Abstract

We describe the optimization of a mounting system for the infrared (IR) optics of a spaceborne inter ferometer working in the temperature range between 120°C and +150°C. The concept is based on an aluminum alloy frame with designed mechanical compliance, which allows for compensation of the different coefficient of thermal expansion between the optics and the holder; at the same time, the system provides for the high stiffness required to reach natural frequencies above 200Hz, which are mandatory in most space missions. Thermal adapters with properly chosen thermomechanical characteristics are interposed between the metallic structure and the lens, so as to reduce the interface stresses on the mechanically weak IR material, due to both the thermoelastic and acceleration loads. With the proposed mount, the competitive requirements of stiffness and stress-free mounting can be matched in wide temperature ranges. The case study of the interferometer of a miniaturized Fourier transform IR spectrometer is presented.

© 2010 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. Chin, “Optical mirror-mount design and philosophy,” Appl. Opt. 3, 895-901 (1964).
    [CrossRef]
  2. G. Kroes, J. Kragt, R. Navarro, E. Elswijk, and H. Hanenburg, “Opto-mechanical design for transmission optics in cryogenic IR instrumentation,” Proc. SPIE 7018, 70182D (2008).
    [CrossRef]
  3. A. Ahmad, Optomechanical Engineering Handbook (CRC, 1999).
  4. D. Vukobratovich, K. A. Fetterhoff, J. R. Myers, P. D. Wheelwright, and G. R. Cunnington, “Bonded mounts for small cryogenic optics,” Proc. SPIE 4131, 228-239 (2000).
    [CrossRef]
  5. T. R. Froud, I. A. J. Tosh, R. L. Edeson, and G. B. Dalton, “Cryogenic mounts for large fused silica lenses,” Proc. SPIE 6273, 62732I (2006).
    [CrossRef]
  6. T. P. O'Brien and B. Atwood, “Lens mounting system for cryogenic applications,” Proc. SPIE 4841, 398-402 (2003).
    [CrossRef]
  7. E. T. Kvamme and M. Jacoby, “A second generation low stress cryogenic mount for space-borne lithium fluoride optics,” Proc. SPIE 6692, 66920I (2007).
    [CrossRef]
  8. C. L. Hom, H. C. Holmes, D. N. Lapicz, I. V. Chapman, E. T. Kvamme, and D. M. Stubbs, “Cryogenic bonding for lens mounts,” Proc. SPIE 7439, 743910 (2009).
    [CrossRef]
  9. E. D. Marquardt, J. P. Le, and Ray Radebaugh, “Cryogenic material properties database” in Proceedings of the 11th International Cryocooler Conference (Kluwer Academic/Plenum, 2000).
  10. C. S. Chen, J. P. Szczesniak, and J. C. Corelli, “Infrared stress birefringence in KBr, KCl, LiF, and ZnSe,” J. Appl. Phys. 46, 303 (1975).
    [CrossRef]
  11. G. Bellucci, B. Saggin, S. Fonti, D. Biondi, P. Cerulli, M. De Luca, F. Altieri, A. Mattana, E. Alberti, G. Marzo, and L. Zasova, “MIMA, a miniaturized Fourier infrared spectrometer for Mars ground exploration: part I. concept and expected performance,” Proc. SPIE 6744, 67441Q (2007).
    [CrossRef]
  12. S. Fonti, G. Marzo, R. Politi, G. Bellucci, and B. Saggin, “MIMA, a miniaturized infrared spectrometer for Mars ground exploration: part II. Optical design,” Proc. SPIE 6744, 67441R (2007).
    [CrossRef]
  13. B. Saggin, E. Alberti, L. Comolli, M. Tarabini, G. Bellucci, and S. Fonti, “MIMA, a miniaturized infrared spectrometer for Mars ground exploration: part III. Thermomechanical design,” Proc. SPIE 6744, 67441S (2007).
    [CrossRef]

2008 (1)

G. Kroes, J. Kragt, R. Navarro, E. Elswijk, and H. Hanenburg, “Opto-mechanical design for transmission optics in cryogenic IR instrumentation,” Proc. SPIE 7018, 70182D (2008).
[CrossRef]

2007 (4)

G. Bellucci, B. Saggin, S. Fonti, D. Biondi, P. Cerulli, M. De Luca, F. Altieri, A. Mattana, E. Alberti, G. Marzo, and L. Zasova, “MIMA, a miniaturized Fourier infrared spectrometer for Mars ground exploration: part I. concept and expected performance,” Proc. SPIE 6744, 67441Q (2007).
[CrossRef]

