SPIE 6720, 1–12 (2007).
[CrossRef]

Bloembergen, N.

Buijs, M.

M. Buijs and K. Korpel-Van Houten, “A model of lapping of glass,” J. Mater. Sci. 28, 3014–3020 (1993).
[CrossRef]

Charles, J. L.

I. Iordanoff, A. Battentier, J. Neauport, and J. L. Charles, “A discrete element model to investigate sub surface damage due to surface polishing,” Tribol. Int. 41, 957–964 (2008).
[CrossRef]

Chase, L. L.

Cormont, P.

Dai, Y.

Darbois, N.

Davis, P.

T. Suratwala, L. Wong, P. Miller, M. D. Feit, J. Menapace, R. Steele, P. Davis, and D. Walmer, “Subsurface mechanical damage distributions during grinding of fused silica,” J. Non-Cryst. Solids 352, 5601–5617 (2006).
[CrossRef]

Davis, P. J.

P. E. Miller, T. I. Suratwala, L. L. Wong, M. D. Feit, J. A. Menapace, P. J. Davis, and R. A. Steele, “The distribution of subsurface damage in fused silica,” Proc. SPIE 5991, 599101 (2005).
[CrossRef]

Destribats, J.

Edwards, D. F.

Fang, T.

Feit, M. D.

T. Suratwala, L. Wong, P. Miller, M. D. Feit, J. Menapace, R. Steele, P. Davis, and D. Walmer, “Subsurface mechanical damage distributions during grinding of fused silica,” J. Non-Cryst. Solids 352, 5601–5617 (2006).
[CrossRef]

P. E. Miller, T. I. Suratwala, L. L. Wong, M. D. Feit, J. A. Menapace, P. J. Davis, and R. A. Steele, “The distribution of subsurface damage in fused silica,” Proc. SPIE 5991, 599101 (2005).
[CrossRef]

M. D. Feit and A. M. Rubenchik, “Influence of subsurface cracks on laser induced surface damage,” Proc. SPIE 5273, 264–272 (2004).
[CrossRef]

Genin, F. Y.

Grua, P.

H. Bercegol, P. Grua, D. Hébert, and J. P. Morreeuw, “Progress in the understanding of fracture related damage of fused silica,” Proc. SPIE 6720, 1–12 (2007).
[CrossRef]

Hébert, D.

H. Bercegol, P. Grua, D. Hébert, and J. P. Morreeuw, “Progress in the understanding of fracture related damage of fused silica,” Proc. SPIE 6720, 1–12 (2007).
[CrossRef]

Hed, P.

Iordanoff, I.

I. Iordanoff, A. Battentier, J. Neauport, and J. L. Charles, “A discrete element model to investigate sub surface damage due to surface polishing,” Tribol. Int. 41, 957–964 (2008).
[CrossRef]

Izumitani, T. S.

T. S. Izumitani, Optical Glass (American Institute of Physics, 1986), Chap. 4, p. 91J.

Jacobs, S. D.

Korpel-Van Houten, K.

M. Buijs and K. Korpel-Van Houten, “A model of lapping of glass,” J. Mater. Sci. 28, 3014–3020 (1993).
[CrossRef]

Lambropoulos, J. C.

J. C. Randi, J. C. Lambropoulos, and S. D. Jacobs, “Subsurface damage in some single crystalline optical materials,” Appl. Opt. 44, 2241–2249 (2005).
[CrossRef] [PubMed]

J. C. Lambropoulos, “Micromechanics of material-removal mechanisms from brittle surfaces,” LLE Review 74, 131–138(1998).

J. C. Lambropoulos, “From abrasive size to subsurface damage in grinding,” Optical Fabrication and Testing, OSA Technical Digest (Optical Society of America, 2000), pp. 17–18

Lampbropoulos, C.

Li, S.

Lowdermilk, W. H.

W. H. Lowdermilk, “Status of the National Ignition Facility project,” Proc. SPIE 3047, 16–37 (1997).

Luitot, C.

Menapace, J.

T. Suratwala, L. Wong, P. Miller, M. D. Feit, J. Menapace, R. Steele, P. Davis, and D. Walmer, “Subsurface mechanical damage distributions during grinding of fused silica,” J. Non-Cryst. Solids 352, 5601–5617 (2006).
[CrossRef]

Menapace, J. A.

P. E. Miller, T. I. Suratwala, L. L. Wong, M. D. Feit, J. A. Menapace, P. J. Davis, and R. A. Steele, “The distribution of subsurface damage in fused silica,” Proc. SPIE 5991, 599101 (2005).
[CrossRef]

Miller, P.

T. Suratwala, L. Wong, P. Miller, M. D. Feit, J. Menapace, R. Steele, P. Davis, and D. Walmer, “Subsurface mechanical damage distributions during grinding of fused silica,” J. Non-Cryst. Solids 352, 5601–5617 (2006).
[CrossRef]

Miller, P. E.

