Abstract

The strain and temperature dependencies of a step-index single-mode–multimode–single-mode (SMS) fiber structure are investigated numerically and experimentally. For intensity-based strain measurement using a single SMS fiber structure, at a selected wavelength, it is found that there is a high strain dependence, but also a temperature dependence that will induce strain measurement error. To minimize the temperature-induced strain measurement error, two SMS fiber structures are proposed and demonstrated in a ratiometric power measurement scheme; one SMS structure acts as the strain sensor, and the other SMS structure acts as the temperature monitor. The extracted temperature information is used to determine a strain value based on a suitable calibration of strain responses with temperature variations. It is demonstrated that for strain measurement from 0 to 1000με within the temperature range from 10°C to 40°C, the proposed configuration can provide a strain and temperature resolution of 0.34με and 0.14°C, respectively, with a temperature-induced strain measurement error as low as 0.39με.

© 2010 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. G. P. Brady, K. Kalli, D. J. Webb, D. A. Jackson, L. Reekie, and J. L. Archambault, “Simultaneous measurement of strain and temperature using the first- and second-order diffraction wavelengths of Bragg gratings,” IEE Proc. Optoelectron. 144(3), 156-161 (1997).
    [CrossRef]
  2. F. M. Hanran, J. K. Rew, and P. D. Foote, “A strain-isolated fibre Bragg grating sensor for temperature compensation of fibre Bragg grating strain sensors,” Meas. Sci. Technol. 9, pp. 1163-1166 (1998).
    [CrossRef]
  3. L. V. Nguyen, D. Hwang, D. S. Moon, and Y. Chung, “Simultaneous measurement of temperature and strain using a Lyot fiber filter incorporated with a fiber Bragg grating in a linear configuration,” Meas. Sci. Technol. 20, 034006 (2009).
    [CrossRef]
  4. Q. Wang and G. Farrell, “All-fiber multimode-interference based refractometer sensor: proposal and design,” Opt. Lett. 31, 317-319 (2006).
    [CrossRef] [PubMed]
  5. W. S. Mohammed, P. W. E. Smith, and X. Gu, “All-fiber multimode interference bandpass filter,” Opt. Lett. 31, 2547-2549(2006).
    [CrossRef] [PubMed]
  6. A. M. Hatta, G. Farrell, Q. Wang, G. Rajan, P. Wang, and Y. Semenova, “Ratiometric wavelength monitor based on singlemode-multimode-singlemode fiber structure,” Microwave Opt. Technol. Lett. 50, 3036-3039 (2008).
    [CrossRef]
  7. E. Li and G.-D. Peng, “Wavelength-encoded fiber-optic temperature sensor with ultra-high sensitivity,” Opt. Commun. 281, 5768-5770 (2008).
    [CrossRef]
  8. A. M. Hatta, G. Rajan, Y. Semenova, and G. Farrell, “A SMS fiber structure for temperature measurement using a simple intensity based interrogation system,” Electron. Lett. 45, 1069-1071 (2009).
    [CrossRef]
  9. E. Li, “Temperature compensation of multimode-interference based fiber devices,” Opt. Lett. 32, 2064-2066 (2007).
    [CrossRef] [PubMed]
  10. S. M. Tripathi, A. Kumar, R. K. Varshney, Y. B. P. Kumar, E. Marin, and J. P. Meunier, “Strain and temperature sensing characteristics of single-mode--multimode--single-mode structures,” J. Lightwave Technol. 27, 2348-2356(2009).
    [CrossRef]
  11. E. Li, “Sensitivity-enhanced fiber-optic strain sensor based on interference of higher order modes in circular fibers,” IEEE Photon. Technol. Lett. 19, 1266-1268 (2007).
    [CrossRef]
  12. D. P. Zhou, L. Wei, W. K. Liu, Y. Liu, and J. W. Y. Lit, “Simultaneous measurement for strain and temperature using fiber Bragg gratings and multimode fibers,” Appl. Opt. 47, 1668-1672 (2008).
    [CrossRef] [PubMed]
  13. Q. Wang, G. Farrell, and W. Yan, “Investigation on singlemode-multimode-singlemode fiber structure,” J. Lightwave Technol. 26, 512-519 (2008).
    [CrossRef]
  14. A. M. Hatta, G. Farrell, P. Wang, G. Rajan, and Y. Semenova, “Misalignment limits for a singlemode-multimode-singlemode fiber based edge filter,” J. Lightwave Technol. 27, 2482-2488(2009).
    [CrossRef]
  15. Q. Wang, G. Rajan, P. Wang, and G. Farrell, “Resolution investigation of a ratiometric wavelength measurement system,” Appl. Opt. 46, 6362-6367 (2007).
    [CrossRef] [PubMed]
  16. Q. Wang, G. Farrell, and T. Freir, “Study of transmission response of edge filters employed in wavelength measurements,” Appl. Opt. 44, 7789-7792 (2005).
    [CrossRef] [PubMed]

