Abstract

The strain and temperature dependencies of a step-index single-mode–multimode–single-mode (SMS) fiber structure are investigated numerically and experimentally. For intensity-based strain measurement using a single SMS fiber structure, at a selected wavelength, it is found that there is a high strain dependence, but also a temperature dependence that will induce strain measurement error. To minimize the temperature-induced strain measurement error, two SMS fiber structures are proposed and demonstrated in a ratiometric power measurement scheme; one SMS structure acts as the strain sensor, and the other SMS structure acts as the temperature monitor. The extracted temperature information is used to determine a strain value based on a suitable calibration of strain responses with temperature variations. It is demonstrated that for strain measurement from 0 to 1000με within the temperature range from 10°C to 40°C, the proposed configuration can provide a strain and temperature resolution of 0.34με and 0.14°C, respectively, with a temperature-induced strain measurement error as low as 0.39με.

© 2010 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. G. P. Brady, K. Kalli, D. J. Webb, D. A. Jackson, L. Reekie, and J. L. Archambault, “Simultaneous measurement of strain and temperature using the first- and second-order diffraction wavelengths of Bragg gratings,” IEE Proc. Optoelectron. 144(3), 156-161 (1997).
    [CrossRef]
  2. F. M. Hanran, J. K. Rew, and P. D. Foote, “A strain-isolated fibre Bragg grating sensor for temperature compensation of fibre Bragg grating strain sensors,” Meas. Sci. Technol. 9, pp. 1163-1166 (1998).
    [CrossRef]
  3. L. V. Nguyen, D. Hwang, D. S. Moon, and Y. Chung, “Simultaneous measurement of temperature and strain using a Lyot fiber filter incorporated with a fiber Bragg grating in a linear configuration,” Meas. Sci. Technol. 20, 034006 (2009).
    [CrossRef]
  4. Q. Wang and G. Farrell, “All-fiber multimode-interference based refractometer sensor: proposal and design,” Opt. Lett. 31, 317-319 (2006).
    [CrossRef] [PubMed]
  5. W. S. Mohammed, P. W. E. Smith, and X. Gu, “All-fiber multimode interference bandpass filter,” Opt. Lett. 31, 2547-2549(2006).
    [CrossRef] [PubMed]
  6. A. M. Hatta, G. Farrell, Q. Wang, G. Rajan, P. Wang, and Y. Semenova, “Ratiometric wavelength monitor based on singlemode-multimode-singlemode fiber structure,” Microwave Opt. Technol. Lett. 50, 3036-3039 (2008).
    [CrossRef]
  7. E. Li and G.-D. Peng, “Wavelength-encoded fiber-optic temperature sensor with ultra-high sensitivity,” Opt. Commun. 281, 5768-5770 (2008).
    [CrossRef]
  8. A. M. Hatta, G. Rajan, Y. Semenova, and G. Farrell, “A SMS fiber structure for temperature measurement using a simple intensity based interrogation system,” Electron. Lett. 45, 1069-1071 (2009).
    [CrossRef]
  9. E. Li, “Temperature compensation of multimode-interference based fiber devices,” Opt. Lett. 32, 2064-2066 (2007).
    [CrossRef] [PubMed]
  10. S. M. Tripathi, A. Kumar, R. K. Varshney, Y. B. P. Kumar, E. Marin, and J. P. Meunier, “Strain and temperature sensing characteristics of single-mode--multimode--single-mode structures,” J. Lightwave Technol. 27, 2348-2356(2009).
    [CrossRef]
  11. E. Li, “Sensitivity-enhanced fiber-optic strain sensor based on interference of higher order modes in circular fibers,” IEEE Photon. Technol. Lett. 19, 1266-1268 (2007).
    [CrossRef]
  12. D. P. Zhou, L. Wei, W. K. Liu, Y. Liu, and J. W. Y. Lit, “Simultaneous measurement for strain and temperature using fiber Bragg gratings and multimode fibers,” Appl. Opt. 47, 1668-1672 (2008).
    [CrossRef] [PubMed]
  13. Q. Wang, G. Farrell, and W. Yan, “Investigation on singlemode-multimode-singlemode fiber structure,” J. Lightwave Technol. 26, 512-519 (2008).
    [CrossRef]
  14. A. M. Hatta, G. Farrell, P. Wang, G. Rajan, and Y. Semenova, “Misalignment limits for a singlemode-multimode-singlemode fiber based edge filter,” J. Lightwave Technol. 27, 2482-2488(2009).
    [CrossRef]
  15. Q. Wang, G. Rajan, P. Wang, and G. Farrell, “Resolution investigation of a ratiometric wavelength measurement system,” Appl. Opt. 46, 6362-6367 (2007).
    [CrossRef] [PubMed]
  16. Q. Wang, G. Farrell, and T. Freir, “Study of transmission response of edge filters employed in wavelength measurements,” Appl. Opt. 44, 7789-7792 (2005).
    [CrossRef] [PubMed]

