Abstract

A novel approach to simultaneous force and temperature measurement is proposed and demonstrated in this paper. The sensing element is based on a single long-period grating (LPG) formed by irradiating the joint of a microstructured optical fiber (MOF) and standard single mode fiber (SMF) with CO2 laser pulses. The grating exhibits two groups of attenuation bands with distinctly different responses to temperature and force: the resonant notches in the MOF involving couplings between fundamental mode and core LP11 modes are almost temperature insensitive but highly sensitive to force, while resonant notches in the SMF coming out of couplings between fundamental mode and cladding modes show high sensitivity to temperature but marginal sensitivity to force. Based on the LPG, a simple and efficient dual-parameter sensor simultaneously measuring temperature and force with a sensitivity of 0.086nm/°C and 2.18nm/N, respectively, is achieved. Furthermore, we propose a simple sensing configuration for simultaneous strain and temperature measurement.

© 2010 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. M. Vengsarkar, P. J. Lemaire, J. B. Judkins, V. Bhatia, T. Erdogan, and J. E. Sipe, “Long period fiber gratings as band rejection filters,” J. Lightwave Technol. 14, 58-65 (1996).
    [CrossRef]
  2. V. Bhatia, “Applications of long-period gratings to single and multiparameter sensing,” Opt. Express 4, 457-466 (1999).
    [CrossRef] [PubMed]
  3. V. Bhatia, D. K. Campbell, D. Sherr, T. G. D'Alberto, and N. A. Zabaronick, “Temperature-insensitive and strain-insensitive long-period grating sensors for smart structures,” Opt. Eng. 36, 1872-1876 (1997).
    [CrossRef]
  4. O. Frazão, L. M. Marques, S. Santos, J. M. Baptista, and J. L. Santos, “Simultaneous measurement for strain and temperature based on a long-period grating combined with a high-birefringence fiber loop mirror,” IEEE Photon Technol Lett. 18, 2407-2409 (2006).
    [CrossRef]
  5. Y. J. Rao and Z. L. Ran, “Hybrid LPFG/MEFPI sensor for simultaneous measurement of high-temperature and strain,” Opt. Express 15, 14936-14941 (2007).
    [CrossRef] [PubMed]
  6. Y. Liu and K. Seng Chiang, “CO2 laser writing of long-period fiber gratings inoptical fibers under tension,” Opt. Lett. 33, 1933-1935 (2008).
    [CrossRef] [PubMed]
  7. J. S. Petrovic and H. Dobb, “Sensitivity of LPGs in PCFs fabricated by an electric arc to temperature, strain, and external refractive index,” J. Lightwave Technol. 25, 1306-1312 (2007).
    [CrossRef]
  8. Y.-G. Han and S. Song, “Simultaneous independent measurement of strain and temperature based on long-period fiber gratings inscribed in holey fibers depending on air-hole size,” Opt. Lett. 32, 2245-2247 (2007).
    [CrossRef] [PubMed]
  9. H. Dobb, K. Kalli, and D. J. Webb, “Measured sensitivity of arc-induced long-period grating sensors in photonic crystal fibre,” Opt. Commun. 260, 184-191 (2006).
    [CrossRef]
  10. Y. J. Rao, “Review article: in-fiber Bragg grating sensors,” Meas. Sci. Technol. 8, 355-375 (1997).
    [CrossRef]
  11. Y. J. Rao and Y. P. Wang, “Novel fiber-optic sensors based on long-period fiber gratings written by high-frequency CO2 Laser Pulses,” J. Lightwave Technol. 21, 1320-1327 (2003).
    [CrossRef]
  12. Y. P. Wang, L. Xiao, D. N. Wang, and W. Jin, “Highly sensitive long-period fiber-grating strain sensor with low temperature sensitivity,” Opt. Lett. 31, 3414-3416 (2006).
    [CrossRef] [PubMed]

2008 (1)

2007 (3)

2006 (3)

O. Frazão, L. M. Marques, S. Santos, J. M. Baptista, and J. L. Santos, “Simultaneous measurement for strain and temperature based on a long-period grating combined with a high-birefringence fiber loop mirror,” IEEE Photon Technol Lett. 18, 2407-2409 (2006).
[CrossRef]

H. Dobb, K. Kalli, and D. J. Webb, “Measured sensitivity of arc-induced long-period grating sensors in photonic crystal fibre,” Opt. Commun. 260, 184-191 (2006).
[CrossRef]

Y. P. Wang, L. Xiao, D. N. Wang, and W. Jin, “Highly sensitive long-period fiber-grating strain sensor with low temperature sensitivity,” Opt. Lett. 31, 3414-3416 (2006).
[CrossRef] [PubMed]

2003 (1)

1999 (1)

1997 (2)

V. Bhatia, D. K. Campbell, D. Sherr, T. G. D'Alberto, and N. A. Zabaronick, “Temperature-insensitive and strain-insensitive long-period grating sensors for smart structures,” Opt. Eng. 36, 1872-1876 (1997).
[CrossRef]

Y. J. Rao, “Review article: in-fiber Bragg grating sensors,” Meas. Sci. Technol. 8, 355-375 (1997).
[CrossRef]

1996 (1)

A. M. Vengsarkar, P. J. Lemaire, J. B. Judkins, V. Bhatia, T. Erdogan, and J. E. Sipe, “Long period fiber gratings as band rejection filters,” J. Lightwave Technol. 14, 58-65 (1996).
[CrossRef]

Baptista, J. M.

