Abstract

In our previous study, we used optical coherence tomography (OCT) and reported an increase in signal intensity of depth profiles between euthanasia injection and cardiac arrest (CA), demonstrating the potential as a tool for monitoring/diagnosing brain tissue viability [Appl. Opt. 48, 4354 (2009)]. Here, for the first time to our knowledge, we measured three-dimensional (3D) OCT images through a thinned skull changing temperatures in the rat brain. The measurements were made at 10min intervals for 210min to evaluate correlations of temperature with heart rate and ratios of signal intensity (RSI). The 3D image area was 4mm×4mm×2.8mm. When the temperature was decreased from 28°C to 18°C to reduce tissue viability, the heart rate was found to decrease with an increase in RSI. Negative correlation coefficients (CCs) between temperatures and RSIs, and between heart rate and RSIs, were obtained. This indicates that OCT signals increase with reductions of viability caused by decreases in heart rates and temperatures in tissues. These observations correspond to estimations obtained by multiwavelength diffuse reflectance spectroscopy [Appl. Opt. 47, 4164 (2008)]. CCs and stationary RSIs would depend upon measured positions in tissues. Without injections for euthanasia, a similar rapid increase in RSI has also been measured before CA.

© 2010 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
    [CrossRef] [PubMed]
  2. B.Bouma and J.Tearney, eds., Handbook of Optical Coherence Tomography (Marcel Dekker, 2002).
  3. K. Bizheva, A. Unterhuber, B. Hermann, B. Povazay, H. Sattman, W. Drexler, A. S. T. Le, M. Mei, R. Holzwarth, H. A. Reitsamer, J. E. Morgan, and A. Cowey, “Imaging ex vivo and in vitro brain morphology in animal models with ultrahigh resolution optical coherence tomography,” J. Biomed. Opt. 9, 719–724 (2004).
    [CrossRef] [PubMed]
  4. K. Bizheva, A. Unterhuber, B. Hermann, B. Povazay, H. Sattman, A. F. Fercher, W. Drexler, M. Preusser, H. Budka, and A. S. T. Le, “Imaging ex vivo and pathological human brain tissue with ultra-high-resolution optical coherence tomography,” J. Biomed. Opt. 10, 011006-1–7 (2004).
  5. Y. Satomura, J. Seki, Y. Ooi, T. Yanagida, and A. Seiyama, “In vivo imaging of the rat cerebral microvessels with optical coherence tomography,” Clin. Hemorheol. Microcirc. 31, 31–40 (2004).
    [PubMed]
  6. M. Sato, T. Nagata, T. Niizuma, L. Neagu, R. Dabu, and Y. Watanabe, “Quadrature fringes wide-field optical coherence tomography and its applications to biological tissues,” Opt. Commun. 271, 573–580 (2007).
    [CrossRef]
  7. R. D. Frostig, E. E. Lieke, D. Y. Ts’o, and A. Grinvald, “Cortical functional architecture and local coupling between neuronal activity and the microcirculation revealed by in vivo high-resolution optical imaging of intrinsic signals,” Proc. Natl. Acad. Sci. USA 87, 6082–6086 (1990).
    [CrossRef] [PubMed]
  8. R. U. Maheswari, H. Takaoka, R. Homma, H. Kadono, and M. Tanifuji, “Implementation of optical coherence tomography (OCT) in visualization of functional structures of cat visual cortex,” Opt. Commun. 202, 47–54 (2002).
    [CrossRef]
  9. R. U. Maheswari, H. Takaoka, H. Kadono, R. Homma, and M. Tanifuji, “Novel functional imaging technique from brain surface with optical coherence tomography enabling visualization of depth resolved functional structure in vivo,” J. Neurosci. Methods 124, 83–92 (2003).
    [CrossRef] [PubMed]
  10. A. D. Aguirre, Y. Chen, J. G. Fujimoto, L. Ruvinskaya, A. Devor, and D. A. Boas, “Depth-resolved imaging of functional activation in the rat cerebral cortex using optical coherence tomography,” Opt. Lett. 31, 3459–3461 (2006).
    [CrossRef] [PubMed]
  11. V. J. Srinivasan, M. Wojtkowski, J. G. Fujimoto, and J. S. Duker, “In vivo measurement of retinal physiology with high-speed ultrahigh-resolution optical coherence tomography,” Opt. Lett. 31, 2308–2310 (2006).
    [CrossRef] [PubMed]
  12. S. Kawauchi, S. Sato, H. Ooigawa, H. Nawashiro, M. Ishihara, and M. Kikuchi, “Simultaneous measurement of changes in light absorption due to the reduction of cytochrome c oxidase and light scattering in rat brains during loss of tissue viability,” Appl. Opt. 47, 4164–4176 (2008).
    [CrossRef] [PubMed]
  13. S. Kawauchi, S. Sato, H. Ooigawa, H. Nawashiro, M. Ishihara, and M. Kikuchi, “Light scattering change precedes loss of cerebral adenosine triphosphate in a rat global ischemic brain model,” Neurosci. Lett. Suppl. 459, 152–156 (2009).
    [CrossRef]
  14. K. Arai and E. H. Lo, “Experimental models for analysis of oligodendrocyte pathophysiology in stroke,” Exper. Transl. Stroke Med. 1, 6 (2009).
    [CrossRef]
  15. M. Sato, M. S. Hrebesh, and I. Nishidate, “Measurement of signal intensity depth profiles in rat brains with cardiac arrest using wide-field optical coherence tomography,” Appl. Opt. 48, 4354–4364 (2009).
    [CrossRef] [PubMed]
  16. F. Du, X. H. Zhu, Y. Zhang, M. Friedman, N. Zhang, K. Ugurbil, and W. Chen, “Tightly coupled brain activity and cerebral ATP metabolic rate,” Neuroscience 105, 6409–6414 (2008).
  17. X. Jia, M. A. Koenig, A. Venkatraman, N. V. Thakor, and R. G. Geocadin, “Post-cardiac arrest temperature manipulation alters early EEG bursting in rats,” Resuscitation 78, 367–373 (2008).
    [CrossRef] [PubMed]
  18. L. Mccullough and S. Arora, “Diagnosis and treatment of hypothermia,” Am. Fam. Phys. 70, 2325–2332 (2004).
  19. N. Kalia, A. G. Pockley, R. F. M. Wood, and N. J. Brown, “Effects of hypothermia and rewarming on the mucosal villus microcirculation and survival after rat intestinal ischemia-reperfusion injury,” Ann. Surg. 236, 67–74 (2002).
    [CrossRef] [PubMed]
  20. G. Paxinos and C. Watson, The Rat Brain in Stereotaxic Coordinates (Elsevier, 2007).
  21. A. Ascenzi and C. Fabry, “Technique for dissection and measurement of refractive index of osteons,” J. Biophys. Biochem. Cytol. 6, 139–142 (1959).
    [CrossRef] [PubMed]
  22. E. Bordenave, E. Abraham, G. Jonusauskas, N. Tsurumachi, J. Oberle, C. Rulliere, P. E. Minot, M. Lassegues, and J. E. Surleve Bazeille, “Wide-field optical coherence tomography: imaging of biological tissues,” Appl. Opt. 41, 2059–2064(2002).
    [CrossRef] [PubMed]
  23. S. W. Jeon, M. A. Shure, K. B. Baker, D. Hung, A. M. Rollins, A. Chahlavi, and A. R. Rezai, “A feasibility study of optical coherence tomography,” J. Neurosci. Methods 154, 96–101 (2006).
    [CrossRef] [PubMed]
  24. E. H. Lo, T. Dalkara, and M. A. Moskowitz, “Mechanisms, challenges and opportunities in stroke,” Nat. Rev. Neurosci. 4, 399–415 (2003).
    [CrossRef] [PubMed]
  25. G. Paxinos, The Rat Nervous System (Elsevier, 2004).
  26. S. G. Lomber and B. R. Payne, “Translaminar differentiation of visually guided behaviors revealed by restricted cerebral cooling deactivation,” Cereb. Cortex 10, 1066–1077 (2000).
    [CrossRef] [PubMed]
  27. K. A. Hossman, “Viability threshold and the penumbra of focal ischemia,” Ann. Neurol. 36, 557–565 (1994).
    [CrossRef]
  28. E. Tanaka, S. Yamamoto, H. Inokuchi, T. Isagai, and H. Higashi, “Membrane dysfunction induced by in vitro ischemia in rat hippocampal CA1 pyramidal neurons,” J. Neurophysiol. 80, 1872–1880 (1999).
  29. T. M. Polischuk, C. R. Jarvis, and R. D. Andrew, “Intrinsic optical signaling denoting neuronal damage in response to acute excitotoxic insult by domoic acid in the hippocampal slice,” Neurobiol. Dis. 4, 423–437 (1998).
    [CrossRef] [PubMed]