2009 (4)

L. V. Nguyen, D. Hwang, D. S. Moon, and Y. Chung, “Simultaneous measurement of temperature and strain using a Lyot fiber filter incorporated with a fiber Bragg grating in a linear configuration,” Meas. Sci. Technol. 20, 034006 (2009).
[CrossRef]

A. M. Hatta, G. Rajan, Y. Semenova, and G. Farrell, “A SMS fiber structure for temperature measurement using a simple intensity based interrogation system,” Electron. Lett. 45, 1069-1071 (2009).
[CrossRef]

S. M. Tripathi, A. Kumar, R. K. Varshney, Y. B. P. Kumar, E. Marin, and J. P. Meunier, “Strain and temperature sensing characteristics of single-mode--multimode--single-mode structures,” J. Lightwave Technol. 27, 2348-2356(2009).
[CrossRef]

A. M. Hatta, G. Farrell, P. Wang, G. Rajan, and Y. Semenova, “Misalignment limits for a singlemode-multimode-singlemode fiber based edge filter,” J. Lightwave Technol. 27, 2482-2488(2009).
[CrossRef]

2008 (4)

D. P. Zhou, L. Wei, W. K. Liu, Y. Liu, and J. W. Y. Lit, “Simultaneous measurement for strain and temperature using fiber Bragg gratings and multimode fibers,” Appl. Opt. 47, 1668-1672 (2008).
[CrossRef] [PubMed]

Q. Wang, G. Farrell, and W. Yan, “Investigation on singlemode-multimode-singlemode fiber structure,” J. Lightwave Technol. 26, 512-519 (2008).
[CrossRef]

A. M. Hatta, G. Farrell, Q. Wang, G. Rajan, P. Wang, and Y. Semenova, “Ratiometric wavelength monitor based on singlemode-multimode-singlemode fiber structure,” Microwave Opt. Technol. Lett. 50, 3036-3039 (2008).
[CrossRef]

E. Li and G.-D. Peng, “Wavelength-encoded fiber-optic temperature sensor with ultra-high sensitivity,” Opt. Commun. 281, 5768-5770 (2008).
[CrossRef]

2007 (3)

2006 (2)

2005 (1)

1998 (1)

F. M. Hanran, J. K. Rew, and P. D. Foote, “A strain-isolated fibre Bragg grating sensor for temperature compensation of fibre Bragg grating strain sensors,” Meas. Sci. Technol. 9, pp. 1163-1166 (1998).
[CrossRef]

1997 (1)

G. P. Brady, K. Kalli, D. J. Webb, D. A. Jackson, L. Reekie, and J. L. Archambault, “Simultaneous measurement of strain and temperature using the first- and second-order diffraction wavelengths of Bragg gratings,” IEE Proc. Optoelectron. 144(3), 156-161 (1997).
[CrossRef]

Archambault, J. L.

G. P. Brady, K. Kalli, D. J. Webb, D. A. Jackson, L. Reekie, and J. L. Archambault, “Simultaneous measurement of strain and temperature using the first- and second-order diffraction wavelengths of Bragg gratings,” IEE Proc. Optoelectron. 144(3), 156-161 (1997).
[CrossRef]

Brady, G. P.

