Abstract

We have investigated surface-enhanced plasmon resonance detection of DNA hybridization. Surface enhancement was based on the excitation of localized surface plasmon using subwavelength nanogratings, at a 300nm period, coated with 24-mer ssDNA oligonucleotide, while optical signatures of DNA were amplified at the same time by gold nanoparticles conjugated with complementary ssDNA strands. When using nanoparticles of different sizes, maximum sensitivity enhancement, of more than 18 times, was obtained with nanoparticles of 20nm diameter. This enhancement is mainly due to nanoparticle- associated signal amplification. Additional surface enhancement boosted the detection sensitivity by 57%. We have also confirmed the sensitivity enhancement to be linearly related to nanoparticle volume.

© 2010 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. Homola, S. S. Yee and G. Gauglitz, “Surface plasmon resonance sensors: review,” Sens. Actuators B 54, 3-15 (1999).
    [CrossRef]
  2. C. T. Campbell and G. Kim, “SPR microscopy and its applications to high-throughput analyses of biomolecular binding events and their kinetics,” Biomaterials 28, 2380-2392 (2007).
    [CrossRef] [PubMed]
  3. L. He, M. D. Musick, S. R. Nicewarner, F. G. Salinas, S. J. Benkovic, M. J. Natan, and C. D. Keating, “Colloidal Au-enhanced surface plasmon resonance for ultrasensitive detection of DNA hybridization,” J. Am. Chem. Soc. 122, 9071-9077(2000).
    [CrossRef]
  4. B. Sepúlveda, A. Calle, L. M. Lechuga, and G. Armelles, “Highly sensitive detection of biomolecules with the magneto-optic surface-plasmon-resonance sensor,” Opt. Lett. 31, 1085-1087 (2006).
    [CrossRef] [PubMed]
  5. K. M. Byun, S. J. Kim, and D. Kim, “Design study of highly sensitive nanowire-enhanced surface plasmon resonance biosensors using rigorous coupled wave analysis,” Opt. Express 13, 3737-3742 (2005).
    [CrossRef] [PubMed]
  6. K. Kim, S. J. Yoon, and D. Kim, “Nanowire-based enhancement of localized surface plasmon resonance for highly sensitive detection: a theoretical study,” Opt. Express 14, 12419-12431 (2006).
    [CrossRef] [PubMed]
  7. K. M. Byun, S. J. Yoon, D. Kim, and S. J. Kim, “Experimental study of sensitivity enhancement in surface plasmon resonance biosensors by use of periodic metallic nanowires,” Opt. Lett. 32, 1902-1904 (2007).
    [CrossRef] [PubMed]
  8. L. Malic, B. Cui, T. Veres, and M. Tabrizian, “Enhanced surface plasmon resonance imaging detection of DNA hybridization on periodic gold nanoposts,” Opt. Lett. 32, 3092-3094(2007).
    [CrossRef] [PubMed]
  9. S. Y. Wu, H. P. Ho, W. C. Law, C. Lin, and S. K. Kong, “Highly sensitive differential phase-sensitive surface plasmon resonance biosensor based on the Mach-Zehnder configuration,” Opt. Lett. 29, 2378-2380 (2004).
    [CrossRef] [PubMed]
  10. P. P. Markowicz, W. C. Law, A. Baev, P. N. Prasad, S. Patskovsky, and A. Kabashin, “Phase-sensitive time-modulated surface plasmon resonance polarimetry for wide dynamic range biosensing,” Opt. Express 15, 1745-1754 (2007).
    [CrossRef] [PubMed]
  11. F. Romanato, K. H. Lee, H. K. Kang, G. Ruffato, and C. C. Wong, “Sensitivity enhancement in grating coupled surface plasmon resonance by azimuthal control,” Opt. Express 17, 12145-12154 (2009).
    [CrossRef] [PubMed]
  12. K. M. Byun, S. M. Jang, S. J. Kim, and D. Kim, “Effect of target localization on the sensitivity of a localized surface plasmon resonance biosensor based on subwavelength nanostructures,” J. Opt. Soc. Am. A 26, 1027-1034(2009).
    [CrossRef]
  13. X. D. Hoa, A. G. Kirk, and M. Tabrizian, “Enhanced SPR response from patterned immobilization of surface bioreceptors on nano-gratings,” Biosens. Bioelectron. 24, 3043-3048(2009).
    [CrossRef] [PubMed]
  14. K. Ma, D. J. Kim, K. Kim, S. Moon, and D. Kim, “Target-localized nanograting-based surface plasmon resonance detection toward label-free molecular biosensing,” IEEE J. Sel. Top. Quantum Electron. DOI:10.1109/JSTQE.2009.2034123 (2010).
  15. L. J. Sherry, S.-H. Chang, G. C. Schatz, R. P. Van Duyne, B. J. Wiley, and Y. Xia, “Localized surface plasmon resonance spectroscopy of single silver nanocubes,” Nano Lett. 5, 2034-2038 (2005).
    [CrossRef] [PubMed]
  16. P. Lalanne and J. P. Hugonin, “Interaction between optical nano-objects at metallo-dielectric interfaces,” Nature Phys. 2, 551-556 (2006).
    [CrossRef]
  17. J. Le Perchec, P. Quémerais, A. Barbara, and T. López-Ríos, “Why metallic surfaces with grooves a few nanometers deep and wide may strongly absorb visible light,” Phys. Rev. Lett. 100, 066408 (2008).
    [CrossRef] [PubMed]
  18. H. J. Lee, A. Wark, and R. M. Corn, “Enhanced bioaffinity sensing using surface plasmons, surface enzyme reactions, nanoparticles and diffraction gratings,” Analyst (Amsterdam) 133, 596-601 (2008).
  19. J. Turkevich, P. C. Stevonson, and J. Hillier, “The nucleation and growth processes in the synthesis of colloidal gold,” Discuss. Faraday Soc. 11, 55-75 (1951).
    [CrossRef]
  20. Y. Kanamori, K. Hane, H. Sai, and H. Yugami, “100 nm period silicon antireflection structures fabricated using a porous alumina membrane mask,” Appl. Phys. Lett. 78, 142-143(2001).
    [CrossRef]
  21. J. Cesario, R. Quidant, G. Badenes, and S. Enoch, “Electromagnetic coupling between a metal nanoparticles grating and a metallic surface,” Opt. Lett. 30, 3404-3406(2005).
    [CrossRef]
  22. S. Elhadj, G. Singh, and R. F. Saraf, “Optical properties of an immobilized DNA monolayer from 255 to 700 nm,” Langmuir 20, 5539-5543 (2004).
    [CrossRef]
  23. D. Kim and S. J. Yoon, “Effective medium-based analysis of nanowire-mediated localized surface plasmon resonance,” Appl. Opt. 46, 872-880 (2007).
    [CrossRef] [PubMed]
  24. D. Kim, “Effect of resonant localized plasmon coupling on the sensitivity enhancement of nanowire-based surface plasmon resonance biosensors,” J. Opt. Soc. Am. A 23, 2307-2314(2006).
    [CrossRef]
  25. E. T. Arakawa, M. W. Williams, R. N. Hamm, and R. H. Ritchie, “Effect of damping on surface plasmon dispersion,” Phys. Rev. Lett. 31, 1127-1129 (1973).
    [CrossRef]
  26. R. W. Alexander, G. S. Kovener, and R. J. Bell, “Dispersion curves for surface electromagnetic waves with damping,” Phys. Rev. Lett. 32, 154-157 (1974).
    [CrossRef]
  27. J. C. Maxwell-Garnett, “Colours in metal glasses and in metallic films,” Philos. Trans. R. Soc. London 203, 385-420(1904).
    [CrossRef]
  28. W. Rechberger, A. Hohenau, A. Leitner, J. R. Krenn, B. Lamprecht, and F. R. Aussenegg, “Optical properties of two interacting gold nanoparticles,” Opt. Commun. 220, 137-141(2003).
    [CrossRef]
  29. E. Prodan, C. Radlo, N. Halas, and P. Nordlander, “A hybridization model for the plasmon response of complex nanostructures,” Science 302, 419-422 (2003).
    [CrossRef] [PubMed]
  30. W. Gotschy, K. Vonmetz, A. Leitner, and F. R. Aussenegg, “Optical dichroism of lithographically designed silver nanoparticle films,” Opt. Lett. 21, 1099-1101 (1996).
    [CrossRef] [PubMed]
  31. J. Cesario, M. U. Gonzalez, S. Cheylan, W. L. Barnes, S. Enoch, and R. Quidant, “Coupling localized and extended plasmons to improve the light extraction through metal films,” Opt. Express 15, 10533-10539 (2007).
    [CrossRef] [PubMed]
  32. B. Auguié and W. L. Barnes, “Collective resonances in gold nanoparticle arrays,” Phys. Rev. Lett. 101, 143902 (2008).
    [CrossRef] [PubMed]
  33. Y. Chu and K. B. Crozier, “Experimental study of the interaction between localized and propagating surface plasmons,” Opt. Lett. 34, 244-246 (2009).
    [CrossRef] [PubMed]
  34. S. M. Rytov, “Electromagnetic properties of a finely stratified medium,” Sov. Phys. JETP 2, 466-475 (1956).
  35. P. Lalanne and D. Lemercier-Lalanne, “On the effective medium theory of subwavelength periodic structures,” J. Mod. Opt. 43, 2063-2085 (1996).
    [CrossRef]
  36. D. K. Roper, “Determining surface plasmon resonance response factors for deposition onto three-dimensional surfaces,” Chem. Eng. Sci. 62, 1988-1996 (2007).
    [CrossRef] [PubMed]
  37. L. S. Jung, C. T. Campbell, T. M. Chinowsky, M. N. Mar, and S. S. Yee, “Quantitative interpretation of the response of surface plasmon resonance sensors to adsorbed films,” Langmuir 14, 5636-5648 (1998).
    [CrossRef]
  38. K.-S. Lee and M. A. El-Sayed, “Gold and silver nanoparticles in sensing and imaging: sensitivity of plasmon response to size, shape, and metal composition,” J. Phys. Chem. B 110, 19220-19225 (2006).
    [CrossRef] [PubMed]
  39. S. J. Yoon and D. Kim, “Thin-film-based field penetration engineering for surface plasmon resonance biosensing,” J. Opt. Soc. Am. A 24, 2543-2549 (2007).
    [CrossRef]

