Abstract

The Interferometric Monitor for Greenhouse Gases (IMG) operated aboard the polar-orbiting Advanced Earth Observing Satellite from October 1996 through June 1997. The IMG measured upwelling infrared radiance at fine spectral resolution. This paper identifies previously undocumented issues with IMG interferograms and describes procedures for correcting the majority of the affected data. In particular, single-sided interferograms should be used to avoid large noise bursts, and phase ambiguities must be resolved in uncalibrated spectra before radiometric calibration. The corrections are essential for studies that require accurately calibrated radiance spectra, including those that track atmospheric changes globally on decadal time scales.

© 2010 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. Kobayashi, A. Shimota, K. Kondo, E. Okumura, Y. Kameda, H. Shimoda, and T. Ogawa, “Development and evaluation of the interferometric monitor for greenhouse gases: a high-throughput Fourier-transform infrared radiometer for nadir Earth observation,” Appl. Opt. 38, 6801-6807 (1999).
    [CrossRef]
  2. J. Wang, J. C. Gille, H. E. Revercomb, and V. P. Walden, “Validation study of the MOPITT retrieval algorithm: carbon monoxide retrieval from IMG observations during WINCE,” J. Atmos. Ocean. Technol. 17, 1285-1295 (2000).
    [CrossRef]
  3. U. Amato, V. Cuomo, I. De Feis, F. Romano, C. Serio, and H. Kobayashi, “Inverting for geophysical parameters from IMG radiances,” IEEE Trans. Geosci. Remote Sensing 37, 1620-1632 (1999).
    [CrossRef]
  4. A. M. Lubrano, C. Serio, S. A. Clough, and H. Kobayashi, “Simultaneous inversion for temperature and water vapor from IMG radiances,” Geophys. Res. Lett. 27, 2533-2536 (2000).
    [CrossRef]
  5. C. Clerbaux, J. Hadji-Lazaro, S. Turquety, G. Mégie, and P.-F. Coheur, “Trace gas measurements from infrared satellite for chemistry and climate applications,” Atmos. Chem. Phys. 3, 1495-1508 (2003).
    [CrossRef]
  6. R. A. Hanel, B. Schlachman, D. Rogers, and D. Vanous, “Nimbus 4 Michelson interferometer,” Appl. Opt. 10, 1376-1382 (1971).
    [CrossRef] [PubMed]
  7. J. E. Harries, H. E. Brindley, P. J. Sagoo, and R. J. Bantges, “Increases in greenhouse forcing inferred from the outgoing longwave radiation spectra of the Earth in 1970 and 1997,” Nature 410, 355-357 (2001).
    [CrossRef] [PubMed]
  8. H. H. Aumann, M. T. Chahine, C. Gautier, M. D. Goldberg, E. Kalnay, L. M. McMillin, H. Revercomb, P. W. Rosenkranz, W. L. Smith, D. H. Staelin, L. L. Strow, and J. Susskind, “AIRS/AMSU/HSB on the Aqua mission: design, science objectives, data products, and processing systems,” IEEE Trans. Geosci. Remote Sensing 41, 253-264 (2003).
    [CrossRef]
  9. A. B. Uspensky, I. V. Cherny, G. M. Chernyavsky, Y. M. Golovin, F. S. Zavelevich, A. K. Gorodetsky, B. E. Moshkin, G. G. Gorbunov, and A. S. Romanovsky, “Sounding instruments for future Russian meteorological satellites,” Technical Proceedings of the 10th International TOVS Study Conference (1999), pp. 533-543. Available from the co-chairs of the International TOVS Working Group, http://cimss.ssec.wisc.edu/itwg.
  10. D. Blumstein, B. Tournier, F. R. Cayla, T. Phulpin, R. Fjortoft, C. Buil, and G. Ponce, “In-flight performance of the Infrared Atmospheric Sounding Interferometer (IASI) on METOP-A,” Proc. SPIE 6684, 66840H (2007).
    [CrossRef]
  11. National Institute for Environmental Studies (NIES) Greenhouse Gases Observing Satellite (GOSAT) Project, GOSAT pamphlet (Center for Global Environmental Research and National Institute for Environmental Studies, 2006).
  12. H. J. Bloom, “The Cross-track Infrared Sounder (CrIS): a sensor for operational meteorological remote sensing,” in Geoscience and Remote Sensing Symposium (IGARSS International, 2001), Vol. 3, pp. 1341-1343.
  13. A. Shimota, H. Kobayashi, and S. Kadokura, “Radiometric calibration for the airborne interferometric monitor for greenhouse gases simulator,” Appl. Opt. 38, 571-576 (1999).
    [CrossRef]
  14. H.Kobayashi, ed., “Interferometric monitor for greenhouse gases,” Tech. Rep. (Interferometric Monitor for Greenhouse Gases Project, 1999), p. 45.
  15. P. R. Griffiths and J. A. deHaseth, Fourier Transform Infrared Spectrometry (Wiley, 1986).
  16. H. E. Revercomb, H. Buijs, H. B. Howell, D. D. LaPorte, W. L. Smith, and L. A. Sromovsky, “Radiometric calibration of IR Fourier transform spectrometers: solution to a problem with the High-Resolution Interferometer Sounder,” Appl. Opt. 27, 3210-3218 (1988).
    [CrossRef] [PubMed]
  17. R. N. Bracewell, The Fourier Transform and Its Applications, 2nd ed. (McGraw-Hill, 1986), p. 474.
  18. G. Masiello, C. Serio, and H. Shimoda, “Qualifying IMG tropical spectra for clear sky,” J. Quant. Spectr. Rad. Trans. 77, 131-148 (2003).
    [CrossRef]