G. P. Brady, K. Kalli, D. J. Webb, D. A. Jackson, L. Reekie, and J. L. Archambault, “Simultaneous measurement of strain and temperature using the first- and second-order diffraction wavelengths of Bragg gratings,” IEE Proc. Optoelectron. 144(3), 156-161 (1997).
[CrossRef]

Chung, Y.

L. V. Nguyen, D. Hwang, D. S. Moon, and Y. Chung, “Simultaneous measurement of temperature and strain using a Lyot fiber filter incorporated with a fiber Bragg grating in a linear configuration,” Meas. Sci. Technol. 20, 034006 (2009).
[CrossRef]

Farrell, G.

Foote, P. D.

F. M. Hanran, J. K. Rew, and P. D. Foote, “A strain-isolated fibre Bragg grating sensor for temperature compensation of fibre Bragg grating strain sensors,” Meas. Sci. Technol. 9, pp. 1163-1166 (1998).
[CrossRef]

Freir, T.

Gu, X.

Hanran, F. M.

F. M. Hanran, J. K. Rew, and P. D. Foote, “A strain-isolated fibre Bragg grating sensor for temperature compensation of fibre Bragg grating strain sensors,” Meas. Sci. Technol. 9, pp. 1163-1166 (1998).
[CrossRef]

Hatta, A. M.

A. M. Hatta, G. Rajan, Y. Semenova, and G. Farrell, “A SMS fiber structure for temperature measurement using a simple intensity based interrogation system,” Electron. Lett. 45, 1069-1071 (2009).
[CrossRef]

A. M. Hatta, G. Farrell, P. Wang, G. Rajan, and Y. Semenova, “Misalignment limits for a singlemode-multimode-singlemode fiber based edge filter,” J. Lightwave Technol. 27, 2482-2488(2009).
[CrossRef]

A. M. Hatta, G. Farrell, Q. Wang, G. Rajan, P. Wang, and Y. Semenova, “Ratiometric wavelength monitor based on singlemode-multimode-singlemode fiber structure,” Microwave Opt. Technol. Lett. 50, 3036-3039 (2008).
[CrossRef]

Hwang, D.

L. V. Nguyen, D. Hwang, D. S. Moon, and Y. Chung, “Simultaneous measurement of temperature and strain using a Lyot fiber filter incorporated with a fiber Bragg grating in a linear configuration,” Meas. Sci. Technol. 20, 034006 (2009).
[CrossRef]

Jackson, D. A.

G. P. Brady, K. Kalli, D. J. Webb, D. A. Jackson, L. Reekie, and J. L. Archambault, “Simultaneous measurement of strain and temperature using the first- and second-order diffraction wavelengths of Bragg gratings,” IEE Proc. Optoelectron. 144(3), 156-161 (1997).
[CrossRef]

Kalli, K.

G. P. Brady, K. Kalli, D. J. Webb, D. A. Jackson, L. Reekie, and J. L. Archambault, “Simultaneous measurement of strain and temperature using the first- and second-order diffraction wavelengths of Bragg gratings,” IEE Proc. Optoelectron. 144(3), 156-161 (1997).
[CrossRef]

Kumar, A.

Kumar, Y. B. P.

Li, E.

E. Li and G.-D. Peng, “Wavelength-encoded fiber-optic temperature sensor with ultra-high sensitivity,” Opt. Commun. 281, 5768-5770 (2008).
[CrossRef]

E. Li, “Sensitivity-enhanced fiber-optic strain sensor based on interference of higher order modes in circular fibers,” IEEE Photon. Technol. Lett. 19, 1266-1268 (2007).
[CrossRef]

E. Li, “Temperature compensation of multimode-interference based fiber devices,” Opt. Lett. 32, 2064-2066 (2007).
[CrossRef] [PubMed]

Lit, J. W. Y.

Liu, W. K.