2009 (3)

S. Kawauchi, S. Sato, H. Ooigawa, H. Nawashiro, M. Ishihara, and M. Kikuchi, “Light scattering change precedes loss of cerebral adenosine triphosphate in a rat global ischemic brain model,” Neurosci. Lett. Suppl. 459, 152–156 (2009).
[CrossRef]

K. Arai and E. H. Lo, “Experimental models for analysis of oligodendrocyte pathophysiology in stroke,” Exper. Transl. Stroke Med. 1, 6 (2009).
[CrossRef]

M. Sato, M. S. Hrebesh, and I. Nishidate, “Measurement of signal intensity depth profiles in rat brains with cardiac arrest using wide-field optical coherence tomography,” Appl. Opt. 48, 4354–4364 (2009).
[CrossRef] [PubMed]

2008 (3)

S. Kawauchi, S. Sato, H. Ooigawa, H. Nawashiro, M. Ishihara, and M. Kikuchi, “Simultaneous measurement of changes in light absorption due to the reduction of cytochrome c oxidase and light scattering in rat brains during loss of tissue viability,” Appl. Opt. 47, 4164–4176 (2008).
[CrossRef] [PubMed]

F. Du, X. H. Zhu, Y. Zhang, M. Friedman, N. Zhang, K. Ugurbil, and W. Chen, “Tightly coupled brain activity and cerebral ATP metabolic rate,” Neuroscience 105, 6409–6414 (2008).

X. Jia, M. A. Koenig, A. Venkatraman, N. V. Thakor, and R. G. Geocadin, “Post-cardiac arrest temperature manipulation alters early EEG bursting in rats,” Resuscitation 78, 367–373 (2008).
[CrossRef] [PubMed]

2007 (1)

M. Sato, T. Nagata, T. Niizuma, L. Neagu, R. Dabu, and Y. Watanabe, “Quadrature fringes wide-field optical coherence tomography and its applications to biological tissues,” Opt. Commun. 271, 573–580 (2007).
[CrossRef]

2006 (3)

2004 (4)

K. Bizheva, A. Unterhuber, B. Hermann, B. Povazay, H. Sattman, W. Drexler, A. S. T. Le, M. Mei, R. Holzwarth, H. A. Reitsamer, J. E. Morgan, and A. Cowey, “Imaging ex vivo and in vitro brain morphology in animal models with ultrahigh resolution optical coherence tomography,” J. Biomed. Opt. 9, 719–724 (2004).
[CrossRef] [PubMed]

K. Bizheva, A. Unterhuber, B. Hermann, B. Povazay, H. Sattman, A. F. Fercher, W. Drexler, M. Preusser, H. Budka, and A. S. T. Le, “Imaging ex vivo and pathological human brain tissue with ultra-high-resolution optical coherence tomography,” J. Biomed. Opt. 10, 011006-1–7 (2004).

Y. Satomura, J. Seki, Y. Ooi, T. Yanagida, and A. Seiyama, “In vivo imaging of the rat cerebral microvessels with optical coherence tomography,” Clin. Hemorheol. Microcirc. 31, 31–40 (2004).
[PubMed]

L. Mccullough and S. Arora, “Diagnosis and treatment of hypothermia,” Am. Fam. Phys. 70, 2325–2332 (2004).

2003 (2)

E. H. Lo, T. Dalkara, and M. A. Moskowitz, “Mechanisms, challenges and opportunities in stroke,” Nat. Rev. Neurosci. 4, 399–415 (2003).
[CrossRef] [PubMed]

R. U. Maheswari, H. Takaoka, H. Kadono, R. Homma, and M. Tanifuji, “Novel functional imaging technique from brain surface with optical coherence tomography enabling visualization of depth resolved functional structure in vivo,” J. Neurosci. Methods 124, 83–92 (2003).
[CrossRef] [PubMed]

2002 (3)

E. Bordenave, E. Abraham, G. Jonusauskas, N. Tsurumachi, J. Oberle, C. Rulliere, P. E. Minot, M. Lassegues, and J. E. Surleve Bazeille, “Wide-field optical coherence tomography: imaging of biological tissues,” Appl. Opt. 41, 2059–2064(2002).
[CrossRef] [PubMed]

R. U. Maheswari, H. Takaoka, R. Homma, H. Kadono, and M. Tanifuji, “Implementation of optical coherence tomography (OCT) in visualization of functional structures of cat visual cortex,” Opt. Commun. 202, 47–54 (2002).
[CrossRef]

N. Kalia, A. G. Pockley, R. F. M. Wood, and N. J. Brown, “Effects of hypothermia and rewarming on the mucosal villus microcirculation and survival after rat intestinal ischemia-reperfusion injury,” Ann. Surg. 236, 67–74 (2002).
[CrossRef] [PubMed]

2000 (1)

S. G. Lomber and B. R. Payne, “Translaminar differentiation of visually guided behaviors revealed by restricted cerebral cooling deactivation,” Cereb. Cortex 10, 1066–1077 (2000).
[CrossRef] [PubMed]

1999 (1)

E. Tanaka, S. Yamamoto, H. Inokuchi, T. Isagai, and H. Higashi, “Membrane dysfunction induced by in vitro ischemia in rat hippocampal CA1 pyramidal neurons,” J. Neurophysiol. 80, 1872–1880 (1999).

1998 (1)

T. M. Polischuk, C. R. Jarvis, and R. D. Andrew, “Intrinsic optical signaling denoting neuronal damage in response to acute excitotoxic insult by domoic acid in the hippocampal slice,” Neurobiol. Dis. 4, 423–437 (1998).
[CrossRef] [PubMed]

1994 (1)

K. A. Hossman, “Viability threshold and the penumbra of focal ischemia,” Ann. Neurol. 36, 557–565 (1994).
[CrossRef]

1991 (1)

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef] [PubMed]

1990 (1)

R. D. Frostig, E. E. Lieke, D. Y. Ts’o, and A. Grinvald, “Cortical functional architecture and local coupling between neuronal activity and the microcirculation revealed by in vivo high-resolution optical imaging of intrinsic signals,” Proc. Natl. Acad. Sci. USA 87, 6082–6086 (1990).
[CrossRef] [PubMed]

1959 (1)

A. Ascenzi and C. Fabry, “Technique for dissection and measurement of refractive index of osteons,” J. Biophys. Biochem. Cytol. 6, 139–142 (1959).
[CrossRef] [PubMed]

Abraham, E.