2009 (4)

2008 (3)

B. Auguié and W. L. Barnes, “Collective resonances in gold nanoparticle arrays,” Phys. Rev. Lett. 101, 143902 (2008).
[CrossRef] [PubMed]

J. Le Perchec, P. Quémerais, A. Barbara, and T. López-Ríos, “Why metallic surfaces with grooves a few nanometers deep and wide may strongly absorb visible light,” Phys. Rev. Lett. 100, 066408 (2008).
[CrossRef] [PubMed]

H. J. Lee, A. Wark, and R. M. Corn, “Enhanced bioaffinity sensing using surface plasmons, surface enzyme reactions, nanoparticles and diffraction gratings,” Analyst (Amsterdam) 133, 596-601 (2008).

2007 (8)

P. P. Markowicz, W. C. Law, A. Baev, P. N. Prasad, S. Patskovsky, and A. Kabashin, “Phase-sensitive time-modulated surface plasmon resonance polarimetry for wide dynamic range biosensing,” Opt. Express 15, 1745-1754 (2007).
[CrossRef] [PubMed]

C. T. Campbell and G. Kim, “SPR microscopy and its applications to high-throughput analyses of biomolecular binding events and their kinetics,” Biomaterials 28, 2380-2392 (2007).
[CrossRef] [PubMed]

K. M. Byun, S. J. Yoon, D. Kim, and S. J. Kim, “Experimental study of sensitivity enhancement in surface plasmon resonance biosensors by use of periodic metallic nanowires,” Opt. Lett. 32, 1902-1904 (2007).
[CrossRef] [PubMed]

L. Malic, B. Cui, T. Veres, and M. Tabrizian, “Enhanced surface plasmon resonance imaging detection of DNA hybridization on periodic gold nanoposts,” Opt. Lett. 32, 3092-3094(2007).
[CrossRef] [PubMed]