2007 (1)

D. Blumstein, B. Tournier, F. R. Cayla, T. Phulpin, R. Fjortoft, C. Buil, and G. Ponce, “In-flight performance of the Infrared Atmospheric Sounding Interferometer (IASI) on METOP-A,” Proc. SPIE 6684, 66840H (2007).
[CrossRef]

2003 (3)

G. Masiello, C. Serio, and H. Shimoda, “Qualifying IMG tropical spectra for clear sky,” J. Quant. Spectr. Rad. Trans. 77, 131-148 (2003).
[CrossRef]

H. H. Aumann, M. T. Chahine, C. Gautier, M. D. Goldberg, E. Kalnay, L. M. McMillin, H. Revercomb, P. W. Rosenkranz, W. L. Smith, D. H. Staelin, L. L. Strow, and J. Susskind, “AIRS/AMSU/HSB on the Aqua mission: design, science objectives, data products, and processing systems,” IEEE Trans. Geosci. Remote Sensing 41, 253-264 (2003).
[CrossRef]

C. Clerbaux, J. Hadji-Lazaro, S. Turquety, G. Mégie, and P.-F. Coheur, “Trace gas measurements from infrared satellite for chemistry and climate applications,” Atmos. Chem. Phys. 3, 1495-1508 (2003).
[CrossRef]

2001 (1)

J. E. Harries, H. E. Brindley, P. J. Sagoo, and R. J. Bantges, “Increases in greenhouse forcing inferred from the outgoing longwave radiation spectra of the Earth in 1970 and 1997,” Nature 410, 355-357 (2001).
[CrossRef] [PubMed]

2000 (2)

J. Wang, J. C. Gille, H. E. Revercomb, and V. P. Walden, “Validation study of the MOPITT retrieval algorithm: carbon monoxide retrieval from IMG observations during WINCE,” J. Atmos. Ocean. Technol. 17, 1285-1295 (2000).
[CrossRef]

A. M. Lubrano, C. Serio, S. A. Clough, and H. Kobayashi, “Simultaneous inversion for temperature and water vapor from IMG radiances,” Geophys. Res. Lett. 27, 2533-2536 (2000).
[CrossRef]

1999 (3)

1988 (1)

1971 (1)

Amato, U.

U. Amato, V. Cuomo, I. De Feis, F. Romano, C. Serio, and H. Kobayashi, “Inverting for geophysical parameters from IMG radiances,” IEEE Trans. Geosci. Remote Sensing 37, 1620-1632 (1999).
[CrossRef]

Aumann, H. H.

H. H. Aumann, M. T. Chahine, C. Gautier, M. D. Goldberg, E. Kalnay, L. M. McMillin, H. Revercomb, P. W. Rosenkranz, W. L. Smith, D. H. Staelin, L. L. Strow, and J. Susskind, “AIRS/AMSU/HSB on the Aqua mission: design, science objectives, data products, and processing systems,” IEEE Trans. Geosci. Remote Sensing 41, 253-264 (2003).
[CrossRef]

Bantges, R. J.

J. E. Harries, H. E. Brindley, P. J. Sagoo, and R. J. Bantges, “Increases in greenhouse forcing inferred from the outgoing longwave radiation spectra of the Earth in 1970 and 1997,” Nature 410, 355-357 (2001).
[CrossRef] [PubMed]

Bloom, H. J.

H. J. Bloom, “The Cross-track Infrared Sounder (CrIS): a sensor for operational meteorological remote sensing,” in Geoscience and Remote Sensing Symposium (IGARSS International, 2001), Vol. 3, pp. 1341-1343.

Blumstein, D.

D. Blumstein, B. Tournier, F. R. Cayla, T. Phulpin, R. Fjortoft, C. Buil, and G. Ponce, “In-flight performance of the Infrared Atmospheric Sounding Interferometer (IASI) on METOP-A,” Proc. SPIE 6684, 66840H (2007).
[CrossRef]

Bracewell, R. N.