Aguirre, A. D.

Andrew, R. D.

T. M. Polischuk, C. R. Jarvis, and R. D. Andrew, “Intrinsic optical signaling denoting neuronal damage in response to acute excitotoxic insult by domoic acid in the hippocampal slice,” Neurobiol. Dis. 4, 423–437 (1998).
[CrossRef] [PubMed]

Arai, K.

K. Arai and E. H. Lo, “Experimental models for analysis of oligodendrocyte pathophysiology in stroke,” Exper. Transl. Stroke Med. 1, 6 (2009).
[CrossRef]

Arora, S.

L. Mccullough and S. Arora, “Diagnosis and treatment of hypothermia,” Am. Fam. Phys. 70, 2325–2332 (2004).

Ascenzi, A.

A. Ascenzi and C. Fabry, “Technique for dissection and measurement of refractive index of osteons,” J. Biophys. Biochem. Cytol. 6, 139–142 (1959).
[CrossRef] [PubMed]

Baker, K. B.

S. W. Jeon, M. A. Shure, K. B. Baker, D. Hung, A. M. Rollins, A. Chahlavi, and A. R. Rezai, “A feasibility study of optical coherence tomography,” J. Neurosci. Methods 154, 96–101 (2006).
[CrossRef] [PubMed]

Bazeille, J. E. Surleve

Bizheva, K.

K. Bizheva, A. Unterhuber, B. Hermann, B. Povazay, H. Sattman, W. Drexler, A. S. T. Le, M. Mei, R. Holzwarth, H. A. Reitsamer, J. E. Morgan, and A. Cowey, “Imaging ex vivo and in vitro brain morphology in animal models with ultrahigh resolution optical coherence tomography,” J. Biomed. Opt. 9, 719–724 (2004).
[CrossRef] [PubMed]

K. Bizheva, A. Unterhuber, B. Hermann, B. Povazay, H. Sattman, A. F. Fercher, W. Drexler, M. Preusser, H. Budka, and A. S. T. Le, “Imaging ex vivo and pathological human brain tissue with ultra-high-resolution optical coherence tomography,” J. Biomed. Opt. 10, 011006-1–7 (2004).

Boas, D. A.

Bordenave, E.

Brown, N. J.

N. Kalia, A. G. Pockley, R. F. M. Wood, and N. J. Brown, “Effects of hypothermia and rewarming on the mucosal villus microcirculation and survival after rat intestinal ischemia-reperfusion injury,” Ann. Surg. 236, 67–74 (2002).
[CrossRef] [PubMed]

Budka, H.

K. Bizheva, A. Unterhuber, B. Hermann, B. Povazay, H. Sattman, A. F. Fercher, W. Drexler, M. Preusser, H. Budka, and A. S. T. Le, “Imaging ex vivo and pathological human brain tissue with ultra-high-resolution optical coherence tomography,” J. Biomed. Opt. 10, 011006-1–7 (2004).

Chahlavi, A.

S. W. Jeon, M. A. Shure, K. B. Baker, D. Hung, A. M. Rollins, A. Chahlavi, and A. R. Rezai, “A feasibility study of optical coherence tomography,” J. Neurosci. Methods 154, 96–101 (2006).
[CrossRef] [PubMed]

Chang, W.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef] [PubMed]

Chen, W.

F. Du, X. H. Zhu, Y. Zhang, M. Friedman, N. Zhang, K. Ugurbil, and W. Chen, “Tightly coupled brain activity and cerebral ATP metabolic rate,” Neuroscience 105, 6409–6414 (2008).

Chen, Y.

Cowey, A.

K. Bizheva, A. Unterhuber, B. Hermann, B. Povazay, H. Sattman, W. Drexler, A. S. T. Le, M. Mei, R. Holzwarth, H. A. Reitsamer, J. E. Morgan, and A. Cowey, “Imaging ex vivo and in vitro brain morphology in animal models with ultrahigh resolution optical coherence tomography,” J. Biomed. Opt. 9, 719–724 (2004).
[CrossRef] [PubMed]

Dabu, R.

M. Sato, T. Nagata, T. Niizuma, L. Neagu, R. Dabu, and Y. Watanabe, “Quadrature fringes wide-field optical coherence tomography and its applications to biological tissues,” Opt. Commun. 271, 573–580 (2007).
[CrossRef]

Dalkara, T.

E. H. Lo, T. Dalkara, and M. A. Moskowitz, “Mechanisms, challenges and opportunities in stroke,” Nat. Rev. Neurosci. 4, 399–415 (2003).
[CrossRef] [PubMed]

Devor, A.

Drexler, W.

K. Bizheva, A. Unterhuber, B. Hermann, B. Povazay, H. Sattman, W. Drexler, A. S. T. Le, M. Mei, R. Holzwarth, H. A. Reitsamer, J. E. Morgan, and A. Cowey, “Imaging ex vivo and in vitro brain morphology in animal models with ultrahigh resolution optical coherence tomography,” J. Biomed. Opt. 9, 719–724 (2004).
[CrossRef] [PubMed]

K. Bizheva, A. Unterhuber, B. Hermann, B. Povazay, H. Sattman, A. F. Fercher, W. Drexler, M. Preusser, H. Budka, and A. S. T. Le, “Imaging ex vivo and pathological human brain tissue with ultra-high-resolution optical coherence tomography,” J. Biomed. Opt. 10, 011006-1–7 (2004).

Du, F.

F. Du, X. H. Zhu, Y. Zhang, M. Friedman, N. Zhang, K. Ugurbil, and W. Chen, “Tightly coupled brain activity and cerebral ATP metabolic rate,” Neuroscience 105, 6409–6414 (2008).

Duker, J. S.

Fabry, C.

A. Ascenzi and C. Fabry, “Technique for dissection and measurement of refractive index of osteons,” J. Biophys. Biochem. Cytol. 6, 139–142 (1959).
[CrossRef] [PubMed]

Fercher, A. F.

K. Bizheva, A. Unterhuber, B. Hermann, B. Povazay, H. Sattman, A. F. Fercher, W. Drexler, M. Preusser, H. Budka, and A. S. T. Le, “Imaging ex vivo and pathological human brain tissue with ultra-high-resolution optical coherence tomography,” J. Biomed. Opt. 10, 011006-1–7 (2004).

Flotte, T.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef] [PubMed]

Friedman, M.

F. Du, X. H. Zhu, Y. Zhang, M. Friedman, N. Zhang, K. Ugurbil, and W. Chen, “Tightly coupled brain activity and cerebral ATP metabolic rate,” Neuroscience 105, 6409–6414 (2008).

Frostig, R. D.

R. D. Frostig, E. E. Lieke, D. Y. Ts’o, and A. Grinvald, “Cortical functional architecture and local coupling between neuronal activity and the microcirculation revealed by in vivo high-resolution optical imaging of intrinsic signals,” Proc. Natl. Acad. Sci. USA 87, 6082–6086 (1990).
[CrossRef] [PubMed]

Fujimoto, J. G.