O. Frazão, L. M. Marques, S. Santos, J. M. Baptista, and J. L. Santos, “Simultaneous measurement for strain and temperature based on a long-period grating combined with a high-birefringence fiber loop mirror,” IEEE Photon Technol Lett. 18, 2407-2409 (2006).
[CrossRef]

Bhatia, V.

V. Bhatia, “Applications of long-period gratings to single and multiparameter sensing,” Opt. Express 4, 457-466 (1999).
[CrossRef] [PubMed]

V. Bhatia, D. K. Campbell, D. Sherr, T. G. D'Alberto, and N. A. Zabaronick, “Temperature-insensitive and strain-insensitive long-period grating sensors for smart structures,” Opt. Eng. 36, 1872-1876 (1997).
[CrossRef]

A. M. Vengsarkar, P. J. Lemaire, J. B. Judkins, V. Bhatia, T. Erdogan, and J. E. Sipe, “Long period fiber gratings as band rejection filters,” J. Lightwave Technol. 14, 58-65 (1996).
[CrossRef]

Campbell, D. K.

V. Bhatia, D. K. Campbell, D. Sherr, T. G. D'Alberto, and N. A. Zabaronick, “Temperature-insensitive and strain-insensitive long-period grating sensors for smart structures,” Opt. Eng. 36, 1872-1876 (1997).
[CrossRef]

Chiang, K. Seng

D'Alberto, T. G.

V. Bhatia, D. K. Campbell, D. Sherr, T. G. D'Alberto, and N. A. Zabaronick, “Temperature-insensitive and strain-insensitive long-period grating sensors for smart structures,” Opt. Eng. 36, 1872-1876 (1997).
[CrossRef]

Dobb, H.

J. S. Petrovic and H. Dobb, “Sensitivity of LPGs in PCFs fabricated by an electric arc to temperature, strain, and external refractive index,” J. Lightwave Technol. 25, 1306-1312 (2007).
[CrossRef]

H. Dobb, K. Kalli, and D. J. Webb, “Measured sensitivity of arc-induced long-period grating sensors in photonic crystal fibre,” Opt. Commun. 260, 184-191 (2006).
[CrossRef]

Erdogan, T.

A. M. Vengsarkar, P. J. Lemaire, J. B. Judkins, V. Bhatia, T. Erdogan, and J. E. Sipe, “Long period fiber gratings as band rejection filters,” J. Lightwave Technol. 14, 58-65 (1996).
[CrossRef]

Frazão, O.

O. Frazão, L. M. Marques, S. Santos, J. M. Baptista, and J. L. Santos, “Simultaneous measurement for strain and temperature based on a long-period grating combined with a high-birefringence fiber loop mirror,” IEEE Photon Technol Lett. 18, 2407-2409 (2006).
[CrossRef]

Han, Y.-G.

Jin, W.

Judkins, J. B.

A. M. Vengsarkar, P. J. Lemaire, J. B. Judkins, V. Bhatia, T. Erdogan, and J. E. Sipe, “Long period fiber gratings as band rejection filters,” J. Lightwave Technol. 14, 58-65 (1996).
[CrossRef]

Kalli, K.

H. Dobb, K. Kalli, and D. J. Webb, “Measured sensitivity of arc-induced long-period grating sensors in photonic crystal fibre,” Opt. Commun. 260, 184-191 (2006).
[CrossRef]

Lemaire, P. J.

A. M. Vengsarkar, P. J. Lemaire, J. B. Judkins, V. Bhatia, T. Erdogan, and J. E. Sipe, “Long period fiber gratings as band rejection filters,” J. Lightwave Technol. 14, 58-65 (1996).
[CrossRef]

Liu, Y.

Marques, L. M.

O. Frazão, L. M. Marques, S. Santos, J. M. Baptista, and J. L. Santos, “Simultaneous measurement for strain and temperature based on a long-period grating combined with a high-birefringence fiber loop mirror,” IEEE Photon Technol Lett. 18, 2407-2409 (2006).
[CrossRef]

Petrovic, J. S.

Ran, Z. L.

Rao, Y. J.

Santos, J. L.

O. Frazão, L. M. Marques, S. Santos, J. M. Baptista, and J. L. Santos, “Simultaneous measurement for strain and temperature based on a long-period grating combined with a high-birefringence fiber loop mirror,” IEEE Photon Technol Lett. 18, 2407-2409 (2006).
[CrossRef]

Santos, S.

O. Frazão, L. M. Marques, S. Santos, J. M. Baptista, and J. L. Santos, “Simultaneous measurement for strain and temperature based on a long-period grating combined with a high-birefringence fiber loop mirror,” IEEE Photon Technol Lett. 18, 2407-2409 (2006).
[CrossRef]

Sherr, D.