S. Fonti, G. Marzo, R. Politi, G. Bellucci, and B. Saggin, “MIMA, a miniaturized infrared spectrometer for Mars ground exploration: part II. Optical design,” Proc. SPIE 6744, 67441R (2007).
[CrossRef]

B. Saggin, E. Alberti, L. Comolli, M. Tarabini, G. Bellucci, and S. Fonti, “MIMA, a miniaturized infrared spectrometer for Mars ground exploration: part III. Thermomechanical design,” Proc. SPIE 6744, 67441S (2007).
[CrossRef]

E. T. Kvamme and M. Jacoby, “A second generation low stress cryogenic mount for space-borne lithium fluoride optics,” Proc. SPIE 6692, 66920I (2007).
[CrossRef]

2006 (1)

T. R. Froud, I. A. J. Tosh, R. L. Edeson, and G. B. Dalton, “Cryogenic mounts for large fused silica lenses,” Proc. SPIE 6273, 62732I (2006).
[CrossRef]

2003 (1)

T. P. O'Brien and B. Atwood, “Lens mounting system for cryogenic applications,” Proc. SPIE 4841, 398-402 (2003).
[CrossRef]

2000 (1)

D. Vukobratovich, K. A. Fetterhoff, J. R. Myers, P. D. Wheelwright, and G. R. Cunnington, “Bonded mounts for small cryogenic optics,” Proc. SPIE 4131, 228-239 (2000).
[CrossRef]

1975 (1)

C. S. Chen, J. P. Szczesniak, and J. C. Corelli, “Infrared stress birefringence in KBr, KCl, LiF, and ZnSe,” J. Appl. Phys. 46, 303 (1975).
[CrossRef]

1964 (1)

Ahmad, A.

A. Ahmad, Optomechanical Engineering Handbook (CRC, 1999).

Alberti, E.

B. Saggin, E. Alberti, L. Comolli, M. Tarabini, G. Bellucci, and S. Fonti, “MIMA, a miniaturized infrared spectrometer for Mars ground exploration: part III. Thermomechanical design,” Proc. SPIE 6744, 67441S (2007).
[CrossRef]

G. Bellucci, B. Saggin, S. Fonti, D. Biondi, P. Cerulli, M. De Luca, F. Altieri, A. Mattana, E. Alberti, G. Marzo, and L. Zasova, “MIMA, a miniaturized Fourier infrared spectrometer for Mars ground exploration: part I. concept and expected performance,” Proc. SPIE 6744, 67441Q (2007).
[CrossRef]

Altieri, F.

G. Bellucci, B. Saggin, S. Fonti, D. Biondi, P. Cerulli, M. De Luca, F. Altieri, A. Mattana, E. Alberti, G. Marzo, and L. Zasova, “MIMA, a miniaturized Fourier infrared spectrometer for Mars ground exploration: part I. concept and expected performance,” Proc. SPIE 6744, 67441Q (2007).
[CrossRef]

Atwood, B.

T. P. O'Brien and B. Atwood, “Lens mounting system for cryogenic applications,” Proc. SPIE 4841, 398-402 (2003).
[CrossRef]

Bellucci, G.

G. Bellucci, B. Saggin, S. Fonti, D. Biondi, P. Cerulli, M. De Luca, F. Altieri, A. Mattana, E. Alberti, G. Marzo, and L. Zasova, “MIMA, a miniaturized Fourier infrared spectrometer for Mars ground exploration: part I. concept and expected performance,” Proc. SPIE 6744, 67441Q (2007).
[CrossRef]

B. Saggin, E. Alberti, L. Comolli, M. Tarabini, G. Bellucci, and S. Fonti, “MIMA, a miniaturized infrared spectrometer for Mars ground exploration: part III. Thermomechanical design,” Proc. SPIE 6744, 67441S (2007).
[CrossRef]

S. Fonti, G. Marzo, R. Politi, G. Bellucci, and B. Saggin, “MIMA, a miniaturized infrared spectrometer for Mars ground exploration: part II. Optical design,” Proc. SPIE 6744, 67441R (2007).
[CrossRef]

Biondi, D.

G. Bellucci, B. Saggin, S. Fonti, D. Biondi, P. Cerulli, M. De Luca, F. Altieri, A. Mattana, E. Alberti, G. Marzo, and L. Zasova, “MIMA, a miniaturized Fourier infrared spectrometer for Mars ground exploration: part I. concept and expected performance,” Proc. SPIE 6744, 67441Q (2007).
[CrossRef]

Cerulli, P.