Geocadin, R. G.

X. Jia, M. A. Koenig, A. Venkatraman, N. V. Thakor, and R. G. Geocadin, “Post-cardiac arrest temperature manipulation alters early EEG bursting in rats,” Resuscitation 78, 367–373 (2008).
[CrossRef] [PubMed]

Gregory, K.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef] [PubMed]

Grinvald, A.

R. D. Frostig, E. E. Lieke, D. Y. Ts’o, and A. Grinvald, “Cortical functional architecture and local coupling between neuronal activity and the microcirculation revealed by in vivo high-resolution optical imaging of intrinsic signals,” Proc. Natl. Acad. Sci. USA 87, 6082–6086 (1990).
[CrossRef] [PubMed]

Hee, M. R.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef] [PubMed]

Hermann, B.

K. Bizheva, A. Unterhuber, B. Hermann, B. Povazay, H. Sattman, W. Drexler, A. S. T. Le, M. Mei, R. Holzwarth, H. A. Reitsamer, J. E. Morgan, and A. Cowey, “Imaging ex vivo and in vitro brain morphology in animal models with ultrahigh resolution optical coherence tomography,” J. Biomed. Opt. 9, 719–724 (2004).
[CrossRef] [PubMed]

K. Bizheva, A. Unterhuber, B. Hermann, B. Povazay, H. Sattman, A. F. Fercher, W. Drexler, M. Preusser, H. Budka, and A. S. T. Le, “Imaging ex vivo and pathological human brain tissue with ultra-high-resolution optical coherence tomography,” J. Biomed. Opt. 10, 011006-1–7 (2004).

Higashi, H.

E. Tanaka, S. Yamamoto, H. Inokuchi, T. Isagai, and H. Higashi, “Membrane dysfunction induced by in vitro ischemia in rat hippocampal CA1 pyramidal neurons,” J. Neurophysiol. 80, 1872–1880 (1999).

Holzwarth, R.

K. Bizheva, A. Unterhuber, B. Hermann, B. Povazay, H. Sattman, W. Drexler, A. S. T. Le, M. Mei, R. Holzwarth, H. A. Reitsamer, J. E. Morgan, and A. Cowey, “Imaging ex vivo and in vitro brain morphology in animal models with ultrahigh resolution optical coherence tomography,” J. Biomed. Opt. 9, 719–724 (2004).
[CrossRef] [PubMed]

Homma, R.

R. U. Maheswari, H. Takaoka, H. Kadono, R. Homma, and M. Tanifuji, “Novel functional imaging technique from brain surface with optical coherence tomography enabling visualization of depth resolved functional structure in vivo,” J. Neurosci. Methods 124, 83–92 (2003).
[CrossRef] [PubMed]

R. U. Maheswari, H. Takaoka, R. Homma, H. Kadono, and M. Tanifuji, “Implementation of optical coherence tomography (OCT) in visualization of functional structures of cat visual cortex,” Opt. Commun. 202, 47–54 (2002).
[CrossRef]

Hossman, K. A.

K. A. Hossman, “Viability threshold and the penumbra of focal ischemia,” Ann. Neurol. 36, 557–565 (1994).
[CrossRef]

Hrebesh, M. S.

Huang, D.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef] [PubMed]

Hung, D.

S. W. Jeon, M. A. Shure, K. B. Baker, D. Hung, A. M. Rollins, A. Chahlavi, and A. R. Rezai, “A feasibility study of optical coherence tomography,” J. Neurosci. Methods 154, 96–101 (2006).
[CrossRef] [PubMed]

Inokuchi, H.

E. Tanaka, S. Yamamoto, H. Inokuchi, T. Isagai, and H. Higashi, “Membrane dysfunction induced by in vitro ischemia in rat hippocampal CA1 pyramidal neurons,” J. Neurophysiol. 80, 1872–1880 (1999).

Isagai, T.

E. Tanaka, S. Yamamoto, H. Inokuchi, T. Isagai, and H. Higashi, “Membrane dysfunction induced by in vitro ischemia in rat hippocampal CA1 pyramidal neurons,” J. Neurophysiol. 80, 1872–1880 (1999).

Ishihara, M.

S. Kawauchi, S. Sato, H. Ooigawa, H. Nawashiro, M. Ishihara, and M. Kikuchi, “Light scattering change precedes loss of cerebral adenosine triphosphate in a rat global ischemic brain model,” Neurosci. Lett. Suppl. 459, 152–156 (2009).
[CrossRef]

S. Kawauchi, S. Sato, H. Ooigawa, H. Nawashiro, M. Ishihara, and M. Kikuchi, “Simultaneous measurement of changes in light absorption due to the reduction of cytochrome c oxidase and light scattering in rat brains during loss of tissue viability,” Appl. Opt. 47, 4164–4176 (2008).
[CrossRef] [PubMed]

Jarvis, C. R.

T. M. Polischuk, C. R. Jarvis, and R. D. Andrew, “Intrinsic optical signaling denoting neuronal damage in response to acute excitotoxic insult by domoic acid in the hippocampal slice,” Neurobiol. Dis. 4, 423–437 (1998).
[CrossRef] [PubMed]

Jeon, S. W.

S. W. Jeon, M. A. Shure, K. B. Baker, D. Hung, A. M. Rollins, A. Chahlavi, and A. R. Rezai, “A feasibility study of optical coherence tomography,” J. Neurosci. Methods 154, 96–101 (2006).
[CrossRef] [PubMed]

Jia, X.

X. Jia, M. A. Koenig, A. Venkatraman, N. V. Thakor, and R. G. Geocadin, “Post-cardiac arrest temperature manipulation alters early EEG bursting in rats,” Resuscitation 78, 367–373 (2008).
[CrossRef] [PubMed]

Jonusauskas, G.

Kadono, H.

R. U. Maheswari, H. Takaoka, H. Kadono, R. Homma, and M. Tanifuji, “Novel functional imaging technique from brain surface with optical coherence tomography enabling visualization of depth resolved functional structure in vivo,” J. Neurosci. Methods 124, 83–92 (2003).
[CrossRef] [PubMed]

R. U. Maheswari, H. Takaoka, R. Homma, H. Kadono, and M. Tanifuji, “Implementation of optical coherence tomography (OCT) in visualization of functional structures of cat visual cortex,” Opt. Commun. 202, 47–54 (2002).
[CrossRef]

Kalia, N.

N. Kalia, A. G. Pockley, R. F. M. Wood, and N. J. Brown, “Effects of hypothermia and rewarming on the mucosal villus microcirculation and survival after rat intestinal ischemia-reperfusion injury,” Ann. Surg. 236, 67–74 (2002).
[CrossRef] [PubMed]

Kawauchi, S.

S. Kawauchi, S. Sato, H. Ooigawa, H. Nawashiro, M. Ishihara, and M. Kikuchi, “Light scattering change precedes loss of cerebral adenosine triphosphate in a rat global ischemic brain model,” Neurosci. Lett. Suppl. 459, 152–156 (2009).
[CrossRef]

S. Kawauchi, S. Sato, H. Ooigawa, H. Nawashiro, M. Ishihara, and M. Kikuchi, “Simultaneous measurement of changes in light absorption due to the reduction of cytochrome c oxidase and light scattering in rat brains during loss of tissue viability,” Appl. Opt. 47, 4164–4176 (2008).
[CrossRef] [PubMed]

Kikuchi, M.