D. K. Roper, “Determining surface plasmon resonance response factors for deposition onto three-dimensional surfaces,” Chem. Eng. Sci. 62, 1988-1996 (2007).
[CrossRef] [PubMed]

J. Cesario, M. U. Gonzalez, S. Cheylan, W. L. Barnes, S. Enoch, and R. Quidant, “Coupling localized and extended plasmons to improve the light extraction through metal films,” Opt. Express 15, 10533-10539 (2007).
[CrossRef] [PubMed]

D. Kim and S. J. Yoon, “Effective medium-based analysis of nanowire-mediated localized surface plasmon resonance,” Appl. Opt. 46, 872-880 (2007).
[CrossRef] [PubMed]

S. J. Yoon and D. Kim, “Thin-film-based field penetration engineering for surface plasmon resonance biosensing,” J. Opt. Soc. Am. A 24, 2543-2549 (2007).
[CrossRef]

2006 (5)

2005 (3)

2004 (2)

2003 (2)

W. Rechberger, A. Hohenau, A. Leitner, J. R. Krenn, B. Lamprecht, and F. R. Aussenegg, “Optical properties of two interacting gold nanoparticles,” Opt. Commun. 220, 137-141(2003).
[CrossRef]

E. Prodan, C. Radlo, N. Halas, and P. Nordlander, “A hybridization model for the plasmon response of complex nanostructures,” Science 302, 419-422 (2003).
[CrossRef] [PubMed]

2001 (1)

Y. Kanamori, K. Hane, H. Sai, and H. Yugami, “100 nm period silicon antireflection structures fabricated using a porous alumina membrane mask,” Appl. Phys. Lett. 78, 142-143(2001).
[CrossRef]

2000 (1)

L. He, M. D. Musick, S. R. Nicewarner, F. G. Salinas, S. J. Benkovic, M. J. Natan, and C. D. Keating, “Colloidal Au-enhanced surface plasmon resonance for ultrasensitive detection of DNA hybridization,” J. Am. Chem. Soc. 122, 9071-9077(2000).
[CrossRef]

1999 (1)

J. Homola, S. S. Yee and G. Gauglitz, “Surface plasmon resonance sensors: review,” Sens. Actuators B 54, 3-15 (1999).
[CrossRef]

1998 (1)

L. S. Jung, C. T. Campbell, T. M. Chinowsky, M. N. Mar, and S. S. Yee, “Quantitative interpretation of the response of surface plasmon resonance sensors to adsorbed films,” Langmuir 14, 5636-5648 (1998).
[CrossRef]

1996 (2)

P. Lalanne and D. Lemercier-Lalanne, “On the effective medium theory of subwavelength periodic structures,” J. Mod. Opt. 43, 2063-2085 (1996).
[CrossRef]

W. Gotschy, K. Vonmetz, A. Leitner, and F. R. Aussenegg, “Optical dichroism of lithographically designed silver nanoparticle films,” Opt. Lett. 21, 1099-1101 (1996).
[CrossRef] [PubMed]

1974 (1)

R. W. Alexander, G. S. Kovener, and R. J. Bell, “Dispersion curves for surface electromagnetic waves with damping,” Phys. Rev. Lett. 32, 154-157 (1974).
[CrossRef]

1973 (1)

E. T. Arakawa, M. W. Williams, R. N. Hamm, and R. H. Ritchie, “Effect of damping on surface plasmon dispersion,” Phys. Rev. Lett. 31, 1127-1129 (1973).
[CrossRef]

1956 (1)

S. M. Rytov, “Electromagnetic properties of a finely stratified medium,” Sov. Phys. JETP 2, 466-475 (1956).

1951 (1)

J. Turkevich, P. C. Stevonson, and J. Hillier, “The nucleation and growth processes in the synthesis of colloidal gold,” Discuss. Faraday Soc. 11, 55-75 (1951).
[CrossRef]

1904 (1)

J. C. Maxwell-Garnett, “Colours in metal glasses and in metallic films,” Philos. Trans. R. Soc. London 203, 385-420(1904).
[CrossRef]

Alexander, R. W.

R. W. Alexander, G. S. Kovener, and R. J. Bell, “Dispersion curves for surface electromagnetic waves with damping,” Phys. Rev. Lett. 32, 154-157 (1974).
[CrossRef]

Arakawa, E. T.

E. T. Arakawa, M. W. Williams, R. N. Hamm, and R. H. Ritchie, “Effect of damping on surface plasmon dispersion,” Phys. Rev. Lett. 31, 1127-1129 (1973).
[CrossRef]

Armelles, G.

Auguié, B.

B. Auguié and W. L. Barnes, “Collective resonances in gold nanoparticle arrays,” Phys. Rev. Lett. 101, 143902 (2008).
[CrossRef] [PubMed]

Aussenegg, F. R.

W. Rechberger, A. Hohenau, A. Leitner, J. R. Krenn, B. Lamprecht, and F. R. Aussenegg, “Optical properties of two interacting gold nanoparticles,” Opt. Commun. 220, 137-141(2003).
[CrossRef]

W. Gotschy, K. Vonmetz, A. Leitner, and F. R. Aussenegg, “Optical dichroism of lithographically designed silver nanoparticle films,” Opt. Lett. 21, 1099-1101 (1996).
[CrossRef] [PubMed]

Badenes, G.

Baev, A.

Barbara, A.

J. Le Perchec, P. Quémerais, A. Barbara, and T. López-Ríos, “Why metallic surfaces with grooves a few nanometers deep and wide may strongly absorb visible light,” Phys. Rev. Lett. 100, 066408 (2008).
[CrossRef] [PubMed]

Barnes, W. L.

Bell, R. J.

R. W. Alexander, G. S. Kovener, and R. J. Bell, “Dispersion curves for surface electromagnetic waves with damping,” Phys. Rev. Lett. 32, 154-157 (1974).
[CrossRef]

Benkovic, S. J.

L. He, M. D. Musick, S. R. Nicewarner, F. G. Salinas, S. J. Benkovic, M. J. Natan, and C. D. Keating, “Colloidal Au-enhanced surface plasmon resonance for ultrasensitive detection of DNA hybridization,” J. Am. Chem. Soc. 122, 9071-9077(2000).
[CrossRef]

Byun, K. M.