G. Bellucci, B. Saggin, S. Fonti, D. Biondi, P. Cerulli, M. De Luca, F. Altieri, A. Mattana, E. Alberti, G. Marzo, and L. Zasova, “MIMA, a miniaturized Fourier infrared spectrometer for Mars ground exploration: part I. concept and expected performance,” Proc. SPIE 6744, 67441Q (2007).
[CrossRef]

Chapman, I. V.

C. L. Hom, H. C. Holmes, D. N. Lapicz, I. V. Chapman, E. T. Kvamme, and D. M. Stubbs, “Cryogenic bonding for lens mounts,” Proc. SPIE 7439, 743910 (2009).
[CrossRef]

Chen, C. S.

C. S. Chen, J. P. Szczesniak, and J. C. Corelli, “Infrared stress birefringence in KBr, KCl, LiF, and ZnSe,” J. Appl. Phys. 46, 303 (1975).
[CrossRef]

Chin, D.

Comolli, L.

B. Saggin, E. Alberti, L. Comolli, M. Tarabini, G. Bellucci, and S. Fonti, “MIMA, a miniaturized infrared spectrometer for Mars ground exploration: part III. Thermomechanical design,” Proc. SPIE 6744, 67441S (2007).
[CrossRef]

Corelli, J. C.

C. S. Chen, J. P. Szczesniak, and J. C. Corelli, “Infrared stress birefringence in KBr, KCl, LiF, and ZnSe,” J. Appl. Phys. 46, 303 (1975).
[CrossRef]

Cunnington, G. R.

D. Vukobratovich, K. A. Fetterhoff, J. R. Myers, P. D. Wheelwright, and G. R. Cunnington, “Bonded mounts for small cryogenic optics,” Proc. SPIE 4131, 228-239 (2000).
[CrossRef]

Dalton, G. B.

T. R. Froud, I. A. J. Tosh, R. L. Edeson, and G. B. Dalton, “Cryogenic mounts for large fused silica lenses,” Proc. SPIE 6273, 62732I (2006).
[CrossRef]

De Luca, M.

G. Bellucci, B. Saggin, S. Fonti, D. Biondi, P. Cerulli, M. De Luca, F. Altieri, A. Mattana, E. Alberti, G. Marzo, and L. Zasova, “MIMA, a miniaturized Fourier infrared spectrometer for Mars ground exploration: part I. concept and expected performance,” Proc. SPIE 6744, 67441Q (2007).
[CrossRef]

Edeson, R. L.

T. R. Froud, I. A. J. Tosh, R. L. Edeson, and G. B. Dalton, “Cryogenic mounts for large fused silica lenses,” Proc. SPIE 6273, 62732I (2006).
[CrossRef]

Elswijk, E.

G. Kroes, J. Kragt, R. Navarro, E. Elswijk, and H. Hanenburg, “Opto-mechanical design for transmission optics in cryogenic IR instrumentation,” Proc. SPIE 7018, 70182D (2008).
[CrossRef]

Fetterhoff, K. A.

D. Vukobratovich, K. A. Fetterhoff, J. R. Myers, P. D. Wheelwright, and G. R. Cunnington, “Bonded mounts for small cryogenic optics,” Proc. SPIE 4131, 228-239 (2000).
[CrossRef]

Fonti, S.

G. Bellucci, B. Saggin, S. Fonti, D. Biondi, P. Cerulli, M. De Luca, F. Altieri, A. Mattana, E. Alberti, G. Marzo, and L. Zasova, “MIMA, a miniaturized Fourier infrared spectrometer for Mars ground exploration: part I. concept and expected performance,” Proc. SPIE 6744, 67441Q (2007).
[CrossRef]

B. Saggin, E. Alberti, L. Comolli, M. Tarabini, G. Bellucci, and S. Fonti, “MIMA, a miniaturized infrared spectrometer for Mars ground exploration: part III. Thermomechanical design,” Proc. SPIE 6744, 67441S (2007).
[CrossRef]

S. Fonti, G. Marzo, R. Politi, G. Bellucci, and B. Saggin, “MIMA, a miniaturized infrared spectrometer for Mars ground exploration: part II. Optical design,” Proc. SPIE 6744, 67441R (2007).
[CrossRef]

Froud, T. R.