V. Bhatia, D. K. Campbell, D. Sherr, T. G. D'Alberto, and N. A. Zabaronick, “Temperature-insensitive and strain-insensitive long-period grating sensors for smart structures,” Opt. Eng. 36, 1872-1876 (1997).
[CrossRef]

Sipe, J. E.

A. M. Vengsarkar, P. J. Lemaire, J. B. Judkins, V. Bhatia, T. Erdogan, and J. E. Sipe, “Long period fiber gratings as band rejection filters,” J. Lightwave Technol. 14, 58-65 (1996).
[CrossRef]

Song, S.

Vengsarkar, A. M.

A. M. Vengsarkar, P. J. Lemaire, J. B. Judkins, V. Bhatia, T. Erdogan, and J. E. Sipe, “Long period fiber gratings as band rejection filters,” J. Lightwave Technol. 14, 58-65 (1996).
[CrossRef]

Wang, D. N.

Wang, Y. P.

Webb, D. J.

H. Dobb, K. Kalli, and D. J. Webb, “Measured sensitivity of arc-induced long-period grating sensors in photonic crystal fibre,” Opt. Commun. 260, 184-191 (2006).
[CrossRef]

Xiao, L.

Zabaronick, N. A.

V. Bhatia, D. K. Campbell, D. Sherr, T. G. D'Alberto, and N. A. Zabaronick, “Temperature-insensitive and strain-insensitive long-period grating sensors for smart structures,” Opt. Eng. 36, 1872-1876 (1997).
[CrossRef]

IEEE Photon Technol Lett. (1)

O. Frazão, L. M. Marques, S. Santos, J. M. Baptista, and J. L. Santos, “Simultaneous measurement for strain and temperature based on a long-period grating combined with a high-birefringence fiber loop mirror,” IEEE Photon Technol Lett. 18, 2407-2409 (2006).
[CrossRef]

J. Lightwave Technol. (3)

Meas. Sci. Technol. (1)

Y. J. Rao, “Review article: in-fiber Bragg grating sensors,” Meas. Sci. Technol. 8, 355-375 (1997).
[CrossRef]

Opt. Commun. (1)

H. Dobb, K. Kalli, and D. J. Webb, “Measured sensitivity of arc-induced long-period grating sensors in photonic crystal fibre,” Opt. Commun. 260, 184-191 (2006).
[CrossRef]

Opt. Eng. (1)

V. Bhatia, D. K. Campbell, D. Sherr, T. G. D'Alberto, and N. A. Zabaronick, “Temperature-insensitive and strain-insensitive long-period grating sensors for smart structures,” Opt. Eng. 36, 1872-1876 (1997).
[CrossRef]

Opt. Express (2)

Opt. Lett. (3)

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Microscopic photograph for the cross section of the MOF.

Fig. 2
Fig. 2

Schematic diagram of the CO 2 laser fabrication system.

Fig. 3
Fig. 3

(a) Transmission (solid curve, black) spectra of the LPGs. Notches in group α (notches A D ) correspond to LPGs in the MOF, and notches in group β (notches E H ) correspond to LPGs in the SMF. Transmission (dashed curve) spectra of a 2 cm long LPG written on a SMF with the same grating pitch of 535 μm . (b)  Δ neff between the fundamental mode and some higher order modes. Inset, spatial electric field intensity distribution of the LP11 mode at 1100 nm .

Fig. 4
Fig. 4

Transmission spectra of the LPGs at 30 ° C and 100 ° C . Notches in group α and notches in group β have distinctly different response to temperature change.

Fig. 5
Fig. 5

Diagonal line, wavelength shifts as a function of temperature for notch F in the experimental measurement. Horizontal line, curve y = f ( x ) = 0 . The data points of the wavelength shifts as a function of temperature for notch D are distributed around the given curve random. The margin of error is of the same order of magnitude as the reading error. We believe that notch D is insensitive to temperature change ( KTD 0 ).

Fig. 6
Fig. 6

Wavelength shifts as a function of strain for notch F (top line) and notch D (bottom line) in the experimental measurement.

Fig. 7
Fig. 7

Sensing configuration design for simultaneous force and temperature measurement.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

d λ res d T = ( d n fund d T d n res d T ) Λ + ( n fund n res ) d Λ d T ,
d λ res d F = ( d n fund d F d n res d F ) Λ + ( n fund n res ) d Λ d F ,
[ Δ T Δ F ] = 1 B [ K F F K F D K T F K T D ] [ Δ λ D Δ λ F ] ,
[ Δ T Δ F ] = 1 0.15748 [ 0.613 2.18 0.086 0 ] [ Δ λ D Δ λ F ]
ε ˜ = Δ L MOF + Δ L SMF L MOF + L SMF = F L MOF A MOF E + F L SMF A SMF E L MOF + L SMF = F ( L MOF A SMF + L SMF A MOF ) A MOF A SMF E ( L MoF + L SMF ) ,

Metrics