S. Kawauchi, S. Sato, H. Ooigawa, H. Nawashiro, M. Ishihara, and M. Kikuchi, “Light scattering change precedes loss of cerebral adenosine triphosphate in a rat global ischemic brain model,” Neurosci. Lett. Suppl. 459, 152–156 (2009).
[CrossRef]

S. Kawauchi, S. Sato, H. Ooigawa, H. Nawashiro, M. Ishihara, and M. Kikuchi, “Simultaneous measurement of changes in light absorption due to the reduction of cytochrome c oxidase and light scattering in rat brains during loss of tissue viability,” Appl. Opt. 47, 4164–4176 (2008).
[CrossRef] [PubMed]

Koenig, M. A.

X. Jia, M. A. Koenig, A. Venkatraman, N. V. Thakor, and R. G. Geocadin, “Post-cardiac arrest temperature manipulation alters early EEG bursting in rats,” Resuscitation 78, 367–373 (2008).
[CrossRef] [PubMed]

Lassegues, M.

Le, A. S. T.

K. Bizheva, A. Unterhuber, B. Hermann, B. Povazay, H. Sattman, W. Drexler, A. S. T. Le, M. Mei, R. Holzwarth, H. A. Reitsamer, J. E. Morgan, and A. Cowey, “Imaging ex vivo and in vitro brain morphology in animal models with ultrahigh resolution optical coherence tomography,” J. Biomed. Opt. 9, 719–724 (2004).
[CrossRef] [PubMed]

K. Bizheva, A. Unterhuber, B. Hermann, B. Povazay, H. Sattman, A. F. Fercher, W. Drexler, M. Preusser, H. Budka, and A. S. T. Le, “Imaging ex vivo and pathological human brain tissue with ultra-high-resolution optical coherence tomography,” J. Biomed. Opt. 10, 011006-1–7 (2004).

Lieke, E. E.

R. D. Frostig, E. E. Lieke, D. Y. Ts’o, and A. Grinvald, “Cortical functional architecture and local coupling between neuronal activity and the microcirculation revealed by in vivo high-resolution optical imaging of intrinsic signals,” Proc. Natl. Acad. Sci. USA 87, 6082–6086 (1990).
[CrossRef] [PubMed]

Lin, C. P.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef] [PubMed]

Lo, E. H.

K. Arai and E. H. Lo, “Experimental models for analysis of oligodendrocyte pathophysiology in stroke,” Exper. Transl. Stroke Med. 1, 6 (2009).
[CrossRef]

E. H. Lo, T. Dalkara, and M. A. Moskowitz, “Mechanisms, challenges and opportunities in stroke,” Nat. Rev. Neurosci. 4, 399–415 (2003).
[CrossRef] [PubMed]

Lomber, S. G.

S. G. Lomber and B. R. Payne, “Translaminar differentiation of visually guided behaviors revealed by restricted cerebral cooling deactivation,” Cereb. Cortex 10, 1066–1077 (2000).
[CrossRef] [PubMed]

Maheswari, R. U.

R. U. Maheswari, H. Takaoka, H. Kadono, R. Homma, and M. Tanifuji, “Novel functional imaging technique from brain surface with optical coherence tomography enabling visualization of depth resolved functional structure in vivo,” J. Neurosci. Methods 124, 83–92 (2003).
[CrossRef] [PubMed]

R. U. Maheswari, H. Takaoka, R. Homma, H. Kadono, and M. Tanifuji, “Implementation of optical coherence tomography (OCT) in visualization of functional structures of cat visual cortex,” Opt. Commun. 202, 47–54 (2002).
[CrossRef]

Mccullough, L.

L. Mccullough and S. Arora, “Diagnosis and treatment of hypothermia,” Am. Fam. Phys. 70, 2325–2332 (2004).

Mei, M.

K. Bizheva, A. Unterhuber, B. Hermann, B. Povazay, H. Sattman, W. Drexler, A. S. T. Le, M. Mei, R. Holzwarth, H. A. Reitsamer, J. E. Morgan, and A. Cowey, “Imaging ex vivo and in vitro brain morphology in animal models with ultrahigh resolution optical coherence tomography,” J. Biomed. Opt. 9, 719–724 (2004).
[CrossRef] [PubMed]

Minot, P. E.

Morgan, J. E.

K. Bizheva, A. Unterhuber, B. Hermann, B. Povazay, H. Sattman, W. Drexler, A. S. T. Le, M. Mei, R. Holzwarth, H. A. Reitsamer, J. E. Morgan, and A. Cowey, “Imaging ex vivo and in vitro brain morphology in animal models with ultrahigh resolution optical coherence tomography,” J. Biomed. Opt. 9, 719–724 (2004).
[CrossRef] [PubMed]

Moskowitz, M. A.

E. H. Lo, T. Dalkara, and M. A. Moskowitz, “Mechanisms, challenges and opportunities in stroke,” Nat. Rev. Neurosci. 4, 399–415 (2003).
[CrossRef] [PubMed]

Nagata, T.

M. Sato, T. Nagata, T. Niizuma, L. Neagu, R. Dabu, and Y. Watanabe, “Quadrature fringes wide-field optical coherence tomography and its applications to biological tissues,” Opt. Commun. 271, 573–580 (2007).
[CrossRef]

Nawashiro, H.

S. Kawauchi, S. Sato, H. Ooigawa, H. Nawashiro, M. Ishihara, and M. Kikuchi, “Light scattering change precedes loss of cerebral adenosine triphosphate in a rat global ischemic brain model,” Neurosci. Lett. Suppl. 459, 152–156 (2009).
[CrossRef]

S. Kawauchi, S. Sato, H. Ooigawa, H. Nawashiro, M. Ishihara, and M. Kikuchi, “Simultaneous measurement of changes in light absorption due to the reduction of cytochrome c oxidase and light scattering in rat brains during loss of tissue viability,” Appl. Opt. 47, 4164–4176 (2008).
[CrossRef] [PubMed]

Neagu, L.

M. Sato, T. Nagata, T. Niizuma, L. Neagu, R. Dabu, and Y. Watanabe, “Quadrature fringes wide-field optical coherence tomography and its applications to biological tissues,” Opt. Commun. 271, 573–580 (2007).
[CrossRef]

Niizuma, T.

M. Sato, T. Nagata, T. Niizuma, L. Neagu, R. Dabu, and Y. Watanabe, “Quadrature fringes wide-field optical coherence tomography and its applications to biological tissues,” Opt. Commun. 271, 573–580 (2007).
[CrossRef]

Nishidate, I.

Oberle, J.

Ooi, Y.

Y. Satomura, J. Seki, Y. Ooi, T. Yanagida, and A. Seiyama, “In vivo imaging of the rat cerebral microvessels with optical coherence tomography,” Clin. Hemorheol. Microcirc. 31, 31–40 (2004).
[PubMed]

Ooigawa, H.

S. Kawauchi, S. Sato, H. Ooigawa, H. Nawashiro, M. Ishihara, and M. Kikuchi, “Light scattering change precedes loss of cerebral adenosine triphosphate in a rat global ischemic brain model,” Neurosci. Lett. Suppl. 459, 152–156 (2009).
[CrossRef]

S. Kawauchi, S. Sato, H. Ooigawa, H. Nawashiro, M. Ishihara, and M. Kikuchi, “Simultaneous measurement of changes in light absorption due to the reduction of cytochrome c oxidase and light scattering in rat brains during loss of tissue viability,” Appl. Opt. 47, 4164–4176 (2008).
[CrossRef] [PubMed]

Paxinos, G.