R. N. Bracewell, The Fourier Transform and Its Applications, 2nd ed. (McGraw-Hill, 1986), p. 474.

Brindley, H. E.

J. E. Harries, H. E. Brindley, P. J. Sagoo, and R. J. Bantges, “Increases in greenhouse forcing inferred from the outgoing longwave radiation spectra of the Earth in 1970 and 1997,” Nature 410, 355-357 (2001).
[CrossRef] [PubMed]

Buijs, H.

Buil, C.

D. Blumstein, B. Tournier, F. R. Cayla, T. Phulpin, R. Fjortoft, C. Buil, and G. Ponce, “In-flight performance of the Infrared Atmospheric Sounding Interferometer (IASI) on METOP-A,” Proc. SPIE 6684, 66840H (2007).
[CrossRef]

Cayla, F. R.

D. Blumstein, B. Tournier, F. R. Cayla, T. Phulpin, R. Fjortoft, C. Buil, and G. Ponce, “In-flight performance of the Infrared Atmospheric Sounding Interferometer (IASI) on METOP-A,” Proc. SPIE 6684, 66840H (2007).
[CrossRef]

Chahine, M. T.

H. H. Aumann, M. T. Chahine, C. Gautier, M. D. Goldberg, E. Kalnay, L. M. McMillin, H. Revercomb, P. W. Rosenkranz, W. L. Smith, D. H. Staelin, L. L. Strow, and J. Susskind, “AIRS/AMSU/HSB on the Aqua mission: design, science objectives, data products, and processing systems,” IEEE Trans. Geosci. Remote Sensing 41, 253-264 (2003).
[CrossRef]

Cherny, I. V.

A. B. Uspensky, I. V. Cherny, G. M. Chernyavsky, Y. M. Golovin, F. S. Zavelevich, A. K. Gorodetsky, B. E. Moshkin, G. G. Gorbunov, and A. S. Romanovsky, “Sounding instruments for future Russian meteorological satellites,” Technical Proceedings of the 10th International TOVS Study Conference (1999), pp. 533-543. Available from the co-chairs of the International TOVS Working Group, http://cimss.ssec.wisc.edu/itwg.

Chernyavsky, G. M.

A. B. Uspensky, I. V. Cherny, G. M. Chernyavsky, Y. M. Golovin, F. S. Zavelevich, A. K. Gorodetsky, B. E. Moshkin, G. G. Gorbunov, and A. S. Romanovsky, “Sounding instruments for future Russian meteorological satellites,” Technical Proceedings of the 10th International TOVS Study Conference (1999), pp. 533-543. Available from the co-chairs of the International TOVS Working Group, http://cimss.ssec.wisc.edu/itwg.

Clerbaux, C.

C. Clerbaux, J. Hadji-Lazaro, S. Turquety, G. Mégie, and P.-F. Coheur, “Trace gas measurements from infrared satellite for chemistry and climate applications,” Atmos. Chem. Phys. 3, 1495-1508 (2003).
[CrossRef]

Clough, S. A.

A. M. Lubrano, C. Serio, S. A. Clough, and H. Kobayashi, “Simultaneous inversion for temperature and water vapor from IMG radiances,” Geophys. Res. Lett. 27, 2533-2536 (2000).
[CrossRef]

Coheur, P.-F.

C. Clerbaux, J. Hadji-Lazaro, S. Turquety, G. Mégie, and P.-F. Coheur, “Trace gas measurements from infrared satellite for chemistry and climate applications,” Atmos. Chem. Phys. 3, 1495-1508 (2003).
[CrossRef]

Cuomo, V.

U. Amato, V. Cuomo, I. De Feis, F. Romano, C. Serio, and H. Kobayashi, “Inverting for geophysical parameters from IMG radiances,” IEEE Trans. Geosci. Remote Sensing 37, 1620-1632 (1999).
[CrossRef]

De Feis, I.

U. Amato, V. Cuomo, I. De Feis, F. Romano, C. Serio, and H. Kobayashi, “Inverting for geophysical parameters from IMG radiances,” IEEE Trans. Geosci. Remote Sensing 37, 1620-1632 (1999).
[CrossRef]

deHaseth, J. A.

P. R. Griffiths and J. A. deHaseth, Fourier Transform Infrared Spectrometry (Wiley, 1986).

Fjortoft, R.

D. Blumstein, B. Tournier, F. R. Cayla, T. Phulpin, R. Fjortoft, C. Buil, and G. Ponce, “In-flight performance of the Infrared Atmospheric Sounding Interferometer (IASI) on METOP-A,” Proc. SPIE 6684, 66840H (2007).
[CrossRef]

Gautier, C.