2009 (4)

L. V. Nguyen, D. Hwang, D. S. Moon, and Y. Chung, “Simultaneous measurement of temperature and strain using a Lyot fiber filter incorporated with a fiber Bragg grating in a linear configuration,” Meas. Sci. Technol. 20, 034006 (2009).
[CrossRef]

A. M. Hatta, G. Rajan, Y. Semenova, and G. Farrell, “A SMS fiber structure for temperature measurement using a simple intensity based interrogation system,” Electron. Lett. 45, 1069-1071 (2009).
[CrossRef]

S. M. Tripathi, A. Kumar, R. K. Varshney, Y. B. P. Kumar, E. Marin, and J. P. Meunier, “Strain and temperature sensing characteristics of single-mode--multimode--single-mode structures,” J. Lightwave Technol. 27, 2348-2356(2009).
[CrossRef]

A. M. Hatta, G. Farrell, P. Wang, G. Rajan, and Y. Semenova, “Misalignment limits for a singlemode-multimode-singlemode fiber based edge filter,” J. Lightwave Technol. 27, 2482-2488(2009).
[CrossRef]

2008 (4)

Q. Wang, G. Farrell, and W. Yan, “Investigation on singlemode-multimode-singlemode fiber structure,” J. Lightwave Technol. 26, 512-519 (2008).
[CrossRef]

D. P. Zhou, L. Wei, W. K. Liu, Y. Liu, and J. W. Y. Lit, “Simultaneous measurement for strain and temperature using fiber Bragg gratings and multimode fibers,” Appl. Opt. 47, 1668-1672 (2008).
[CrossRef] [PubMed]

A. M. Hatta, G. Farrell, Q. Wang, G. Rajan, P. Wang, and Y. Semenova, “Ratiometric wavelength monitor based on singlemode-multimode-singlemode fiber structure,” Microwave Opt. Technol. Lett. 50, 3036-3039 (2008).
[CrossRef]

E. Li and G.-D. Peng, “Wavelength-encoded fiber-optic temperature sensor with ultra-high sensitivity,” Opt. Commun. 281, 5768-5770 (2008).
[CrossRef]

2007 (3)

2006 (2)

2005 (1)

1998 (1)

F. M. Hanran, J. K. Rew, and P. D. Foote, “A strain-isolated fibre Bragg grating sensor for temperature compensation of fibre Bragg grating strain sensors,” Meas. Sci. Technol. 9, pp. 1163-1166 (1998).
[CrossRef]

1997 (1)

G. P. Brady, K. Kalli, D. J. Webb, D. A. Jackson, L. Reekie, and J. L. Archambault, “Simultaneous measurement of strain and temperature using the first- and second-order diffraction wavelengths of Bragg gratings,” IEE Proc. Optoelectron. 144(3), 156-161 (1997).
[CrossRef]

Archambault, J. L.

G. P. Brady, K. Kalli, D. J. Webb, D. A. Jackson, L. Reekie, and J. L. Archambault, “Simultaneous measurement of strain and temperature using the first- and second-order diffraction wavelengths of Bragg gratings,” IEE Proc. Optoelectron. 144(3), 156-161 (1997).
[CrossRef]

Brady, G. P.