G. Paxinos and C. Watson, The Rat Brain in Stereotaxic Coordinates (Elsevier, 2007).

G. Paxinos, The Rat Nervous System (Elsevier, 2004).

Payne, B. R.

S. G. Lomber and B. R. Payne, “Translaminar differentiation of visually guided behaviors revealed by restricted cerebral cooling deactivation,” Cereb. Cortex 10, 1066–1077 (2000).
[CrossRef] [PubMed]

Pockley, A. G.

N. Kalia, A. G. Pockley, R. F. M. Wood, and N. J. Brown, “Effects of hypothermia and rewarming on the mucosal villus microcirculation and survival after rat intestinal ischemia-reperfusion injury,” Ann. Surg. 236, 67–74 (2002).
[CrossRef] [PubMed]

Polischuk, T. M.

T. M. Polischuk, C. R. Jarvis, and R. D. Andrew, “Intrinsic optical signaling denoting neuronal damage in response to acute excitotoxic insult by domoic acid in the hippocampal slice,” Neurobiol. Dis. 4, 423–437 (1998).
[CrossRef] [PubMed]

Povazay, B.

K. Bizheva, A. Unterhuber, B. Hermann, B. Povazay, H. Sattman, W. Drexler, A. S. T. Le, M. Mei, R. Holzwarth, H. A. Reitsamer, J. E. Morgan, and A. Cowey, “Imaging ex vivo and in vitro brain morphology in animal models with ultrahigh resolution optical coherence tomography,” J. Biomed. Opt. 9, 719–724 (2004).
[CrossRef] [PubMed]

K. Bizheva, A. Unterhuber, B. Hermann, B. Povazay, H. Sattman, A. F. Fercher, W. Drexler, M. Preusser, H. Budka, and A. S. T. Le, “Imaging ex vivo and pathological human brain tissue with ultra-high-resolution optical coherence tomography,” J. Biomed. Opt. 10, 011006-1–7 (2004).

Preusser, M.

K. Bizheva, A. Unterhuber, B. Hermann, B. Povazay, H. Sattman, A. F. Fercher, W. Drexler, M. Preusser, H. Budka, and A. S. T. Le, “Imaging ex vivo and pathological human brain tissue with ultra-high-resolution optical coherence tomography,” J. Biomed. Opt. 10, 011006-1–7 (2004).

Puliafito, C. A.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef] [PubMed]

Reitsamer, H. A.

K. Bizheva, A. Unterhuber, B. Hermann, B. Povazay, H. Sattman, W. Drexler, A. S. T. Le, M. Mei, R. Holzwarth, H. A. Reitsamer, J. E. Morgan, and A. Cowey, “Imaging ex vivo and in vitro brain morphology in animal models with ultrahigh resolution optical coherence tomography,” J. Biomed. Opt. 9, 719–724 (2004).
[CrossRef] [PubMed]

Rezai, A. R.

S. W. Jeon, M. A. Shure, K. B. Baker, D. Hung, A. M. Rollins, A. Chahlavi, and A. R. Rezai, “A feasibility study of optical coherence tomography,” J. Neurosci. Methods 154, 96–101 (2006).
[CrossRef] [PubMed]

Rollins, A. M.

S. W. Jeon, M. A. Shure, K. B. Baker, D. Hung, A. M. Rollins, A. Chahlavi, and A. R. Rezai, “A feasibility study of optical coherence tomography,” J. Neurosci. Methods 154, 96–101 (2006).
[CrossRef] [PubMed]

Rulliere, C.

Ruvinskaya, L.

Sato, M.

M. Sato, M. S. Hrebesh, and I. Nishidate, “Measurement of signal intensity depth profiles in rat brains with cardiac arrest using wide-field optical coherence tomography,” Appl. Opt. 48, 4354–4364 (2009).
[CrossRef] [PubMed]

M. Sato, T. Nagata, T. Niizuma, L. Neagu, R. Dabu, and Y. Watanabe, “Quadrature fringes wide-field optical coherence tomography and its applications to biological tissues,” Opt. Commun. 271, 573–580 (2007).
[CrossRef]

Sato, S.

S. Kawauchi, S. Sato, H. Ooigawa, H. Nawashiro, M. Ishihara, and M. Kikuchi, “Light scattering change precedes loss of cerebral adenosine triphosphate in a rat global ischemic brain model,” Neurosci. Lett. Suppl. 459, 152–156 (2009).
[CrossRef]

S. Kawauchi, S. Sato, H. Ooigawa, H. Nawashiro, M. Ishihara, and M. Kikuchi, “Simultaneous measurement of changes in light absorption due to the reduction of cytochrome c oxidase and light scattering in rat brains during loss of tissue viability,” Appl. Opt. 47, 4164–4176 (2008).
[CrossRef] [PubMed]

Satomura, Y.

Y. Satomura, J. Seki, Y. Ooi, T. Yanagida, and A. Seiyama, “In vivo imaging of the rat cerebral microvessels with optical coherence tomography,” Clin. Hemorheol. Microcirc. 31, 31–40 (2004).
[PubMed]

Sattman, H.

K. Bizheva, A. Unterhuber, B. Hermann, B. Povazay, H. Sattman, A. F. Fercher, W. Drexler, M. Preusser, H. Budka, and A. S. T. Le, “Imaging ex vivo and pathological human brain tissue with ultra-high-resolution optical coherence tomography,” J. Biomed. Opt. 10, 011006-1–7 (2004).

K. Bizheva, A. Unterhuber, B. Hermann, B. Povazay, H. Sattman, W. Drexler, A. S. T. Le, M. Mei, R. Holzwarth, H. A. Reitsamer, J. E. Morgan, and A. Cowey, “Imaging ex vivo and in vitro brain morphology in animal models with ultrahigh resolution optical coherence tomography,” J. Biomed. Opt. 9, 719–724 (2004).
[CrossRef] [PubMed]

Schuman, J. S.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef] [PubMed]

Seiyama, A.

Y. Satomura, J. Seki, Y. Ooi, T. Yanagida, and A. Seiyama, “In vivo imaging of the rat cerebral microvessels with optical coherence tomography,” Clin. Hemorheol. Microcirc. 31, 31–40 (2004).
[PubMed]

Seki, J.

Y. Satomura, J. Seki, Y. Ooi, T. Yanagida, and A. Seiyama, “In vivo imaging of the rat cerebral microvessels with optical coherence tomography,” Clin. Hemorheol. Microcirc. 31, 31–40 (2004).
[PubMed]

Shure, M. A.

S. W. Jeon, M. A. Shure, K. B. Baker, D. Hung, A. M. Rollins, A. Chahlavi, and A. R. Rezai, “A feasibility study of optical coherence tomography,” J. Neurosci. Methods 154, 96–101 (2006).
[CrossRef] [PubMed]

Srinivasan, V. J.

Stinson, W. G.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef] [PubMed]

Swanson, E. A.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef] [PubMed]

Takaoka, H.