Calle, A.

Campbell, C. T.

C. T. Campbell and G. Kim, “SPR microscopy and its applications to high-throughput analyses of biomolecular binding events and their kinetics,” Biomaterials 28, 2380-2392 (2007).
[CrossRef] [PubMed]

L. S. Jung, C. T. Campbell, T. M. Chinowsky, M. N. Mar, and S. S. Yee, “Quantitative interpretation of the response of surface plasmon resonance sensors to adsorbed films,” Langmuir 14, 5636-5648 (1998).
[CrossRef]

Cesario, J.

Chang, S.-H.

L. J. Sherry, S.-H. Chang, G. C. Schatz, R. P. Van Duyne, B. J. Wiley, and Y. Xia, “Localized surface plasmon resonance spectroscopy of single silver nanocubes,” Nano Lett. 5, 2034-2038 (2005).
[CrossRef] [PubMed]

Cheylan, S.

Chinowsky, T. M.

L. S. Jung, C. T. Campbell, T. M. Chinowsky, M. N. Mar, and S. S. Yee, “Quantitative interpretation of the response of surface plasmon resonance sensors to adsorbed films,” Langmuir 14, 5636-5648 (1998).
[CrossRef]

Chu, Y.

Corn, R. M.

H. J. Lee, A. Wark, and R. M. Corn, “Enhanced bioaffinity sensing using surface plasmons, surface enzyme reactions, nanoparticles and diffraction gratings,” Analyst (Amsterdam) 133, 596-601 (2008).

Crozier, K. B.

Cui, B.

Elhadj, S.

S. Elhadj, G. Singh, and R. F. Saraf, “Optical properties of an immobilized DNA monolayer from 255 to 700 nm,” Langmuir 20, 5539-5543 (2004).
[CrossRef]

El-Sayed, M. A.

K.-S. Lee and M. A. El-Sayed, “Gold and silver nanoparticles in sensing and imaging: sensitivity of plasmon response to size, shape, and metal composition,” J. Phys. Chem. B 110, 19220-19225 (2006).
[CrossRef] [PubMed]

Enoch, S.

Gauglitz, G.

J. Homola, S. S. Yee and G. Gauglitz, “Surface plasmon resonance sensors: review,” Sens. Actuators B 54, 3-15 (1999).
[CrossRef]

Gonzalez, M. U.

Gotschy, W.

Halas, N.

E. Prodan, C. Radlo, N. Halas, and P. Nordlander, “A hybridization model for the plasmon response of complex nanostructures,” Science 302, 419-422 (2003).
[CrossRef] [PubMed]

Hamm, R. N.

E. T. Arakawa, M. W. Williams, R. N. Hamm, and R. H. Ritchie, “Effect of damping on surface plasmon dispersion,” Phys. Rev. Lett. 31, 1127-1129 (1973).
[CrossRef]

Hane, K.

Y. Kanamori, K. Hane, H. Sai, and H. Yugami, “100 nm period silicon antireflection structures fabricated using a porous alumina membrane mask,” Appl. Phys. Lett. 78, 142-143(2001).
[CrossRef]

He, L.

L. He, M. D. Musick, S. R. Nicewarner, F. G. Salinas, S. J. Benkovic, M. J. Natan, and C. D. Keating, “Colloidal Au-enhanced surface plasmon resonance for ultrasensitive detection of DNA hybridization,” J. Am. Chem. Soc. 122, 9071-9077(2000).
[CrossRef]

Hillier, J.

J. Turkevich, P. C. Stevonson, and J. Hillier, “The nucleation and growth processes in the synthesis of colloidal gold,” Discuss. Faraday Soc. 11, 55-75 (1951).
[CrossRef]

Ho, H. P.

Hoa, X. D.

X. D. Hoa, A. G. Kirk, and M. Tabrizian, “Enhanced SPR response from patterned immobilization of surface bioreceptors on nano-gratings,” Biosens. Bioelectron. 24, 3043-3048(2009).
[CrossRef] [PubMed]

Hohenau, A.

W. Rechberger, A. Hohenau, A. Leitner, J. R. Krenn, B. Lamprecht, and F. R. Aussenegg, “Optical properties of two interacting gold nanoparticles,” Opt. Commun. 220, 137-141(2003).
[CrossRef]

Homola, J.

J. Homola, S. S. Yee and G. Gauglitz, “Surface plasmon resonance sensors: review,” Sens. Actuators B 54, 3-15 (1999).
[CrossRef]

Hugonin, J. P.

P. Lalanne and J. P. Hugonin, “Interaction between optical nano-objects at metallo-dielectric interfaces,” Nature Phys. 2, 551-556 (2006).
[CrossRef]

Jang, S. M.

Jung, L. S.

L. S. Jung, C. T. Campbell, T. M. Chinowsky, M. N. Mar, and S. S. Yee, “Quantitative interpretation of the response of surface plasmon resonance sensors to adsorbed films,” Langmuir 14, 5636-5648 (1998).
[CrossRef]

Kabashin, A.

Kanamori, Y.

Y. Kanamori, K. Hane, H. Sai, and H. Yugami, “100 nm period silicon antireflection structures fabricated using a porous alumina membrane mask,” Appl. Phys. Lett. 78, 142-143(2001).
[CrossRef]

Kang, H. K.

Keating, C. D.

L. He, M. D. Musick, S. R. Nicewarner, F. G. Salinas, S. J. Benkovic, M. J. Natan, and C. D. Keating, “Colloidal Au-enhanced surface plasmon resonance for ultrasensitive detection of DNA hybridization,” J. Am. Chem. Soc. 122, 9071-9077(2000).
[CrossRef]

Kim, D.