Liu, Y.

Marin, E.

Meunier, J. P.

Mohammed, W. S.

Moon, D. S.

L. V. Nguyen, D. Hwang, D. S. Moon, and Y. Chung, “Simultaneous measurement of temperature and strain using a Lyot fiber filter incorporated with a fiber Bragg grating in a linear configuration,” Meas. Sci. Technol. 20, 034006 (2009).
[CrossRef]

Nguyen, L. V.

L. V. Nguyen, D. Hwang, D. S. Moon, and Y. Chung, “Simultaneous measurement of temperature and strain using a Lyot fiber filter incorporated with a fiber Bragg grating in a linear configuration,” Meas. Sci. Technol. 20, 034006 (2009).
[CrossRef]

Peng, G.-D.

E. Li and G.-D. Peng, “Wavelength-encoded fiber-optic temperature sensor with ultra-high sensitivity,” Opt. Commun. 281, 5768-5770 (2008).
[CrossRef]

Rajan, G.

A. M. Hatta, G. Rajan, Y. Semenova, and G. Farrell, “A SMS fiber structure for temperature measurement using a simple intensity based interrogation system,” Electron. Lett. 45, 1069-1071 (2009).
[CrossRef]

A. M. Hatta, G. Farrell, P. Wang, G. Rajan, and Y. Semenova, “Misalignment limits for a singlemode-multimode-singlemode fiber based edge filter,” J. Lightwave Technol. 27, 2482-2488(2009).
[CrossRef]

A. M. Hatta, G. Farrell, Q. Wang, G. Rajan, P. Wang, and Y. Semenova, “Ratiometric wavelength monitor based on singlemode-multimode-singlemode fiber structure,” Microwave Opt. Technol. Lett. 50, 3036-3039 (2008).
[CrossRef]

Q. Wang, G. Rajan, P. Wang, and G. Farrell, “Resolution investigation of a ratiometric wavelength measurement system,” Appl. Opt. 46, 6362-6367 (2007).
[CrossRef] [PubMed]

Reekie, L.

G. P. Brady, K. Kalli, D. J. Webb, D. A. Jackson, L. Reekie, and J. L. Archambault, “Simultaneous measurement of strain and temperature using the first- and second-order diffraction wavelengths of Bragg gratings,” IEE Proc. Optoelectron. 144(3), 156-161 (1997).
[CrossRef]

Rew, J. K.

F. M. Hanran, J. K. Rew, and P. D. Foote, “A strain-isolated fibre Bragg grating sensor for temperature compensation of fibre Bragg grating strain sensors,” Meas. Sci. Technol. 9, pp. 1163-1166 (1998).
[CrossRef]

Semenova, Y.

A. M. Hatta, G. Rajan, Y. Semenova, and G. Farrell, “A SMS fiber structure for temperature measurement using a simple intensity based interrogation system,” Electron. Lett. 45, 1069-1071 (2009).
[CrossRef]

A. M. Hatta, G. Farrell, P. Wang, G. Rajan, and Y. Semenova, “Misalignment limits for a singlemode-multimode-singlemode fiber based edge filter,” J. Lightwave Technol. 27, 2482-2488(2009).
[CrossRef]

A. M. Hatta, G. Farrell, Q. Wang, G. Rajan, P. Wang, and Y. Semenova, “Ratiometric wavelength monitor based on singlemode-multimode-singlemode fiber structure,” Microwave Opt. Technol. Lett. 50, 3036-3039 (2008).
[CrossRef]

Smith, P. W. E.

Tripathi, S. M.

Varshney, R. K.

Wang, P.

Wang, Q.

Webb, D. J.

G. P. Brady, K. Kalli, D. J. Webb, D. A. Jackson, L. Reekie, and J. L. Archambault, “Simultaneous measurement of strain and temperature using the first- and second-order diffraction wavelengths of Bragg gratings,” IEE Proc. Optoelectron. 144(3), 156-161 (1997).
[CrossRef]

Wei, L.

Yan, W.