R. U. Maheswari, H. Takaoka, H. Kadono, R. Homma, and M. Tanifuji, “Novel functional imaging technique from brain surface with optical coherence tomography enabling visualization of depth resolved functional structure in vivo,” J. Neurosci. Methods 124, 83–92 (2003).
[CrossRef] [PubMed]

R. U. Maheswari, H. Takaoka, R. Homma, H. Kadono, and M. Tanifuji, “Implementation of optical coherence tomography (OCT) in visualization of functional structures of cat visual cortex,” Opt. Commun. 202, 47–54 (2002).
[CrossRef]

Tanaka, E.

E. Tanaka, S. Yamamoto, H. Inokuchi, T. Isagai, and H. Higashi, “Membrane dysfunction induced by in vitro ischemia in rat hippocampal CA1 pyramidal neurons,” J. Neurophysiol. 80, 1872–1880 (1999).

Tanifuji, M.

R. U. Maheswari, H. Takaoka, H. Kadono, R. Homma, and M. Tanifuji, “Novel functional imaging technique from brain surface with optical coherence tomography enabling visualization of depth resolved functional structure in vivo,” J. Neurosci. Methods 124, 83–92 (2003).
[CrossRef] [PubMed]

R. U. Maheswari, H. Takaoka, R. Homma, H. Kadono, and M. Tanifuji, “Implementation of optical coherence tomography (OCT) in visualization of functional structures of cat visual cortex,” Opt. Commun. 202, 47–54 (2002).
[CrossRef]

Thakor, N. V.

X. Jia, M. A. Koenig, A. Venkatraman, N. V. Thakor, and R. G. Geocadin, “Post-cardiac arrest temperature manipulation alters early EEG bursting in rats,” Resuscitation 78, 367–373 (2008).
[CrossRef] [PubMed]

Ts’o, D. Y.

R. D. Frostig, E. E. Lieke, D. Y. Ts’o, and A. Grinvald, “Cortical functional architecture and local coupling between neuronal activity and the microcirculation revealed by in vivo high-resolution optical imaging of intrinsic signals,” Proc. Natl. Acad. Sci. USA 87, 6082–6086 (1990).
[CrossRef] [PubMed]

Tsurumachi, N.

Ugurbil, K.

F. Du, X. H. Zhu, Y. Zhang, M. Friedman, N. Zhang, K. Ugurbil, and W. Chen, “Tightly coupled brain activity and cerebral ATP metabolic rate,” Neuroscience 105, 6409–6414 (2008).

Unterhuber, A.

K. Bizheva, A. Unterhuber, B. Hermann, B. Povazay, H. Sattman, A. F. Fercher, W. Drexler, M. Preusser, H. Budka, and A. S. T. Le, “Imaging ex vivo and pathological human brain tissue with ultra-high-resolution optical coherence tomography,” J. Biomed. Opt. 10, 011006-1–7 (2004).

K. Bizheva, A. Unterhuber, B. Hermann, B. Povazay, H. Sattman, W. Drexler, A. S. T. Le, M. Mei, R. Holzwarth, H. A. Reitsamer, J. E. Morgan, and A. Cowey, “Imaging ex vivo and in vitro brain morphology in animal models with ultrahigh resolution optical coherence tomography,” J. Biomed. Opt. 9, 719–724 (2004).
[CrossRef] [PubMed]

Venkatraman, A.

X. Jia, M. A. Koenig, A. Venkatraman, N. V. Thakor, and R. G. Geocadin, “Post-cardiac arrest temperature manipulation alters early EEG bursting in rats,” Resuscitation 78, 367–373 (2008).
[CrossRef] [PubMed]

Watanabe, Y.

M. Sato, T. Nagata, T. Niizuma, L. Neagu, R. Dabu, and Y. Watanabe, “Quadrature fringes wide-field optical coherence tomography and its applications to biological tissues,” Opt. Commun. 271, 573–580 (2007).
[CrossRef]

Watson, C.

G. Paxinos and C. Watson, The Rat Brain in Stereotaxic Coordinates (Elsevier, 2007).

Wojtkowski, M.

Wood, R. F. M.

N. Kalia, A. G. Pockley, R. F. M. Wood, and N. J. Brown, “Effects of hypothermia and rewarming on the mucosal villus microcirculation and survival after rat intestinal ischemia-reperfusion injury,” Ann. Surg. 236, 67–74 (2002).
[CrossRef] [PubMed]

Yamamoto, S.

E. Tanaka, S. Yamamoto, H. Inokuchi, T. Isagai, and H. Higashi, “Membrane dysfunction induced by in vitro ischemia in rat hippocampal CA1 pyramidal neurons,” J. Neurophysiol. 80, 1872–1880 (1999).

Yanagida, T.

Y. Satomura, J. Seki, Y. Ooi, T. Yanagida, and A. Seiyama, “In vivo imaging of the rat cerebral microvessels with optical coherence tomography,” Clin. Hemorheol. Microcirc. 31, 31–40 (2004).
[PubMed]

Zhang, N.

F. Du, X. H. Zhu, Y. Zhang, M. Friedman, N. Zhang, K. Ugurbil, and W. Chen, “Tightly coupled brain activity and cerebral ATP metabolic rate,” Neuroscience 105, 6409–6414 (2008).

Zhang, Y.

F. Du, X. H. Zhu, Y. Zhang, M. Friedman, N. Zhang, K. Ugurbil, and W. Chen, “Tightly coupled brain activity and cerebral ATP metabolic rate,” Neuroscience 105, 6409–6414 (2008).

Zhu, X. H.

F. Du, X. H. Zhu, Y. Zhang, M. Friedman, N. Zhang, K. Ugurbil, and W. Chen, “Tightly coupled brain activity and cerebral ATP metabolic rate,” Neuroscience 105, 6409–6414 (2008).

Am. Fam. Phys. (1)

L. Mccullough and S. Arora, “Diagnosis and treatment of hypothermia,” Am. Fam. Phys. 70, 2325–2332 (2004).

Ann. Neurol. (1)

K. A. Hossman, “Viability threshold and the penumbra of focal ischemia,” Ann. Neurol. 36, 557–565 (1994).
[CrossRef]

Ann. Surg. (1)

N. Kalia, A. G. Pockley, R. F. M. Wood, and N. J. Brown, “Effects of hypothermia and rewarming on the mucosal villus microcirculation and survival after rat intestinal ischemia-reperfusion injury,” Ann. Surg. 236, 67–74 (2002).
[CrossRef] [PubMed]

Appl. Opt. (3)

Cereb. Cortex (1)

S. G. Lomber and B. R. Payne, “Translaminar differentiation of visually guided behaviors revealed by restricted cerebral cooling deactivation,” Cereb. Cortex 10, 1066–1077 (2000).
[CrossRef] [PubMed]

Clin. Hemorheol. Microcirc. (1)

Y. Satomura, J. Seki, Y. Ooi, T. Yanagida, and A. Seiyama, “In vivo imaging of the rat cerebral microvessels with optical coherence tomography,” Clin. Hemorheol. Microcirc. 31, 31–40 (2004).
[PubMed]

Exper. Transl. Stroke Med. (1)

K. Arai and E. H. Lo, “Experimental models for analysis of oligodendrocyte pathophysiology in stroke,” Exper. Transl. Stroke Med. 1, 6 (2009).
[CrossRef]

J. Biomed. Opt. (2)

K. Bizheva, A. Unterhuber, B. Hermann, B. Povazay, H. Sattman, W. Drexler, A. S. T. Le, M. Mei, R. Holzwarth, H. A. Reitsamer, J. E. Morgan, and A. Cowey, “Imaging ex vivo and in vitro brain morphology in animal models with ultrahigh resolution optical coherence tomography,” J. Biomed. Opt. 9, 719–724 (2004).
[CrossRef] [PubMed]

K. Bizheva, A. Unterhuber, B. Hermann, B. Povazay, H. Sattman, A. F. Fercher, W. Drexler, M. Preusser, H. Budka, and A. S. T. Le, “Imaging ex vivo and pathological human brain tissue with ultra-high-resolution optical coherence tomography,” J. Biomed. Opt. 10, 011006-1–7 (2004).