G. P. Brady, K. Kalli, D. J. Webb, D. A. Jackson, L. Reekie, and J. L. Archambault, “Simultaneous measurement of strain and temperature using the first- and second-order diffraction wavelengths of Bragg gratings,” IEE Proc. Optoelectron. 144(3), 156-161 (1997).
[CrossRef]

Chung, Y.

L. V. Nguyen, D. Hwang, D. S. Moon, and Y. Chung, “Simultaneous measurement of temperature and strain using a Lyot fiber filter incorporated with a fiber Bragg grating in a linear configuration,” Meas. Sci. Technol. 20, 034006 (2009).
[CrossRef]

Farrell, G.

Foote, P. D.

F. M. Hanran, J. K. Rew, and P. D. Foote, “A strain-isolated fibre Bragg grating sensor for temperature compensation of fibre Bragg grating strain sensors,” Meas. Sci. Technol. 9, pp. 1163-1166 (1998).
[CrossRef]

Freir, T.

Gu, X.

Hanran, F. M.

F. M. Hanran, J. K. Rew, and P. D. Foote, “A strain-isolated fibre Bragg grating sensor for temperature compensation of fibre Bragg grating strain sensors,” Meas. Sci. Technol. 9, pp. 1163-1166 (1998).
[CrossRef]

Hatta, A. M.

A. M. Hatta, G. Rajan, Y. Semenova, and G. Farrell, “A SMS fiber structure for temperature measurement using a simple intensity based interrogation system,” Electron. Lett. 45, 1069-1071 (2009).
[CrossRef]

A. M. Hatta, G. Farrell, P. Wang, G. Rajan, and Y. Semenova, “Misalignment limits for a singlemode-multimode-singlemode fiber based edge filter,” J. Lightwave Technol. 27, 2482-2488(2009).
[CrossRef]

A. M. Hatta, G. Farrell, Q. Wang, G. Rajan, P. Wang, and Y. Semenova, “Ratiometric wavelength monitor based on singlemode-multimode-singlemode fiber structure,” Microwave Opt. Technol. Lett. 50, 3036-3039 (2008).
[CrossRef]

Hwang, D.

L. V. Nguyen, D. Hwang, D. S. Moon, and Y. Chung, “Simultaneous measurement of temperature and strain using a Lyot fiber filter incorporated with a fiber Bragg grating in a linear configuration,” Meas. Sci. Technol. 20, 034006 (2009).
[CrossRef]

Jackson, D. A.

G. P. Brady, K. Kalli, D. J. Webb, D. A. Jackson, L. Reekie, and J. L. Archambault, “Simultaneous measurement of strain and temperature using the first- and second-order diffraction wavelengths of Bragg gratings,” IEE Proc. Optoelectron. 144(3), 156-161 (1997).
[CrossRef]

Kalli, K.

G. P. Brady, K. Kalli, D. J. Webb, D. A. Jackson, L. Reekie, and J. L. Archambault, “Simultaneous measurement of strain and temperature using the first- and second-order diffraction wavelengths of Bragg gratings,” IEE Proc. Optoelectron. 144(3), 156-161 (1997).
[CrossRef]

Kumar, A.

Kumar, Y. B. P.

Li, E.

E. Li and G.-D. Peng, “Wavelength-encoded fiber-optic temperature sensor with ultra-high sensitivity,” Opt. Commun. 281, 5768-5770 (2008).
[CrossRef]

E. Li, “Sensitivity-enhanced fiber-optic strain sensor based on interference of higher order modes in circular fibers,” IEEE Photon. Technol. Lett. 19, 1266-1268 (2007).
[CrossRef]

E. Li, “Temperature compensation of multimode-interference based fiber devices,” Opt. Lett. 32, 2064-2066 (2007).
[CrossRef] [PubMed]

Lit, J. W. Y.

Liu, W. K.