Zhou, D. P.

Appl. Opt. (3)

Electron. Lett. (1)

A. M. Hatta, G. Rajan, Y. Semenova, and G. Farrell, “A SMS fiber structure for temperature measurement using a simple intensity based interrogation system,” Electron. Lett. 45, 1069-1071 (2009).
[CrossRef]

IEE Proc. Optoelectron. (1)

G. P. Brady, K. Kalli, D. J. Webb, D. A. Jackson, L. Reekie, and J. L. Archambault, “Simultaneous measurement of strain and temperature using the first- and second-order diffraction wavelengths of Bragg gratings,” IEE Proc. Optoelectron. 144(3), 156-161 (1997).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

E. Li, “Sensitivity-enhanced fiber-optic strain sensor based on interference of higher order modes in circular fibers,” IEEE Photon. Technol. Lett. 19, 1266-1268 (2007).
[CrossRef]

J. Lightwave Technol. (3)

Meas. Sci. Technol. (2)

F. M. Hanran, J. K. Rew, and P. D. Foote, “A strain-isolated fibre Bragg grating sensor for temperature compensation of fibre Bragg grating strain sensors,” Meas. Sci. Technol. 9, pp. 1163-1166 (1998).
[CrossRef]

L. V. Nguyen, D. Hwang, D. S. Moon, and Y. Chung, “Simultaneous measurement of temperature and strain using a Lyot fiber filter incorporated with a fiber Bragg grating in a linear configuration,” Meas. Sci. Technol. 20, 034006 (2009).
[CrossRef]

Microwave Opt. Technol. Lett. (1)

A. M. Hatta, G. Farrell, Q. Wang, G. Rajan, P. Wang, and Y. Semenova, “Ratiometric wavelength monitor based on singlemode-multimode-singlemode fiber structure,” Microwave Opt. Technol. Lett. 50, 3036-3039 (2008).
[CrossRef]

Opt. Commun. (1)

E. Li and G.-D. Peng, “Wavelength-encoded fiber-optic temperature sensor with ultra-high sensitivity,” Opt. Commun. 281, 5768-5770 (2008).
[CrossRef]

Opt. Lett. (3)

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

(a) Single SMS fiber structure (b) Schematic structure of strain measurement with a self-temperature monitoring in a ratiometric power measurement scheme using a pair of SMS fibers.

Fig. 2
Fig. 2

SDL and TDL of the SMS fiber structure. Inset, spectral response.

Fig. 3
Fig. 3

Transmission loss responses at an the operating wavelength of 1539 nm : (a) strain responses at several ambient temperatures, (b) temperature response for an applied strain of 500 μ ε .

Fig. 4
Fig. 4

Measured spectral response of two SMS fiber structures.

Fig. 5
Fig. 5

Ratio response of SMS-1 as a function of strain with temperature variation at an operating wavelength of 1539 nm : (a) measured, (b) calculated.

Fig. 6
Fig. 6

Ratio response of SMS-2 due to temperature variation at an operating wavelength of 1539 nm : (a) measured, (b) calculated.

Fig. 7
Fig. 7

Calculated ratio response of SMS-2 with MMF length errors due to temperature variation at an operating wavelength of 1539 nm .

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

Δ L = L ε ,
Δ a ( SMF , MMF ) = σ a ( SMF , MMF ) ε ,
Δ n ( SMF , MMF ) i = n ( SMF , MMF ) i 3 2 [ p 12 σ ( p 11 + p 12 ) ] ε = p e ε ,
Δ L = α L Δ T ,
Δ a ( SMF , MMF ) = α a ( SMF , MMF ) Δ T ,
Δ n ( SMF , MMF ) i = β n ( SMF , MMF ) i Δ T ,
Δ L = L ε + α L Δ T ,
Δ a ( SMF , MMF ) = σ a ( SMF , MMF ) ε + α a ( SMF , MMF ) Δ T ,
Δ n ( SMF , MMF ) i = p e ε + β n ( SMF , MMF ) i Δ T .

Metrics