J. Biophys. Biochem. Cytol. (1)

A. Ascenzi and C. Fabry, “Technique for dissection and measurement of refractive index of osteons,” J. Biophys. Biochem. Cytol. 6, 139–142 (1959).
[CrossRef] [PubMed]

J. Neurophysiol. (1)

E. Tanaka, S. Yamamoto, H. Inokuchi, T. Isagai, and H. Higashi, “Membrane dysfunction induced by in vitro ischemia in rat hippocampal CA1 pyramidal neurons,” J. Neurophysiol. 80, 1872–1880 (1999).

J. Neurosci. Methods (2)

S. W. Jeon, M. A. Shure, K. B. Baker, D. Hung, A. M. Rollins, A. Chahlavi, and A. R. Rezai, “A feasibility study of optical coherence tomography,” J. Neurosci. Methods 154, 96–101 (2006).
[CrossRef] [PubMed]

R. U. Maheswari, H. Takaoka, H. Kadono, R. Homma, and M. Tanifuji, “Novel functional imaging technique from brain surface with optical coherence tomography enabling visualization of depth resolved functional structure in vivo,” J. Neurosci. Methods 124, 83–92 (2003).
[CrossRef] [PubMed]

Nat. Rev. Neurosci. (1)

E. H. Lo, T. Dalkara, and M. A. Moskowitz, “Mechanisms, challenges and opportunities in stroke,” Nat. Rev. Neurosci. 4, 399–415 (2003).
[CrossRef] [PubMed]

Neurobiol. Dis. (1)

T. M. Polischuk, C. R. Jarvis, and R. D. Andrew, “Intrinsic optical signaling denoting neuronal damage in response to acute excitotoxic insult by domoic acid in the hippocampal slice,” Neurobiol. Dis. 4, 423–437 (1998).
[CrossRef] [PubMed]

Neurosci. Lett. Suppl. (1)

S. Kawauchi, S. Sato, H. Ooigawa, H. Nawashiro, M. Ishihara, and M. Kikuchi, “Light scattering change precedes loss of cerebral adenosine triphosphate in a rat global ischemic brain model,” Neurosci. Lett. Suppl. 459, 152–156 (2009).
[CrossRef]

Neuroscience (1)

F. Du, X. H. Zhu, Y. Zhang, M. Friedman, N. Zhang, K. Ugurbil, and W. Chen, “Tightly coupled brain activity and cerebral ATP metabolic rate,” Neuroscience 105, 6409–6414 (2008).

Opt. Commun. (2)

M. Sato, T. Nagata, T. Niizuma, L. Neagu, R. Dabu, and Y. Watanabe, “Quadrature fringes wide-field optical coherence tomography and its applications to biological tissues,” Opt. Commun. 271, 573–580 (2007).
[CrossRef]

R. U. Maheswari, H. Takaoka, R. Homma, H. Kadono, and M. Tanifuji, “Implementation of optical coherence tomography (OCT) in visualization of functional structures of cat visual cortex,” Opt. Commun. 202, 47–54 (2002).
[CrossRef]

Opt. Lett. (2)

Proc. Natl. Acad. Sci. USA (1)

R. D. Frostig, E. E. Lieke, D. Y. Ts’o, and A. Grinvald, “Cortical functional architecture and local coupling between neuronal activity and the microcirculation revealed by in vivo high-resolution optical imaging of intrinsic signals,” Proc. Natl. Acad. Sci. USA 87, 6082–6086 (1990).
[CrossRef] [PubMed]

Resuscitation (1)

X. Jia, M. A. Koenig, A. Venkatraman, N. V. Thakor, and R. G. Geocadin, “Post-cardiac arrest temperature manipulation alters early EEG bursting in rats,” Resuscitation 78, 367–373 (2008).
[CrossRef] [PubMed]

Science (1)

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef] [PubMed]

Other (3)

B.Bouma and J.Tearney, eds., Handbook of Optical Coherence Tomography (Marcel Dekker, 2002).

G. Paxinos and C. Watson, The Rat Brain in Stereotaxic Coordinates (Elsevier, 2007).

G. Paxinos, The Rat Nervous System (Elsevier, 2004).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (15)

Fig. 1
Fig. 1

Schematic representation of the measurement system consisting of a quadrature fringe wide-field optical coherence tomography (OCT), a bioamplifier, a digital multimeter for temperature measurements, and a temperature controller.

Fig. 2
Fig. 2

Schematic representation of the measurement system consisting of a quadrature fringe wide-field OCT, superluminescent diode (SLD), collimator lens (CL), polarizer (P), beam splitter (BS), hot mirror (HM), quarter-wave plate (QWP), and Wollaston prism (WP).

Fig. 3
Fig. 3

Variations in temperature with time measured by the thermocouple.

Fig. 4
Fig. 4

Variations in heart rate with time obtained from electrocardiograms.

Fig. 5
Fig. 5

Relationship between heart rate and temperature for Rat 1 and Rat 2. CC: correlation coefficient.

Fig. 6
Fig. 6

Photographs of thinned skull of (a) Rat 1 and (b) Rat 2. The dotted rectangle area is 4 m m × 4 m m . M: medial; R: rostral.

Fig. 7
Fig. 7

Averaged image by 400 en face X Y OCT images measured from the surface to a depth of 2.8 mm in (a) Rat 1 and (b) Rat 2. The image area is 4 m m × 4 m m .

Fig. 8
Fig. 8

Resliced sectional images in the Y Z plane through point C in Fig. 7a (Rat 1) (a) at first measurement and (b) at 210 min .

Fig. 9
Fig. 9

Resliced sectional images in the Y Z plane through point C in Fig. 7b (Rat 2) (a) at first measurement and (b) at 210 min .

Fig. 10
Fig. 10

(a) Depth profiles of signal intensity at point A in Fig. 7a (Rat 1). Points (b) to (e) correspond to points B to E.

Fig. 11
Fig. 11

(a) Depth profiles of signal intensity at point A in Fig. 7b (Rat 2). Points (b) to (e) correspond to points B to E.

Fig. 12
Fig. 12

Variations in the ratio of signal intensity with time in (a) Region I and (b) Region II of Rat 1. Curves A to E correspond to points A to E in Fig. 7a.

Fig. 13
Fig. 13

Variations in the ratio of signal intensity with time in (a) Region I and (b) Region II of Rat 2. Curves A to E correspond to points A to E in Fig. 7b.

Fig. 14
Fig. 14

Relationship between the ratio of signal intensity and temperature in (a) Rat 1 and (b) Rat 2.

Fig. 15
Fig. 15

Relationship between the ratio of signal intensity and heart rate in (a) Rat 1 and (b) Rat 2.

Tables (1)

Tables Icon

Table 1 Comparisons of Time Intervals (min) and Ratio of Signal Intensity in Figs. 12, 13.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

Ratio of signal intensity in Region I and II: | I I , II I BG | | I I , II I BG | START .

Metrics