H. H. Aumann, M. T. Chahine, C. Gautier, M. D. Goldberg, E. Kalnay, L. M. McMillin, H. Revercomb, P. W. Rosenkranz, W. L. Smith, D. H. Staelin, L. L. Strow, and J. Susskind, “AIRS/AMSU/HSB on the Aqua mission: design, science objectives, data products, and processing systems,” IEEE Trans. Geosci. Remote Sensing 41, 253-264 (2003).
[CrossRef]

Gille, J. C.

J. Wang, J. C. Gille, H. E. Revercomb, and V. P. Walden, “Validation study of the MOPITT retrieval algorithm: carbon monoxide retrieval from IMG observations during WINCE,” J. Atmos. Ocean. Technol. 17, 1285-1295 (2000).
[CrossRef]

Goldberg, M. D.

H. H. Aumann, M. T. Chahine, C. Gautier, M. D. Goldberg, E. Kalnay, L. M. McMillin, H. Revercomb, P. W. Rosenkranz, W. L. Smith, D. H. Staelin, L. L. Strow, and J. Susskind, “AIRS/AMSU/HSB on the Aqua mission: design, science objectives, data products, and processing systems,” IEEE Trans. Geosci. Remote Sensing 41, 253-264 (2003).
[CrossRef]

Golovin, Y. M.

A. B. Uspensky, I. V. Cherny, G. M. Chernyavsky, Y. M. Golovin, F. S. Zavelevich, A. K. Gorodetsky, B. E. Moshkin, G. G. Gorbunov, and A. S. Romanovsky, “Sounding instruments for future Russian meteorological satellites,” Technical Proceedings of the 10th International TOVS Study Conference (1999), pp. 533-543. Available from the co-chairs of the International TOVS Working Group, http://cimss.ssec.wisc.edu/itwg.

Gorbunov, G. G.

A. B. Uspensky, I. V. Cherny, G. M. Chernyavsky, Y. M. Golovin, F. S. Zavelevich, A. K. Gorodetsky, B. E. Moshkin, G. G. Gorbunov, and A. S. Romanovsky, “Sounding instruments for future Russian meteorological satellites,” Technical Proceedings of the 10th International TOVS Study Conference (1999), pp. 533-543. Available from the co-chairs of the International TOVS Working Group, http://cimss.ssec.wisc.edu/itwg.

Gorodetsky, A. K.

A. B. Uspensky, I. V. Cherny, G. M. Chernyavsky, Y. M. Golovin, F. S. Zavelevich, A. K. Gorodetsky, B. E. Moshkin, G. G. Gorbunov, and A. S. Romanovsky, “Sounding instruments for future Russian meteorological satellites,” Technical Proceedings of the 10th International TOVS Study Conference (1999), pp. 533-543. Available from the co-chairs of the International TOVS Working Group, http://cimss.ssec.wisc.edu/itwg.

Griffiligths, P. R.

P. R. Griffiths and J. A. deHaseth, Fourier Transform Infrared Spectrometry (Wiley, 1986).

Hadji-Lazaro, J.

C. Clerbaux, J. Hadji-Lazaro, S. Turquety, G. Mégie, and P.-F. Coheur, “Trace gas measurements from infrared satellite for chemistry and climate applications,” Atmos. Chem. Phys. 3, 1495-1508 (2003).
[CrossRef]

Hanel, R. A.

Harries, J. E.

J. E. Harries, H. E. Brindley, P. J. Sagoo, and R. J. Bantges, “Increases in greenhouse forcing inferred from the outgoing longwave radiation spectra of the Earth in 1970 and 1997,” Nature 410, 355-357 (2001).
[CrossRef] [PubMed]

Howell, H. B.

Kadokura, S.

Kalnay, E.

H. H. Aumann, M. T. Chahine, C. Gautier, M. D. Goldberg, E. Kalnay, L. M. McMillin, H. Revercomb, P. W. Rosenkranz, W. L. Smith, D. H. Staelin, L. L. Strow, and J. Susskind, “AIRS/AMSU/HSB on the Aqua mission: design, science objectives, data products, and processing systems,” IEEE Trans. Geosci. Remote Sensing 41, 253-264 (2003).
[CrossRef]

Kameda, Y.

Kobayashi, H.

A. M. Lubrano, C. Serio, S. A. Clough, and H. Kobayashi, “Simultaneous inversion for temperature and water vapor from IMG radiances,” Geophys. Res. Lett. 27, 2533-2536 (2000).
[CrossRef]

A. Shimota, H. Kobayashi, and S. Kadokura, “Radiometric calibration for the airborne interferometric monitor for greenhouse gases simulator,” Appl. Opt. 38, 571-576 (1999).
[CrossRef]

U. Amato, V. Cuomo, I. De Feis, F. Romano, C. Serio, and H. Kobayashi, “Inverting for geophysical parameters from IMG radiances,” IEEE Trans. Geosci. Remote Sensing 37, 1620-1632 (1999).
[CrossRef]

H. Kobayashi, A. Shimota, K. Kondo, E. Okumura, Y. Kameda, H. Shimoda, and T. Ogawa, “Development and evaluation of the interferometric monitor for greenhouse gases: a high-throughput Fourier-transform infrared radiometer for nadir Earth observation,” Appl. Opt. 38, 6801-6807 (1999).
[CrossRef]

Kondo, K.