K. M. Byun, S. M. Jang, S. J. Kim, and D. Kim, “Effect of target localization on the sensitivity of a localized surface plasmon resonance biosensor based on subwavelength nanostructures,” J. Opt. Soc. Am. A 26, 1027-1034(2009).
[CrossRef]

K. M. Byun, S. J. Yoon, D. Kim, and S. J. Kim, “Experimental study of sensitivity enhancement in surface plasmon resonance biosensors by use of periodic metallic nanowires,” Opt. Lett. 32, 1902-1904 (2007).
[CrossRef] [PubMed]

D. Kim and S. J. Yoon, “Effective medium-based analysis of nanowire-mediated localized surface plasmon resonance,” Appl. Opt. 46, 872-880 (2007).
[CrossRef] [PubMed]

S. J. Yoon and D. Kim, “Thin-film-based field penetration engineering for surface plasmon resonance biosensing,” J. Opt. Soc. Am. A 24, 2543-2549 (2007).
[CrossRef]

D. Kim, “Effect of resonant localized plasmon coupling on the sensitivity enhancement of nanowire-based surface plasmon resonance biosensors,” J. Opt. Soc. Am. A 23, 2307-2314(2006).
[CrossRef]

K. Kim, S. J. Yoon, and D. Kim, “Nanowire-based enhancement of localized surface plasmon resonance for highly sensitive detection: a theoretical study,” Opt. Express 14, 12419-12431 (2006).
[CrossRef] [PubMed]

K. M. Byun, S. J. Kim, and D. Kim, “Design study of highly sensitive nanowire-enhanced surface plasmon resonance biosensors using rigorous coupled wave analysis,” Opt. Express 13, 3737-3742 (2005).
[CrossRef] [PubMed]

K. Ma, D. J. Kim, K. Kim, S. Moon, and D. Kim, “Target-localized nanograting-based surface plasmon resonance detection toward label-free molecular biosensing,” IEEE J. Sel. Top. Quantum Electron. DOI:10.1109/JSTQE.2009.2034123 (2010).

Kim, D. J.

K. Ma, D. J. Kim, K. Kim, S. Moon, and D. Kim, “Target-localized nanograting-based surface plasmon resonance detection toward label-free molecular biosensing,” IEEE J. Sel. Top. Quantum Electron. DOI:10.1109/JSTQE.2009.2034123 (2010).

Kim, G.

C. T. Campbell and G. Kim, “SPR microscopy and its applications to high-throughput analyses of biomolecular binding events and their kinetics,” Biomaterials 28, 2380-2392 (2007).
[CrossRef] [PubMed]

Kim, K.

K. Kim, S. J. Yoon, and D. Kim, “Nanowire-based enhancement of localized surface plasmon resonance for highly sensitive detection: a theoretical study,” Opt. Express 14, 12419-12431 (2006).
[CrossRef] [PubMed]

K. Ma, D. J. Kim, K. Kim, S. Moon, and D. Kim, “Target-localized nanograting-based surface plasmon resonance detection toward label-free molecular biosensing,” IEEE J. Sel. Top. Quantum Electron. DOI:10.1109/JSTQE.2009.2034123 (2010).

Kim, S. J.

Kirk, A. G.

X. D. Hoa, A. G. Kirk, and M. Tabrizian, “Enhanced SPR response from patterned immobilization of surface bioreceptors on nano-gratings,” Biosens. Bioelectron. 24, 3043-3048(2009).
[CrossRef] [PubMed]

Kong, S. K.

Kovener, G. S.

R. W. Alexander, G. S. Kovener, and R. J. Bell, “Dispersion curves for surface electromagnetic waves with damping,” Phys. Rev. Lett. 32, 154-157 (1974).
[CrossRef]

Krenn, J. R.

W. Rechberger, A. Hohenau, A. Leitner, J. R. Krenn, B. Lamprecht, and F. R. Aussenegg, “Optical properties of two interacting gold nanoparticles,” Opt. Commun. 220, 137-141(2003).
[CrossRef]

Lalanne, P.

P. Lalanne and J. P. Hugonin, “Interaction between optical nano-objects at metallo-dielectric interfaces,” Nature Phys. 2, 551-556 (2006).
[CrossRef]

P. Lalanne and D. Lemercier-Lalanne, “On the effective medium theory of subwavelength periodic structures,” J. Mod. Opt. 43, 2063-2085 (1996).
[CrossRef]

Lamprecht, B.

W. Rechberger, A. Hohenau, A. Leitner, J. R. Krenn, B. Lamprecht, and F. R. Aussenegg, “Optical properties of two interacting gold nanoparticles,” Opt. Commun. 220, 137-141(2003).
[CrossRef]

Law, W. C.

Le Perchec, J.

J. Le Perchec, P. Quémerais, A. Barbara, and T. López-Ríos, “Why metallic surfaces with grooves a few nanometers deep and wide may strongly absorb visible light,” Phys. Rev. Lett. 100, 066408 (2008).
[CrossRef] [PubMed]

Lechuga, L. M.

Lee, H. J.

H. J. Lee, A. Wark, and R. M. Corn, “Enhanced bioaffinity sensing using surface plasmons, surface enzyme reactions, nanoparticles and diffraction gratings,” Analyst (Amsterdam) 133, 596-601 (2008).

Lee, K. H.

Lee, K.-S.

K.-S. Lee and M. A. El-Sayed, “Gold and silver nanoparticles in sensing and imaging: sensitivity of plasmon response to size, shape, and metal composition,” J. Phys. Chem. B 110, 19220-19225 (2006).
[CrossRef] [PubMed]

Leitner, A.

W. Rechberger, A. Hohenau, A. Leitner, J. R. Krenn, B. Lamprecht, and F. R. Aussenegg, “Optical properties of two interacting gold nanoparticles,” Opt. Commun. 220, 137-141(2003).
[CrossRef]

W. Gotschy, K. Vonmetz, A. Leitner, and F. R. Aussenegg, “Optical dichroism of lithographically designed silver nanoparticle films,” Opt. Lett. 21, 1099-1101 (1996).
[CrossRef] [PubMed]

Lemercier-Lalanne, D.

P. Lalanne and D. Lemercier-Lalanne, “On the effective medium theory of subwavelength periodic structures,” J. Mod. Opt. 43, 2063-2085 (1996).
[CrossRef]

Lin, C.

López-Ríos, T.