T. R. Froud, I. A. J. Tosh, R. L. Edeson, and G. B. Dalton, “Cryogenic mounts for large fused silica lenses,” Proc. SPIE 6273, 62732I (2006).
[CrossRef]

Hanenburg, H.

G. Kroes, J. Kragt, R. Navarro, E. Elswijk, and H. Hanenburg, “Opto-mechanical design for transmission optics in cryogenic IR instrumentation,” Proc. SPIE 7018, 70182D (2008).
[CrossRef]

Holmes, H. C.

C. L. Hom, H. C. Holmes, D. N. Lapicz, I. V. Chapman, E. T. Kvamme, and D. M. Stubbs, “Cryogenic bonding for lens mounts,” Proc. SPIE 7439, 743910 (2009).
[CrossRef]

Hom, C. L.

C. L. Hom, H. C. Holmes, D. N. Lapicz, I. V. Chapman, E. T. Kvamme, and D. M. Stubbs, “Cryogenic bonding for lens mounts,” Proc. SPIE 7439, 743910 (2009).
[CrossRef]

Jacoby, M.

E. T. Kvamme and M. Jacoby, “A second generation low stress cryogenic mount for space-borne lithium fluoride optics,” Proc. SPIE 6692, 66920I (2007).
[CrossRef]

Kragt, J.

G. Kroes, J. Kragt, R. Navarro, E. Elswijk, and H. Hanenburg, “Opto-mechanical design for transmission optics in cryogenic IR instrumentation,” Proc. SPIE 7018, 70182D (2008).
[CrossRef]

Kroes, G.

G. Kroes, J. Kragt, R. Navarro, E. Elswijk, and H. Hanenburg, “Opto-mechanical design for transmission optics in cryogenic IR instrumentation,” Proc. SPIE 7018, 70182D (2008).
[CrossRef]

Kvamme, E. T.

E. T. Kvamme and M. Jacoby, “A second generation low stress cryogenic mount for space-borne lithium fluoride optics,” Proc. SPIE 6692, 66920I (2007).
[CrossRef]

C. L. Hom, H. C. Holmes, D. N. Lapicz, I. V. Chapman, E. T. Kvamme, and D. M. Stubbs, “Cryogenic bonding for lens mounts,” Proc. SPIE 7439, 743910 (2009).
[CrossRef]

Lapicz, D. N.

C. L. Hom, H. C. Holmes, D. N. Lapicz, I. V. Chapman, E. T. Kvamme, and D. M. Stubbs, “Cryogenic bonding for lens mounts,” Proc. SPIE 7439, 743910 (2009).
[CrossRef]

Le, J. P.

E. D. Marquardt, J. P. Le, and Ray Radebaugh, “Cryogenic material properties database” in Proceedings of the 11th International Cryocooler Conference (Kluwer Academic/Plenum, 2000).

Marquardt, E. D.

E. D. Marquardt, J. P. Le, and Ray Radebaugh, “Cryogenic material properties database” in Proceedings of the 11th International Cryocooler Conference (Kluwer Academic/Plenum, 2000).

Marzo, G.

S. Fonti, G. Marzo, R. Politi, G. Bellucci, and B. Saggin, “MIMA, a miniaturized infrared spectrometer for Mars ground exploration: part II. Optical design,” Proc. SPIE 6744, 67441R (2007).
[CrossRef]

G. Bellucci, B. Saggin, S. Fonti, D. Biondi, P. Cerulli, M. De Luca, F. Altieri, A. Mattana, E. Alberti, G. Marzo, and L. Zasova, “MIMA, a miniaturized Fourier infrared spectrometer for Mars ground exploration: part I. concept and expected performance,” Proc. SPIE 6744, 67441Q (2007).
[CrossRef]

Mattana, A.

G. Bellucci, B. Saggin, S. Fonti, D. Biondi, P. Cerulli, M. De Luca, F. Altieri, A. Mattana, E. Alberti, G. Marzo, and L. Zasova, “MIMA, a miniaturized Fourier infrared spectrometer for Mars ground exploration: part I. concept and expected performance,” Proc. SPIE 6744, 67441Q (2007).
[CrossRef]

Myers, J. R.

D. Vukobratovich, K. A. Fetterhoff, J. R. Myers, P. D. Wheelwright, and G. R. Cunnington, “Bonded mounts for small cryogenic optics,” Proc. SPIE 4131, 228-239 (2000).
[CrossRef]

Navarro, R.