P. E. Miller, T. I. Suratwala, L. L. Wong, M. D. Feit, J. A. Menapace, P. J. Davis, and R. A. Steele, “The distribution of subsurface damage in fused silica,” Proc. SPIE 5991, 599101 (2005).
[CrossRef]

Moore, T. M.

H. Policove and T. M. Moore, “Optics manufacturing technology moves towards automation,” Laser Focus World 27, 145–149 (1991).

Morreeuw, J. P.

H. Bercegol, P. Grua, D. Hébert, and J. P. Morreeuw, “Progress in the understanding of fracture related damage of fused silica,” Proc. SPIE 6720, 1–12 (2007).
[CrossRef]

Neauport, J.

J. Neauport, C. Ambard, P. Cormont, N. Darbois, J. Destribats, C. Luitot, and O. Rondeau, “Subsurface damage measurement of ground fused silica parts by HF etching techniques,” Opt. Express 17, 20448–20456 (2009).
[CrossRef] [PubMed]

I. Iordanoff, A. Battentier, J. Neauport, and J. L. Charles, “A discrete element model to investigate sub surface damage due to surface polishing,” Tribol. Int. 41, 957–964 (2008).
[CrossRef]

Pistor, T. V.

Policove, H.

H. Policove and T. M. Moore, “Optics manufacturing technology moves towards automation,” Laser Focus World 27, 145–149 (1991).

Randi, J. C.

Rondeau, O.

Rubenchik, A. M.

M. D. Feit and A. M. Rubenchik, “Influence of subsurface cracks on laser induced surface damage,” Proc. SPIE 5273, 264–272 (2004).
[CrossRef]

Rupp, W. J.

Salleo, A.

Steele, R.

T. Suratwala, L. Wong, P. Miller, M. D. Feit, J. Menapace, R. Steele, P. Davis, and D. Walmer, “Subsurface mechanical damage distributions during grinding of fused silica,” J. Non-Cryst. Solids 352, 5601–5617 (2006).
[CrossRef]

Steele, R. A.

P. E. Miller, T. I. Suratwala, L. L. Wong, M. D. Feit, J. A. Menapace, P. J. Davis, and R. A. Steele, “The distribution of subsurface damage in fused silica,” Proc. SPIE 5991, 599101 (2005).
[CrossRef]

Suratwala, T.

T. Suratwala, L. Wong, P. Miller, M. D. Feit, J. Menapace, R. Steele, P. Davis, and D. Walmer, “Subsurface mechanical damage distributions during grinding of fused silica,” J. Non-Cryst. Solids 352, 5601–5617 (2006).
[CrossRef]

Suratwala, T. I.

P. E. Miller, T. I. Suratwala, L. L. Wong, M. D. Feit, J. A. Menapace, P. J. Davis, and R. A. Steele, “The distribution of subsurface damage in fused silica,” Proc. SPIE 5991, 599101 (2005).
[CrossRef]

Walmer, D.

T. Suratwala, L. Wong, P. Miller, M. D. Feit, J. Menapace, R. Steele, P. Davis, and D. Walmer, “Subsurface mechanical damage distributions during grinding of fused silica,” J. Non-Cryst. Solids 352, 5601–5617 (2006).
[CrossRef]

Wang, Z.

Wong, L.

T. Suratwala, L. Wong, P. Miller, M. D. Feit, J. Menapace, R. Steele, P. Davis, and D. Walmer, “Subsurface mechanical damage distributions during grinding of fused silica,” J. Non-Cryst. Solids 352, 5601–5617 (2006).
[CrossRef]

Wong, L. L.

P. E. Miller, T. I. Suratwala, L. L. Wong, M. D. Feit, J. A. Menapace, P. J. Davis, and R. A. Steele, “The distribution of subsurface damage in fused silica,” Proc. SPIE 5991, 599101 (2005).
[CrossRef]

Wu, Y.

Xu, S.

Appl. Opt. (6)

J. Mater. Sci. (1)

M. Buijs and K. Korpel-Van Houten, “A model of lapping of glass,” J. Mater. Sci. 28, 3014–3020 (1993).
[CrossRef]

J. Non-Cryst. Solids (1)

T. Suratwala, L. Wong, P. Miller, M. D. Feit, J. Menapace, R. Steele, P. Davis, and D. Walmer, “Subsurface mechanical damage distributions during grinding of fused silica,” J. Non-Cryst. Solids 352, 5601–5617 (2006).
[CrossRef]

J. Opt. Soc. Am. A (1)

Laser Focus World (1)

H. Policove and T. M. Moore, “Optics manufacturing technology moves towards automation,” Laser Focus World 27, 145–149 (1991).