J. Le Perchec, P. Quémerais, A. Barbara, and T. López-Ríos, “Why metallic surfaces with grooves a few nanometers deep and wide may strongly absorb visible light,” Phys. Rev. Lett. 100, 066408 (2008).
[CrossRef] [PubMed]

Ma, K.

K. Ma, D. J. Kim, K. Kim, S. Moon, and D. Kim, “Target-localized nanograting-based surface plasmon resonance detection toward label-free molecular biosensing,” IEEE J. Sel. Top. Quantum Electron. DOI:10.1109/JSTQE.2009.2034123 (2010).

Malic, L.

Mar, M. N.

L. S. Jung, C. T. Campbell, T. M. Chinowsky, M. N. Mar, and S. S. Yee, “Quantitative interpretation of the response of surface plasmon resonance sensors to adsorbed films,” Langmuir 14, 5636-5648 (1998).
[CrossRef]

Markowicz, P. P.

Maxwell-Garnett, J. C.

J. C. Maxwell-Garnett, “Colours in metal glasses and in metallic films,” Philos. Trans. R. Soc. London 203, 385-420(1904).
[CrossRef]

Moon, S.

K. Ma, D. J. Kim, K. Kim, S. Moon, and D. Kim, “Target-localized nanograting-based surface plasmon resonance detection toward label-free molecular biosensing,” IEEE J. Sel. Top. Quantum Electron. DOI:10.1109/JSTQE.2009.2034123 (2010).

Musick, M. D.

L. He, M. D. Musick, S. R. Nicewarner, F. G. Salinas, S. J. Benkovic, M. J. Natan, and C. D. Keating, “Colloidal Au-enhanced surface plasmon resonance for ultrasensitive detection of DNA hybridization,” J. Am. Chem. Soc. 122, 9071-9077(2000).
[CrossRef]

Natan, M. J.

L. He, M. D. Musick, S. R. Nicewarner, F. G. Salinas, S. J. Benkovic, M. J. Natan, and C. D. Keating, “Colloidal Au-enhanced surface plasmon resonance for ultrasensitive detection of DNA hybridization,” J. Am. Chem. Soc. 122, 9071-9077(2000).
[CrossRef]

Nicewarner, S. R.

L. He, M. D. Musick, S. R. Nicewarner, F. G. Salinas, S. J. Benkovic, M. J. Natan, and C. D. Keating, “Colloidal Au-enhanced surface plasmon resonance for ultrasensitive detection of DNA hybridization,” J. Am. Chem. Soc. 122, 9071-9077(2000).
[CrossRef]

Nordlander, P.

E. Prodan, C. Radlo, N. Halas, and P. Nordlander, “A hybridization model for the plasmon response of complex nanostructures,” Science 302, 419-422 (2003).
[CrossRef] [PubMed]

Patskovsky, S.

Prasad, P. N.

Prodan, E.

E. Prodan, C. Radlo, N. Halas, and P. Nordlander, “A hybridization model for the plasmon response of complex nanostructures,” Science 302, 419-422 (2003).
[CrossRef] [PubMed]

Quémerais, P.

J. Le Perchec, P. Quémerais, A. Barbara, and T. López-Ríos, “Why metallic surfaces with grooves a few nanometers deep and wide may strongly absorb visible light,” Phys. Rev. Lett. 100, 066408 (2008).
[CrossRef] [PubMed]

Quidant, R.

Radlo, C.

E. Prodan, C. Radlo, N. Halas, and P. Nordlander, “A hybridization model for the plasmon response of complex nanostructures,” Science 302, 419-422 (2003).
[CrossRef] [PubMed]

Rechberger, W.

W. Rechberger, A. Hohenau, A. Leitner, J. R. Krenn, B. Lamprecht, and F. R. Aussenegg, “Optical properties of two interacting gold nanoparticles,” Opt. Commun. 220, 137-141(2003).
[CrossRef]

Ritchie, R. H.

E. T. Arakawa, M. W. Williams, R. N. Hamm, and R. H. Ritchie, “Effect of damping on surface plasmon dispersion,” Phys. Rev. Lett. 31, 1127-1129 (1973).
[CrossRef]

Romanato, F.

Roper, D. K.

D. K. Roper, “Determining surface plasmon resonance response factors for deposition onto three-dimensional surfaces,” Chem. Eng. Sci. 62, 1988-1996 (2007).
[CrossRef] [PubMed]

Ruffato, G.

Rytov, S. M.

S. M. Rytov, “Electromagnetic properties of a finely stratified medium,” Sov. Phys. JETP 2, 466-475 (1956).

Sai, H.

Y. Kanamori, K. Hane, H. Sai, and H. Yugami, “100 nm period silicon antireflection structures fabricated using a porous alumina membrane mask,” Appl. Phys. Lett. 78, 142-143(2001).
[CrossRef]

Salinas, F. G.

L. He, M. D. Musick, S. R. Nicewarner, F. G. Salinas, S. J. Benkovic, M. J. Natan, and C. D. Keating, “Colloidal Au-enhanced surface plasmon resonance for ultrasensitive detection of DNA hybridization,” J. Am. Chem. Soc. 122, 9071-9077(2000).
[CrossRef]

Saraf, R. F.

S. Elhadj, G. Singh, and R. F. Saraf, “Optical properties of an immobilized DNA monolayer from 255 to 700 nm,” Langmuir 20, 5539-5543 (2004).
[CrossRef]

Schatz, G. C.

L. J. Sherry, S.-H. Chang, G. C. Schatz, R. P. Van Duyne, B. J. Wiley, and Y. Xia, “Localized surface plasmon resonance spectroscopy of single silver nanocubes,” Nano Lett. 5, 2034-2038 (2005).
[CrossRef] [PubMed]

Sepúlveda, B.

Sherry, L. J.

L. J. Sherry, S.-H. Chang, G. C. Schatz, R. P. Van Duyne, B. J. Wiley, and Y. Xia, “Localized surface plasmon resonance spectroscopy of single silver nanocubes,” Nano Lett. 5, 2034-2038 (2005).
[CrossRef] [PubMed]

Singh, G.

S. Elhadj, G. Singh, and R. F. Saraf, “Optical properties of an immobilized DNA monolayer from 255 to 700 nm,” Langmuir 20, 5539-5543 (2004).
[CrossRef]

Stevonson, P. C.