G. Kroes, J. Kragt, R. Navarro, E. Elswijk, and H. Hanenburg, “Opto-mechanical design for transmission optics in cryogenic IR instrumentation,” Proc. SPIE 7018, 70182D (2008).
[CrossRef]

O'Brien, T. P.

T. P. O'Brien and B. Atwood, “Lens mounting system for cryogenic applications,” Proc. SPIE 4841, 398-402 (2003).
[CrossRef]

Politi, R.

S. Fonti, G. Marzo, R. Politi, G. Bellucci, and B. Saggin, “MIMA, a miniaturized infrared spectrometer for Mars ground exploration: part II. Optical design,” Proc. SPIE 6744, 67441R (2007).
[CrossRef]

Radebaugh, Ray

E. D. Marquardt, J. P. Le, and Ray Radebaugh, “Cryogenic material properties database” in Proceedings of the 11th International Cryocooler Conference (Kluwer Academic/Plenum, 2000).

Saggin, B.

S. Fonti, G. Marzo, R. Politi, G. Bellucci, and B. Saggin, “MIMA, a miniaturized infrared spectrometer for Mars ground exploration: part II. Optical design,” Proc. SPIE 6744, 67441R (2007).
[CrossRef]

B. Saggin, E. Alberti, L. Comolli, M. Tarabini, G. Bellucci, and S. Fonti, “MIMA, a miniaturized infrared spectrometer for Mars ground exploration: part III. Thermomechanical design,” Proc. SPIE 6744, 67441S (2007).
[CrossRef]

G. Bellucci, B. Saggin, S. Fonti, D. Biondi, P. Cerulli, M. De Luca, F. Altieri, A. Mattana, E. Alberti, G. Marzo, and L. Zasova, “MIMA, a miniaturized Fourier infrared spectrometer for Mars ground exploration: part I. concept and expected performance,” Proc. SPIE 6744, 67441Q (2007).
[CrossRef]

Stubbs, D. M.

C. L. Hom, H. C. Holmes, D. N. Lapicz, I. V. Chapman, E. T. Kvamme, and D. M. Stubbs, “Cryogenic bonding for lens mounts,” Proc. SPIE 7439, 743910 (2009).
[CrossRef]

Szczesniak, J. P.

C. S. Chen, J. P. Szczesniak, and J. C. Corelli, “Infrared stress birefringence in KBr, KCl, LiF, and ZnSe,” J. Appl. Phys. 46, 303 (1975).
[CrossRef]

Tarabini, M.

B. Saggin, E. Alberti, L. Comolli, M. Tarabini, G. Bellucci, and S. Fonti, “MIMA, a miniaturized infrared spectrometer for Mars ground exploration: part III. Thermomechanical design,” Proc. SPIE 6744, 67441S (2007).
[CrossRef]

Tosh, I. A. J.

T. R. Froud, I. A. J. Tosh, R. L. Edeson, and G. B. Dalton, “Cryogenic mounts for large fused silica lenses,” Proc. SPIE 6273, 62732I (2006).
[CrossRef]

Vukobratovich, D.

D. Vukobratovich, K. A. Fetterhoff, J. R. Myers, P. D. Wheelwright, and G. R. Cunnington, “Bonded mounts for small cryogenic optics,” Proc. SPIE 4131, 228-239 (2000).
[CrossRef]

Wheelwright, P. D.

D. Vukobratovich, K. A. Fetterhoff, J. R. Myers, P. D. Wheelwright, and G. R. Cunnington, “Bonded mounts for small cryogenic optics,” Proc. SPIE 4131, 228-239 (2000).
[CrossRef]

Zasova, L.

G. Bellucci, B. Saggin, S. Fonti, D. Biondi, P. Cerulli, M. De Luca, F. Altieri, A. Mattana, E. Alberti, G. Marzo, and L. Zasova, “MIMA, a miniaturized Fourier infrared spectrometer for Mars ground exploration: part I. concept and expected performance,” Proc. SPIE 6744, 67441Q (2007).
[CrossRef]

Appl. Opt. (1)

J. Appl. Phys. (1)

C. S. Chen, J. P. Szczesniak, and J. C. Corelli, “Infrared stress birefringence in KBr, KCl, LiF, and ZnSe,” J. Appl. Phys. 46, 303 (1975).
[CrossRef]

Proc. SPIE (9)