LaPorte, D. D.

Lubrano, A. M.

A. M. Lubrano, C. Serio, S. A. Clough, and H. Kobayashi, “Simultaneous inversion for temperature and water vapor from IMG radiances,” Geophys. Res. Lett. 27, 2533-2536 (2000).
[CrossRef]

Masiello, G.

G. Masiello, C. Serio, and H. Shimoda, “Qualifying IMG tropical spectra for clear sky,” J. Quant. Spectr. Rad. Trans. 77, 131-148 (2003).
[CrossRef]

McMillin, L. M.

H. H. Aumann, M. T. Chahine, C. Gautier, M. D. Goldberg, E. Kalnay, L. M. McMillin, H. Revercomb, P. W. Rosenkranz, W. L. Smith, D. H. Staelin, L. L. Strow, and J. Susskind, “AIRS/AMSU/HSB on the Aqua mission: design, science objectives, data products, and processing systems,” IEEE Trans. Geosci. Remote Sensing 41, 253-264 (2003).
[CrossRef]

Mégie, G.

C. Clerbaux, J. Hadji-Lazaro, S. Turquety, G. Mégie, and P.-F. Coheur, “Trace gas measurements from infrared satellite for chemistry and climate applications,” Atmos. Chem. Phys. 3, 1495-1508 (2003).
[CrossRef]

Moshkin, B. E.

A. B. Uspensky, I. V. Cherny, G. M. Chernyavsky, Y. M. Golovin, F. S. Zavelevich, A. K. Gorodetsky, B. E. Moshkin, G. G. Gorbunov, and A. S. Romanovsky, “Sounding instruments for future Russian meteorological satellites,” Technical Proceedings of the 10th International TOVS Study Conference (1999), pp. 533-543. Available from the co-chairs of the International TOVS Working Group, http://cimss.ssec.wisc.edu/itwg.

Ogawa, T.

Okumura, E.

Phulpin, T.

D. Blumstein, B. Tournier, F. R. Cayla, T. Phulpin, R. Fjortoft, C. Buil, and G. Ponce, “In-flight performance of the Infrared Atmospheric Sounding Interferometer (IASI) on METOP-A,” Proc. SPIE 6684, 66840H (2007).
[CrossRef]

Ponce, G.

D. Blumstein, B. Tournier, F. R. Cayla, T. Phulpin, R. Fjortoft, C. Buil, and G. Ponce, “In-flight performance of the Infrared Atmospheric Sounding Interferometer (IASI) on METOP-A,” Proc. SPIE 6684, 66840H (2007).
[CrossRef]

Revercomb, H.

H. H. Aumann, M. T. Chahine, C. Gautier, M. D. Goldberg, E. Kalnay, L. M. McMillin, H. Revercomb, P. W. Rosenkranz, W. L. Smith, D. H. Staelin, L. L. Strow, and J. Susskind, “AIRS/AMSU/HSB on the Aqua mission: design, science objectives, data products, and processing systems,” IEEE Trans. Geosci. Remote Sensing 41, 253-264 (2003).
[CrossRef]

Revercomb, H. E.

J. Wang, J. C. Gille, H. E. Revercomb, and V. P. Walden, “Validation study of the MOPITT retrieval algorithm: carbon monoxide retrieval from IMG observations during WINCE,” J. Atmos. Ocean. Technol. 17, 1285-1295 (2000).
[CrossRef]

H. E. Revercomb, H. Buijs, H. B. Howell, D. D. LaPorte, W. L. Smith, and L. A. Sromovsky, “Radiometric calibration of IR Fourier transform spectrometers: solution to a problem with the High-Resolution Interferometer Sounder,” Appl. Opt. 27, 3210-3218 (1988).
[CrossRef] [PubMed]

Rogers, D.

Romano, F.

U. Amato, V. Cuomo, I. De Feis, F. Romano, C. Serio, and H. Kobayashi, “Inverting for geophysical parameters from IMG radiances,” IEEE Trans. Geosci. Remote Sensing 37, 1620-1632 (1999).
[CrossRef]

Romanovsky, A. S.