J. Turkevich, P. C. Stevonson, and J. Hillier, “The nucleation and growth processes in the synthesis of colloidal gold,” Discuss. Faraday Soc. 11, 55-75 (1951).
[CrossRef]

Tabrizian, M.

X. D. Hoa, A. G. Kirk, and M. Tabrizian, “Enhanced SPR response from patterned immobilization of surface bioreceptors on nano-gratings,” Biosens. Bioelectron. 24, 3043-3048(2009).
[CrossRef] [PubMed]

L. Malic, B. Cui, T. Veres, and M. Tabrizian, “Enhanced surface plasmon resonance imaging detection of DNA hybridization on periodic gold nanoposts,” Opt. Lett. 32, 3092-3094(2007).
[CrossRef] [PubMed]

Turkevich, J.

J. Turkevich, P. C. Stevonson, and J. Hillier, “The nucleation and growth processes in the synthesis of colloidal gold,” Discuss. Faraday Soc. 11, 55-75 (1951).
[CrossRef]

Van Duyne, R. P.

L. J. Sherry, S.-H. Chang, G. C. Schatz, R. P. Van Duyne, B. J. Wiley, and Y. Xia, “Localized surface plasmon resonance spectroscopy of single silver nanocubes,” Nano Lett. 5, 2034-2038 (2005).
[CrossRef] [PubMed]

Veres, T.

Vonmetz, K.

Wark, A.

H. J. Lee, A. Wark, and R. M. Corn, “Enhanced bioaffinity sensing using surface plasmons, surface enzyme reactions, nanoparticles and diffraction gratings,” Analyst (Amsterdam) 133, 596-601 (2008).

Wiley, B. J.

L. J. Sherry, S.-H. Chang, G. C. Schatz, R. P. Van Duyne, B. J. Wiley, and Y. Xia, “Localized surface plasmon resonance spectroscopy of single silver nanocubes,” Nano Lett. 5, 2034-2038 (2005).
[CrossRef] [PubMed]

Williams, M. W.

E. T. Arakawa, M. W. Williams, R. N. Hamm, and R. H. Ritchie, “Effect of damping on surface plasmon dispersion,” Phys. Rev. Lett. 31, 1127-1129 (1973).
[CrossRef]

Wong, C. C.

Wu, S. Y.

Xia, Y.

L. J. Sherry, S.-H. Chang, G. C. Schatz, R. P. Van Duyne, B. J. Wiley, and Y. Xia, “Localized surface plasmon resonance spectroscopy of single silver nanocubes,” Nano Lett. 5, 2034-2038 (2005).
[CrossRef] [PubMed]

Yee, S. S.

J. Homola, S. S. Yee and G. Gauglitz, “Surface plasmon resonance sensors: review,” Sens. Actuators B 54, 3-15 (1999).
[CrossRef]

L. S. Jung, C. T. Campbell, T. M. Chinowsky, M. N. Mar, and S. S. Yee, “Quantitative interpretation of the response of surface plasmon resonance sensors to adsorbed films,” Langmuir 14, 5636-5648 (1998).
[CrossRef]

Yoon, S. J.

Yugami, H.

Y. Kanamori, K. Hane, H. Sai, and H. Yugami, “100 nm period silicon antireflection structures fabricated using a porous alumina membrane mask,” Appl. Phys. Lett. 78, 142-143(2001).
[CrossRef]

Analyst (Amsterdam) (1)

H. J. Lee, A. Wark, and R. M. Corn, “Enhanced bioaffinity sensing using surface plasmons, surface enzyme reactions, nanoparticles and diffraction gratings,” Analyst (Amsterdam) 133, 596-601 (2008).

Appl. Opt. (1)

Appl. Phys. Lett. (1)

Y. Kanamori, K. Hane, H. Sai, and H. Yugami, “100 nm period silicon antireflection structures fabricated using a porous alumina membrane mask,” Appl. Phys. Lett. 78, 142-143(2001).
[CrossRef]

Biomaterials (1)

C. T. Campbell and G. Kim, “SPR microscopy and its applications to high-throughput analyses of biomolecular binding events and their kinetics,” Biomaterials 28, 2380-2392 (2007).
[CrossRef] [PubMed]

Biosens. Bioelectron. (1)

X. D. Hoa, A. G. Kirk, and M. Tabrizian, “Enhanced SPR response from patterned immobilization of surface bioreceptors on nano-gratings,” Biosens. Bioelectron. 24, 3043-3048(2009).
[CrossRef] [PubMed]

Chem. Eng. Sci. (1)

D. K. Roper, “Determining surface plasmon resonance response factors for deposition onto three-dimensional surfaces,” Chem. Eng. Sci. 62, 1988-1996 (2007).
[CrossRef] [PubMed]

Discuss. Faraday Soc. (1)

J. Turkevich, P. C. Stevonson, and J. Hillier, “The nucleation and growth processes in the synthesis of colloidal gold,” Discuss. Faraday Soc. 11, 55-75 (1951).
[CrossRef]

J. Am. Chem. Soc. (1)

L. He, M. D. Musick, S. R. Nicewarner, F. G. Salinas, S. J. Benkovic, M. J. Natan, and C. D. Keating, “Colloidal Au-enhanced surface plasmon resonance for ultrasensitive detection of DNA hybridization,” J. Am. Chem. Soc. 122, 9071-9077(2000).
[CrossRef]

J. Mod. Opt. (1)

P. Lalanne and D. Lemercier-Lalanne, “On the effective medium theory of subwavelength periodic structures,” J. Mod. Opt. 43, 2063-2085 (1996).
[CrossRef]

J. Opt. Soc. Am. A (3)

J. Phys. Chem. B (1)

K.-S. Lee and M. A. El-Sayed, “Gold and silver nanoparticles in sensing and imaging: sensitivity of plasmon response to size, shape, and metal composition,” J. Phys. Chem. B 110, 19220-19225 (2006).
[CrossRef] [PubMed]

Langmuir (2)