LLE Review (1)

J. C. Lambropoulos, “Micromechanics of material-removal mechanisms from brittle surfaces,” LLE Review 74, 131–138(1998).

Opt. Express (1)

Proc. SPIE (5)

M. D. Feit and A. M. Rubenchik, “Influence of subsurface cracks on laser induced surface damage,” Proc. SPIE 5273, 264–272 (2004).
[CrossRef]

H. Bercegol, P. Grua, D. Hébert, and J. P. Morreeuw, “Progress in the understanding of fracture related damage of fused silica,” Proc. SPIE 6720, 1–12 (2007).
[CrossRef]

P. E. Miller, T. I. Suratwala, L. L. Wong, M. D. Feit, J. A. Menapace, P. J. Davis, and R. A. Steele, “The distribution of subsurface damage in fused silica,” Proc. SPIE 5991, 599101 (2005).
[CrossRef]

M. L. André, “Status of the LMJ project,” Proc. SPIE 3047, 38–42 (1997).

W. H. Lowdermilk, “Status of the National Ignition Facility project,” Proc. SPIE 3047, 16–37 (1997).

Sov. Phys. Tech. Phys. (1)

F. K. Aleinikov, “The effect of certain physical and mechanical properties on the grinding of brittle materials,” Sov. Phys. Tech. Phys. 2, 2529–2538 (1957).

Tribol. Int. (1)

I. Iordanoff, A. Battentier, J. Neauport, and J. L. Charles, “A discrete element model to investigate sub surface damage due to surface polishing,” Tribol. Int. 41, 957–964 (2008).
[CrossRef]

Other (3)

J. C. Lambropoulos, “From abrasive size to subsurface damage in grinding,” Optical Fabrication and Testing, OSA Technical Digest (Optical Society of America, 2000), pp. 17–18

T. S. Izumitani, Optical Glass (American Institute of Physics, 1986), Chap. 4, p. 91J.

Logitech Limited, Erskine Ferry Road, Old Kilpatrick, Glasgow, G60 5EU, Scotland, UK. http://www.logitech.uk.com

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1

Size distribution of abrasive grains of different 9 µm aluminas.

Fig. 2
Fig. 2

(a) Typical SEM pictures of 9 µm Al 2 O 3 particles. (b) SEM pictures of 9 µm Al 2 O 3 , SiC, and B 4 C particles.

Fig. 3
Fig. 3

Influence of lapping rotation speed on the SSD depth and MRR ( Al 2 O 3 , 17 µm , from supplier B, load = 2.4 kg , concentration = 13.3 vol. % , lapping plate not grooved).

Fig. 4
Fig. 4

Influence of lapping load on the SSD depth and MRR ( Al 2 O 3 , 30 µm , from supplier C, rotation speed = 50 rpm , concentration = 13.3 vol. % , lapping plate not grooved).

Fig. 5
Fig. 5

(a) Influence of slurry concentration on the SSD depth and MRR in the case of a powder with a low grain size ( Al 2 O 3 , 9 µm , from supplier B, rotation speed = 50 rpm , load = 2.4 kg , lapping plate not grooved). (b) Influence of slurry concentration on the SSD depth and MRR in the case of a powder with an average grain size ( Al 2 O 3 , 17 µm , from supplier B, rotation speed = 50 rpm , load = 2.4 kg , lapping plate not grooved). (c) Influence of slurry concentration on the SSD depth and MRR in the case of a powder with a high grain size ( Al 2 O 3 , 29 µm , from supplier B, rotation speed = 50 rpm , load = 2.4 kg , lapping plate not grooved).

Fig. 6
Fig. 6

Slopes of SSD depth = f (concentration) for all the slurries.

Fig. 7
Fig. 7

Influence of the type of lapping plate on the SSD depth and MRR ( Al 2 O 3 , 30 μm , from supplier A, rotation speed = 50 rpm , load = 2.4 kg , concentration = 13.3 vol. % ).

Fig. 8
Fig. 8

Influence of abrasive grain size on the SSD depth and MRR ( Al 2 O 3 , from supplier D, rotation speed = 50 rpm , load = 2.4 kg , concentration = 13.3 vol. % , plate not grooved).

Fig. 9
Fig. 9

Evolution of SSD depth with mean particle size as stated by vendor. ( Al 2 O 3 , from supplier D, rotation speed = 50 rpm , load = 2.4 kg , concentration = 13.3 vol. % , plate not grooved). Comparison with law proposed by Lambropoulos [21].

Fig. 10
Fig. 10

Comparison of the SSD depth created by the different slurries with experimental conditions minimizing SSD (rotation speed = 60 rpm , load = 2.8 kg , concentration = 20 vol. % for low and mean grain size, concentration = 13.3 vol. % for high grain size, plate not grooved).

Fig. 11
Fig. 11

Comparison of the MRR induced by the different slurries with experimental conditions minimizing SSD (rotation speed = 60 rpm , load = 2.8 kg , concentration = 20 vol. % ).

Tables (3)

Tables Icon

Table 1 Comparison of the Particle Diameter Announced by Supplier with Measures of the D50 and D90 of the Powder for Each Abrasive

Tables Icon

Table 2 Relationship between Maximal Surface Roughness Rt and SSD Depth as Measured by the Acid Etching Method

Tables Icon

Table 3 Relative Variation of SSD Depth and MRR according to Lapping Parameters

Metrics