A. B. Uspensky, I. V. Cherny, G. M. Chernyavsky, Y. M. Golovin, F. S. Zavelevich, A. K. Gorodetsky, B. E. Moshkin, G. G. Gorbunov, and A. S. Romanovsky, “Sounding instruments for future Russian meteorological satellites,” Technical Proceedings of the 10th International TOVS Study Conference (1999), pp. 533-543. Available from the co-chairs of the International TOVS Working Group, http://cimss.ssec.wisc.edu/itwg.

Rosenkranz, P. W.

H. H. Aumann, M. T. Chahine, C. Gautier, M. D. Goldberg, E. Kalnay, L. M. McMillin, H. Revercomb, P. W. Rosenkranz, W. L. Smith, D. H. Staelin, L. L. Strow, and J. Susskind, “AIRS/AMSU/HSB on the Aqua mission: design, science objectives, data products, and processing systems,” IEEE Trans. Geosci. Remote Sensing 41, 253-264 (2003).
[CrossRef]

Sagoo, P. J.

J. E. Harries, H. E. Brindley, P. J. Sagoo, and R. J. Bantges, “Increases in greenhouse forcing inferred from the outgoing longwave radiation spectra of the Earth in 1970 and 1997,” Nature 410, 355-357 (2001).
[CrossRef] [PubMed]

Schlachman, B.

Serio, C.

G. Masiello, C. Serio, and H. Shimoda, “Qualifying IMG tropical spectra for clear sky,” J. Quant. Spectr. Rad. Trans. 77, 131-148 (2003).
[CrossRef]

A. M. Lubrano, C. Serio, S. A. Clough, and H. Kobayashi, “Simultaneous inversion for temperature and water vapor from IMG radiances,” Geophys. Res. Lett. 27, 2533-2536 (2000).
[CrossRef]

U. Amato, V. Cuomo, I. De Feis, F. Romano, C. Serio, and H. Kobayashi, “Inverting for geophysical parameters from IMG radiances,” IEEE Trans. Geosci. Remote Sensing 37, 1620-1632 (1999).
[CrossRef]

Shimoda, H.

Shimota, A.

Smith, W. L.

H. H. Aumann, M. T. Chahine, C. Gautier, M. D. Goldberg, E. Kalnay, L. M. McMillin, H. Revercomb, P. W. Rosenkranz, W. L. Smith, D. H. Staelin, L. L. Strow, and J. Susskind, “AIRS/AMSU/HSB on the Aqua mission: design, science objectives, data products, and processing systems,” IEEE Trans. Geosci. Remote Sensing 41, 253-264 (2003).
[CrossRef]

H. E. Revercomb, H. Buijs, H. B. Howell, D. D. LaPorte, W. L. Smith, and L. A. Sromovsky, “Radiometric calibration of IR Fourier transform spectrometers: solution to a problem with the High-Resolution Interferometer Sounder,” Appl. Opt. 27, 3210-3218 (1988).
[CrossRef] [PubMed]

Sromovsky, L. A.

Staelin, D. H.

H. H. Aumann, M. T. Chahine, C. Gautier, M. D. Goldberg, E. Kalnay, L. M. McMillin, H. Revercomb, P. W. Rosenkranz, W. L. Smith, D. H. Staelin, L. L. Strow, and J. Susskind, “AIRS/AMSU/HSB on the Aqua mission: design, science objectives, data products, and processing systems,” IEEE Trans. Geosci. Remote Sensing 41, 253-264 (2003).
[CrossRef]

Strow, L. L.

H. H. Aumann, M. T. Chahine, C. Gautier, M. D. Goldberg, E. Kalnay, L. M. McMillin, H. Revercomb, P. W. Rosenkranz, W. L. Smith, D. H. Staelin, L. L. Strow, and J. Susskind, “AIRS/AMSU/HSB on the Aqua mission: design, science objectives, data products, and processing systems,” IEEE Trans. Geosci. Remote Sensing 41, 253-264 (2003).
[CrossRef]

Susskind, J.

H. H. Aumann, M. T. Chahine, C. Gautier, M. D. Goldberg, E. Kalnay, L. M. McMillin, H. Revercomb, P. W. Rosenkranz, W. L. Smith, D. H. Staelin, L. L. Strow, and J. Susskind, “AIRS/AMSU/HSB on the Aqua mission: design, science objectives, data products, and processing systems,” IEEE Trans. Geosci. Remote Sensing 41, 253-264 (2003).
[CrossRef]

Tournier, B.

D. Blumstein, B. Tournier, F. R. Cayla, T. Phulpin, R. Fjortoft, C. Buil, and G. Ponce, “In-flight performance of the Infrared Atmospheric Sounding Interferometer (IASI) on METOP-A,” Proc. SPIE 6684, 66840H (2007).
[CrossRef]

Turquety, S.