G. Bellucci, B. Saggin, S. Fonti, D. Biondi, P. Cerulli, M. De Luca, F. Altieri, A. Mattana, E. Alberti, G. Marzo, and L. Zasova, “MIMA, a miniaturized Fourier infrared spectrometer for Mars ground exploration: part I. concept and expected performance,” Proc. SPIE 6744, 67441Q (2007).
[CrossRef]

S. Fonti, G. Marzo, R. Politi, G. Bellucci, and B. Saggin, “MIMA, a miniaturized infrared spectrometer for Mars ground exploration: part II. Optical design,” Proc. SPIE 6744, 67441R (2007).
[CrossRef]

B. Saggin, E. Alberti, L. Comolli, M. Tarabini, G. Bellucci, and S. Fonti, “MIMA, a miniaturized infrared spectrometer for Mars ground exploration: part III. Thermomechanical design,” Proc. SPIE 6744, 67441S (2007).
[CrossRef]

D. Vukobratovich, K. A. Fetterhoff, J. R. Myers, P. D. Wheelwright, and G. R. Cunnington, “Bonded mounts for small cryogenic optics,” Proc. SPIE 4131, 228-239 (2000).
[CrossRef]

T. R. Froud, I. A. J. Tosh, R. L. Edeson, and G. B. Dalton, “Cryogenic mounts for large fused silica lenses,” Proc. SPIE 6273, 62732I (2006).
[CrossRef]

T. P. O'Brien and B. Atwood, “Lens mounting system for cryogenic applications,” Proc. SPIE 4841, 398-402 (2003).
[CrossRef]

E. T. Kvamme and M. Jacoby, “A second generation low stress cryogenic mount for space-borne lithium fluoride optics,” Proc. SPIE 6692, 66920I (2007).
[CrossRef]

C. L. Hom, H. C. Holmes, D. N. Lapicz, I. V. Chapman, E. T. Kvamme, and D. M. Stubbs, “Cryogenic bonding for lens mounts,” Proc. SPIE 7439, 743910 (2009).
[CrossRef]

G. Kroes, J. Kragt, R. Navarro, E. Elswijk, and H. Hanenburg, “Opto-mechanical design for transmission optics in cryogenic IR instrumentation,” Proc. SPIE 7018, 70182D (2008).
[CrossRef]

Other (2)

A. Ahmad, Optomechanical Engineering Handbook (CRC, 1999).

E. D. Marquardt, J. P. Le, and Ray Radebaugh, “Cryogenic material properties database” in Proceedings of the 11th International Cryocooler Conference (Kluwer Academic/Plenum, 2000).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Schema of the proposed method: the IR optic is kept in position by elastic blades that allow the differential contraction–expansion at low–high temperatures. Blades are constrained to the optical bench. Thermal adapters have a CTE matched with that of the optics.

Fig. 2
Fig. 2

Artwork of the BS group designed using the selective-compliance technique with thermal adapters.

Fig. 3
Fig. 3

Planarity errors at 100 ° C (left-hand side) and von Mises stress at 120 ° C (right-hand side) on the optics. The mean value of the “planarity error” (i.e., 3.04 μm ) is actually due to uniform contraction of the optics that does not entail deviations from planarity of the reference surface and so, does not induce optics aberrations.

Fig. 4
Fig. 4

Random vibration power spectral density (rms 170 m/s 2 , maximum peak 750 m/s 2 ) measured during the BS tests. The same level was imposed along three axes without reporting failures on the interferometer components.

Tables (3)

Tables Icon

Table 1 Properties of Candidate Materials for Near-Mid Infrared (Namely 2 25 μm ) Transparent Optics at Room Temperature a

Tables Icon

Table 2 Ratio to Yield, Mass for Stiffness, and Thermoelastic Ratio to Yield Indices of Candidate Materials a

Tables Icon

Table 3 Mechanical Properties of Thermal Adapter Materials

Equations (10)

Equations on this page are rendered with MathJax. Learn more.

σ = ( ρ · A · t ) · a ( t · b ) ,
RY = ( σ / Y ) ( σ k / Y k ) · 1 00 ,
D = E · t 3 12 ( 1 ν 2 ) ,
m = ( 12 ( 1 ν 2 ) · D / E ) · ( ρ · A )
MS = m m k · 100.
Δ T = E · ( CTE O CTE F ) Y ,
TRY = Δ T Δ T K · 100.
Δ n = C λ · σ ,
BY = Δ n Y = C λ · Y .
RY 100 = 100 · E o · ε o ( 100 ) Y o = 100 · E a · | CTE a CTE o | · 100 ( 1 + E a / E o ) · Y o .

Metrics