Liu, Y.

Marin, E.

Meunier, J. P.

Mohammed, W. S.

Moon, D. S.

L. V. Nguyen, D. Hwang, D. S. Moon, and Y. Chung, “Simultaneous measurement of temperature and strain using a Lyot fiber filter incorporated with a fiber Bragg grating in a linear configuration,” Meas. Sci. Technol. 20, 034006 (2009).
[CrossRef]

Nguyen, L. V.

L. V. Nguyen, D. Hwang, D. S. Moon, and Y. Chung, “Simultaneous measurement of temperature and strain using a Lyot fiber filter incorporated with a fiber Bragg grating in a linear configuration,” Meas. Sci. Technol. 20, 034006 (2009).
[CrossRef]

Peng, G.-D.

E. Li and G.-D. Peng, “Wavelength-encoded fiber-optic temperature sensor with ultra-high sensitivity,” Opt. Commun. 281, 5768-5770 (2008).
[CrossRef]

Rajan, G.

A. M. Hatta, G. Farrell, P. Wang, G. Rajan, and Y. Semenova, “Misalignment limits for a singlemode-multimode-singlemode fiber based edge filter,” J. Lightwave Technol. 27, 2482-2488(2009).
[CrossRef]

A. M. Hatta, G. Rajan, Y. Semenova, and G. Farrell, “A SMS fiber structure for temperature measurement using a simple intensity based interrogation system,” Electron. Lett. 45, 1069-1071 (2009).
[CrossRef]

A. M. Hatta, G. Farrell, Q. Wang, G. Rajan, P. Wang, and Y. Semenova, “Ratiometric wavelength monitor based on singlemode-multimode-singlemode fiber structure,” Microwave Opt. Technol. Lett. 50, 3036-3039 (2008).
[CrossRef]

Q. Wang, G. Rajan, P. Wang, and G. Farrell, “Resolution investigation of a ratiometric wavelength measurement system,” Appl. Opt. 46, 6362-6367 (2007).
[CrossRef] [PubMed]

Reekie, L.

G. P. Brady, K. Kalli, D. J. Webb, D. A. Jackson, L. Reekie, and J. L. Archambault, “Simultaneous measurement of strain and temperature using the first- and second-order diffraction wavelengths of Bragg gratings,” IEE Proc. Optoelectron. 144(3), 156-161 (1997).
[CrossRef]

Rew, J. K.

F. M. Hanran, J. K. Rew, and P. D. Foote, “A strain-isolated fibre Bragg grating sensor for temperature compensation of fibre Bragg grating strain sensors,” Meas. Sci. Technol. 9, pp. 1163-1166 (1998).
[CrossRef]

Semenova, Y.

A. M. Hatta, G. Rajan, Y. Semenova, and G. Farrell, “A SMS fiber structure for temperature measurement using a simple intensity based interrogation system,” Electron. Lett. 45, 1069-1071 (2009).
[CrossRef]

A. M. Hatta, G. Farrell, P. Wang, G. Rajan, and Y. Semenova, “Misalignment limits for a singlemode-multimode-singlemode fiber based edge filter,” J. Lightwave Technol. 27, 2482-2488(2009).
[CrossRef]

A. M. Hatta, G. Farrell, Q. Wang, G. Rajan, P. Wang, and Y. Semenova, “Ratiometric wavelength monitor based on singlemode-multimode-singlemode fiber structure,” Microwave Opt. Technol. Lett. 50, 3036-3039 (2008).
[CrossRef]

Smith, P. W. E.

Tripathi, S. M.

Varshney, R. K.

Wang, P.

Wang, Q.

Webb, D. J.

G. P. Brady, K. Kalli, D. J. Webb, D. A. Jackson, L. Reekie, and J. L. Archambault, “Simultaneous measurement of strain and temperature using the first- and second-order diffraction wavelengths of Bragg gratings,” IEE Proc. Optoelectron. 144(3), 156-161 (1997).
[CrossRef]

Wei, L.

Yan, W.