C. Clerbaux, J. Hadji-Lazaro, S. Turquety, G. Mégie, and P.-F. Coheur, “Trace gas measurements from infrared satellite for chemistry and climate applications,” Atmos. Chem. Phys. 3, 1495-1508 (2003).
[CrossRef]

Uspensky, A. B.

A. B. Uspensky, I. V. Cherny, G. M. Chernyavsky, Y. M. Golovin, F. S. Zavelevich, A. K. Gorodetsky, B. E. Moshkin, G. G. Gorbunov, and A. S. Romanovsky, “Sounding instruments for future Russian meteorological satellites,” Technical Proceedings of the 10th International TOVS Study Conference (1999), pp. 533-543. Available from the co-chairs of the International TOVS Working Group, http://cimss.ssec.wisc.edu/itwg.

Vanous, D.

Walden, V. P.

J. Wang, J. C. Gille, H. E. Revercomb, and V. P. Walden, “Validation study of the MOPITT retrieval algorithm: carbon monoxide retrieval from IMG observations during WINCE,” J. Atmos. Ocean. Technol. 17, 1285-1295 (2000).
[CrossRef]

Wang, J.

J. Wang, J. C. Gille, H. E. Revercomb, and V. P. Walden, “Validation study of the MOPITT retrieval algorithm: carbon monoxide retrieval from IMG observations during WINCE,” J. Atmos. Ocean. Technol. 17, 1285-1295 (2000).
[CrossRef]

Zavelevich, F. S.

A. B. Uspensky, I. V. Cherny, G. M. Chernyavsky, Y. M. Golovin, F. S. Zavelevich, A. K. Gorodetsky, B. E. Moshkin, G. G. Gorbunov, and A. S. Romanovsky, “Sounding instruments for future Russian meteorological satellites,” Technical Proceedings of the 10th International TOVS Study Conference (1999), pp. 533-543. Available from the co-chairs of the International TOVS Working Group, http://cimss.ssec.wisc.edu/itwg.

Appl. Opt. (4)

Atmos. Chem. Phys. (1)

C. Clerbaux, J. Hadji-Lazaro, S. Turquety, G. Mégie, and P.-F. Coheur, “Trace gas measurements from infrared satellite for chemistry and climate applications,” Atmos. Chem. Phys. 3, 1495-1508 (2003).
[CrossRef]

Geophys. Res. Lett. (1)

A. M. Lubrano, C. Serio, S. A. Clough, and H. Kobayashi, “Simultaneous inversion for temperature and water vapor from IMG radiances,” Geophys. Res. Lett. 27, 2533-2536 (2000).
[CrossRef]

IEEE Trans. Geosci. Remote Sensing (2)

H. H. Aumann, M. T. Chahine, C. Gautier, M. D. Goldberg, E. Kalnay, L. M. McMillin, H. Revercomb, P. W. Rosenkranz, W. L. Smith, D. H. Staelin, L. L. Strow, and J. Susskind, “AIRS/AMSU/HSB on the Aqua mission: design, science objectives, data products, and processing systems,” IEEE Trans. Geosci. Remote Sensing 41, 253-264 (2003).
[CrossRef]

U. Amato, V. Cuomo, I. De Feis, F. Romano, C. Serio, and H. Kobayashi, “Inverting for geophysical parameters from IMG radiances,” IEEE Trans. Geosci. Remote Sensing 37, 1620-1632 (1999).
[CrossRef]

J. Atmos. Ocean. Technol. (1)

J. Wang, J. C. Gille, H. E. Revercomb, and V. P. Walden, “Validation study of the MOPITT retrieval algorithm: carbon monoxide retrieval from IMG observations during WINCE,” J. Atmos. Ocean. Technol. 17, 1285-1295 (2000).
[CrossRef]

J. Quant. Spectr. Rad. Trans. (1)

G. Masiello, C. Serio, and H. Shimoda, “Qualifying IMG tropical spectra for clear sky,” J. Quant. Spectr. Rad. Trans. 77, 131-148 (2003).
[CrossRef]

Nature (1)

J. E. Harries, H. E. Brindley, P. J. Sagoo, and R. J. Bantges, “Increases in greenhouse forcing inferred from the outgoing longwave radiation spectra of the Earth in 1970 and 1997,” Nature 410, 355-357 (2001).
[CrossRef] [PubMed]

Proc. SPIE (1)

D. Blumstein, B. Tournier, F. R. Cayla, T. Phulpin, R. Fjortoft, C. Buil, and G. Ponce, “In-flight performance of the Infrared Atmospheric Sounding Interferometer (IASI) on METOP-A,” Proc. SPIE 6684, 66840H (2007).
[CrossRef]

Other (6)

National Institute for Environmental Studies (NIES) Greenhouse Gases Observing Satellite (GOSAT) Project, GOSAT pamphlet (Center for Global Environmental Research and National Institute for Environmental Studies, 2006).