L. S. Jung, C. T. Campbell, T. M. Chinowsky, M. N. Mar, and S. S. Yee, “Quantitative interpretation of the response of surface plasmon resonance sensors to adsorbed films,” Langmuir 14, 5636-5648 (1998).
[CrossRef]

S. Elhadj, G. Singh, and R. F. Saraf, “Optical properties of an immobilized DNA monolayer from 255 to 700 nm,” Langmuir 20, 5539-5543 (2004).
[CrossRef]

Nano Lett. (1)

L. J. Sherry, S.-H. Chang, G. C. Schatz, R. P. Van Duyne, B. J. Wiley, and Y. Xia, “Localized surface plasmon resonance spectroscopy of single silver nanocubes,” Nano Lett. 5, 2034-2038 (2005).
[CrossRef] [PubMed]

Nature Phys. (1)

P. Lalanne and J. P. Hugonin, “Interaction between optical nano-objects at metallo-dielectric interfaces,” Nature Phys. 2, 551-556 (2006).
[CrossRef]

Opt. Commun. (1)

W. Rechberger, A. Hohenau, A. Leitner, J. R. Krenn, B. Lamprecht, and F. R. Aussenegg, “Optical properties of two interacting gold nanoparticles,” Opt. Commun. 220, 137-141(2003).
[CrossRef]

Opt. Express (5)

Opt. Lett. (7)

Philos. Trans. R. Soc. London (1)

J. C. Maxwell-Garnett, “Colours in metal glasses and in metallic films,” Philos. Trans. R. Soc. London 203, 385-420(1904).
[CrossRef]

Phys. Rev. Lett. (4)

E. T. Arakawa, M. W. Williams, R. N. Hamm, and R. H. Ritchie, “Effect of damping on surface plasmon dispersion,” Phys. Rev. Lett. 31, 1127-1129 (1973).
[CrossRef]

R. W. Alexander, G. S. Kovener, and R. J. Bell, “Dispersion curves for surface electromagnetic waves with damping,” Phys. Rev. Lett. 32, 154-157 (1974).
[CrossRef]

B. Auguié and W. L. Barnes, “Collective resonances in gold nanoparticle arrays,” Phys. Rev. Lett. 101, 143902 (2008).
[CrossRef] [PubMed]

J. Le Perchec, P. Quémerais, A. Barbara, and T. López-Ríos, “Why metallic surfaces with grooves a few nanometers deep and wide may strongly absorb visible light,” Phys. Rev. Lett. 100, 066408 (2008).
[CrossRef] [PubMed]

Science (1)

E. Prodan, C. Radlo, N. Halas, and P. Nordlander, “A hybridization model for the plasmon response of complex nanostructures,” Science 302, 419-422 (2003).
[CrossRef] [PubMed]

Sens. Actuators B (1)

J. Homola, S. S. Yee and G. Gauglitz, “Surface plasmon resonance sensors: review,” Sens. Actuators B 54, 3-15 (1999).
[CrossRef]

Sov. Phys. JETP (1)

S. M. Rytov, “Electromagnetic properties of a finely stratified medium,” Sov. Phys. JETP 2, 466-475 (1956).

Other (1)

K. Ma, D. J. Kim, K. Kim, S. Moon, and D. Kim, “Target-localized nanograting-based surface plasmon resonance detection toward label-free molecular biosensing,” IEEE J. Sel. Top. Quantum Electron. DOI:10.1109/JSTQE.2009.2034123 (2010).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Schematics of nanoparticle-mediated DNA hybridization on periodic metal nanowires. SN, surface nanograting; M, mirror; PR, prism; CH, chopper; PO, polarizer; CO, collimator; L, light source; PD, photodiode; IN, inlet; and OUT, outlet.

Fig. 2
Fig. 2

(a) SEM image of the periodic nanowire sample at Λ = 300 nm and f = 67 % . (b) TEM image of the synthesized nanoparticles with ϕ = 20 nm in this case.

Fig. 3
Fig. 3

Plasmon momentum relation with nanoparticle concentration, calculated by effective medium approximation. Calculation assumed gold grating at f = 67 % in water ambience.

Fig. 4
Fig. 4

Measured resonance characteristics of DNA hybridization using nanoparticles of ϕ = 20 nm .

Fig. 5
Fig. 5

(a) Measured resonance shifts with nanoparticles of different diameters ( ϕ = 12 , 15, and 20 nm ) and (b) resonance shifts normalized by the number of nanoparticles with nanoparticle volumes. The arrows at the horizontal axis represent the nanoparticle diameter. np and np + sn denote the measurement of nanoparticle-conjugated DNA hybridization on the thin film (control) and nanograting.

Fig. 6
Fig. 6

FDTD results of the interaction between nanoparticles ( ϕ = 15 nm ) and surface nanogratings ( Λ = 300 nm and f = 67 % ), as the relative location of a nanoparticle is varied from (a) ridge middle to (e) groove middle. The locations represented in the schematic (top) match the FDTD results (bottom) calculated for the respective location. The scale bar represents field amplitudes for E x , H y , and E z when the electric field of incident light is of unit amplitude.

Tables (2)

Tables Icon

Table 1 Measured Resonance Shifts in Degrees a

Tables Icon

Table 2 Sensitivity Enhancement Factor Calculated from the Measured Resonance Angle Shift as the Nanoparticle Diameter is Varied

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

SEF = Δ θ np + sn Δ θ = Δ θ sn Δ θ × Δ θ np + sn Δ θ sn = SEF sn · SEF np .
k SP = ω c ε m ε eff ε m + ε eff = k 0 sin θ SP .
ε eff np ε amb ε eff np + 2 ε amb = C np ε m ε amb ε m + 2 ε amb .
ε eff , TE ( 0 ) = f ε m + ( 1 f ) ε eff np ,
1 ε eff , TM ( 0 ) = f ε m + 1 f ε eff np ,
ε eff sn = ε eff , TM ( 0 ) + π 2 3 f 2 ( 1 f ) 2 ( ε eff , TM ( 0 ) ) 3 ε eff , TE ( 0 ) ( 1 ε m 1 ε eff np ) 2 ( Λ λ ) 2 ,
0 A exp ( z / λ ) d z 0 B exp ( z / λ ) d z .

Metrics