Zhou, D. P.

Appl. Opt. (3)

Electron. Lett. (1)

A. M. Hatta, G. Rajan, Y. Semenova, and G. Farrell, “A SMS fiber structure for temperature measurement using a simple intensity based interrogation system,” Electron. Lett. 45, 1069-1071 (2009).
[CrossRef]

IEE Proc. Optoelectron. (1)

G. P. Brady, K. Kalli, D. J. Webb, D. A. Jackson, L. Reekie, and J. L. Archambault, “Simultaneous measurement of strain and temperature using the first- and second-order diffraction wavelengths of Bragg gratings,” IEE Proc. Optoelectron. 144(3), 156-161 (1997).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

E. Li, “Sensitivity-enhanced fiber-optic strain sensor based on interference of higher order modes in circular fibers,” IEEE Photon. Technol. Lett. 19, 1266-1268 (2007).
[CrossRef]

J. Lightwave Technol. (3)

Meas. Sci. Technol. (2)

F. M. Hanran, J. K. Rew, and P. D. Foote, “A strain-isolated fibre Bragg grating sensor for temperature compensation of fibre Bragg grating strain sensors,” Meas. Sci. Technol. 9, pp. 1163-1166 (1998).
[CrossRef]

L. V. Nguyen, D. Hwang, D. S. Moon, and Y. Chung, “Simultaneous measurement of temperature and strain using a Lyot fiber filter incorporated with a fiber Bragg grating in a linear configuration,” Meas. Sci. Technol. 20, 034006 (2009).
[CrossRef]

Microwave Opt. Technol. Lett. (1)

A. M. Hatta, G. Farrell, Q. Wang, G. Rajan, P. Wang, and Y. Semenova, “Ratiometric wavelength monitor based on singlemode-multimode-singlemode fiber structure,” Microwave Opt. Technol. Lett. 50, 3036-3039 (2008).
[CrossRef]

Opt. Commun. (1)

E. Li and G.-D. Peng, “Wavelength-encoded fiber-optic temperature sensor with ultra-high sensitivity,” Opt. Commun. 281, 5768-5770 (2008).
[CrossRef]

Opt. Lett. (3)

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

(a) Single SMS fiber structure (b) Schematic structure of strain measurement with a self-temperature monitoring in a ratiometric power measurement scheme using a pair of SMS fibers.

Fig. 2
Fig. 2

SDL and TDL of the SMS fiber structure. Inset, spectral response.

Fig. 3
Fig. 3

Transmission loss responses at an the operating wavelength of 1539 nm : (a) strain responses at several ambient temperatures, (b) temperature response for an applied strain of 500 μ ε .

Fig. 4
Fig. 4

Measured spectral response of two SMS fiber structures.

Fig. 5
Fig. 5

Ratio response of SMS-1 as a function of strain with temperature variation at an operating wavelength of 1539 nm : (a) measured, (b) calculated.

Fig. 6
Fig. 6

Ratio response of SMS-2 due to temperature variation at an operating wavelength of 1539 nm : (a) measured, (b) calculated.

Fig. 7
Fig. 7

Calculated ratio response of SMS-2 with MMF length errors due to temperature variation at an operating wavelength of 1539 nm .

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

Δ L = L ε ,
Δ a ( SMF , MMF ) = σ a ( SMF , MMF ) ε ,
Δ n ( SMF , MMF ) i = n ( SMF , MMF ) i 3 2 [ p 12 σ ( p 11 + p 12 ) ] ε = p e ε ,
Δ L = α L Δ T ,
Δ a ( SMF , MMF ) = α a ( SMF , MMF ) Δ T ,
Δ n ( SMF , MMF ) i = β n ( SMF , MMF ) i Δ T ,
Δ L = L ε + α L Δ T ,
Δ a ( SMF , MMF ) = σ a ( SMF , MMF ) ε + α a ( SMF , MMF ) Δ T ,
Δ n ( SMF , MMF ) i = p e ε + β n ( SMF , MMF ) i Δ T .

Metrics