H. J. Bloom, “The Cross-track Infrared Sounder (CrIS): a sensor for operational meteorological remote sensing,” in Geoscience and Remote Sensing Symposium (IGARSS International, 2001), Vol. 3, pp. 1341-1343.

H.Kobayashi, ed., “Interferometric monitor for greenhouse gases,” Tech. Rep. (Interferometric Monitor for Greenhouse Gases Project, 1999), p. 45.

P. R. Griffiths and J. A. deHaseth, Fourier Transform Infrared Spectrometry (Wiley, 1986).

R. N. Bracewell, The Fourier Transform and Its Applications, 2nd ed. (McGraw-Hill, 1986), p. 474.

A. B. Uspensky, I. V. Cherny, G. M. Chernyavsky, Y. M. Golovin, F. S. Zavelevich, A. K. Gorodetsky, B. E. Moshkin, G. G. Gorbunov, and A. S. Romanovsky, “Sounding instruments for future Russian meteorological satellites,” Technical Proceedings of the 10th International TOVS Study Conference (1999), pp. 533-543. Available from the co-chairs of the International TOVS Working Group, http://cimss.ssec.wisc.edu/itwg.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

Clear-sky spectrum in band 3 of the IMG instrument taken on 24 April 1997 over the Arctic Ocean (80 N, 94 E). (a) Upwelling radiance at the top of the atmosphere. The three black dashed curves are Planck radiance spectra at 240 K , 250 K , and 260 K . (b) Corresponding brightness temperature spectrum with the predominant emission bands labeled.

Fig. 2
Fig. 2

Best-case interferogram with a centralized centerburst. The y axis is truncated to illustrate the interferogram’s small-scale structure. Inset, region about the centerburst.

Fig. 3
Fig. 3

Interferograms with (a) a highly decentralized centerburst located near the maximum amplitude, (b) an asymmetric centerburst region (the asymmetry is apparent when amplitudes at about six points on either side of the centerburst are compared), and (c) a large noise burst just to the left of the centerburst (note that the vertical scale is reduced to show the noise burst, and, therefore, the maximum and minimum values of the centerburst are off the scale).

Fig. 4
Fig. 4

Frequency of occurrence and location of noise bursts within IMG interferograms. The x axis designates the distance from the ZPD, in units of 10,000 data points, that the noise burst was found. Negative distances represent points to the left of the ZPD, and positive distances are to the right.

Fig. 5
Fig. 5

(a) Double-sided interferogram measured by the IMG on 2 April 1997 over the Atlantic Ocean (17 S, 33 W). Noise bursts are evident to the right of the ZPD, which is located at an interferogram point number of around 60,000. (b) Corresponding single-sided interferogram with the right portion of the interferogram removed.

Fig. 6
Fig. 6

(a) Uncalibrated spectrum resulting from taking the Fourier transform of the single-sided interferogram shown in Fig. 5b [2 April 1997, (17 S, 33 W)]. (b) Difference in the uncalibrated radiance obtained by subtracting the spectrum obtained with the single-sided interferogram from that using the double-sided inter ferograms (with noise bursts).

Fig. 7
Fig. 7

Phases of individual, uncalibrated radiances from the single-sided interferograms measured on 2 April 1997 [the sky view is from Fig. 6a]: (a) before resolving the phase ambiguities and (b) after resolving the phase ambiguities relative to the phase of the warm calibration-source measurement. The lower phase spectrum in (b) is that of the cold calibration view of space, which differs from the other views by approximately π at wavenumbers larger than about 1100 cm 1 .

Fig. 8
Fig. 8

Calibrated radiance spectra for measurements shown in Fig. 7 [2 April 1997; (17 S, 33 W)]: (a) before and (b) after resolving phase ambiguities. Phase ambiguities can result in significant imaginary parts of calibrated spectra [upper curve in (a)], which are removed by resolving phase ambiguities [lower curve in (b)].

Fig. 9
Fig. 9

(a) Calibration radiance and (b) brightness temperature spectra for an IMG measurement made over Indonesia (1.3 S, 113.4 E) on 15 October 1996. Spectra are shown both before and after resolving phase ambiguities in the uncalibrated spectra.

Tables (1)

Tables Icon

Table 1 Occurrence of Abnormal Interferograms

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

L = Re [ ( C e C c ) / ( C w C c ) ] * ( B w B c ) + B c ,
ϕ x ϕ w = 2 πΔX ν = k x ( 2 π ν / ν L ) ,
k e ( ν ) = ( ϕ e ϕ w ) / ( 2 π ν / ν L ) , k c ( ν ) = ϕ c + π ϕ w / ( 2 π ν / ν L ) .
k e = integer [ k ( e ν ) ¯ ] , k c = integer [ k ( c ν ) ¯ ] .

Metrics