Abstract

Following the theory of error propagation, we developed analytical functions to illustrate and evaluate the uncertainties of inherent optical properties (IOPs) derived by the quasi-analytical algorithm (QAA). In particular, we evaluated the effects of uncertainties of these optical parameters on the inverted IOPs: the absorption coefficient at the reference wavelength, the extrapolation of particle backscattering coefficient, and the spectral ratios of absorption coefficients of phytoplankton and detritus/gelbstoff, respectively. With a systematically simulated data set (46,200 points), we found that the relative uncertainty of QAA-derived total absorption coefficients in the blue-green wavelengths is generally within ±10% for oceanic waters. The results of this study not only establish theoretical bases to evaluate and understand the effects of the various variables on IOPs derived from remote-sensing reflectance, but also lay the groundwork to analytically estimate uncertainties of these IOPs for each pixel. These are required and important steps for the generation of quality maps of IOP products derived from satellite ocean color remote sensing.

© 2010 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. International Ocean-Colour Coordinating Group, “Why ocean colour? The societal benefits of ocean-colour technology,” in Reports of the International Ocean-Colour Coordinating Group, No. 7, T. Platt, N. Hoepffner, V. Stuart, and C. Brown, eds. (IOCCG, 2008).
  2. International Ocean-Colour Coordinating Group, “Minimum requirements for an operational ocean-color sensor for the open ocean,” in Reports of the International Ocean-Color Coordinating Group, No. 1, A. Morel, ed. (IOCCG, 1998).
  3. International Ocean-Colour Coordinating Group, “Remote sensing of ocean colour in coastal, and other optically-complex, waters,” in Reports of the International Ocean-Colour Coordinating Group, No.3, S. Sathyendranath, ed. (IOCCG, 2000).
  4. E. S. Boss and S. Maritorena, “Uncertainties in the products of ocean-colour remote sensing,” in Remote Sensing of Inherent Optical Properties: Fundamentals, Tests of Algorithms and Applications, Z. -P.Lee, ed. (IOCCG, 2006).
    [PubMed]
  5. M. Chami and M. Defoin-Platel, “How ambiguous is the inverse problem of ocean color in coastal waters?,” J. Geophys. Res. 112, C03004 (2007).
    [CrossRef]
  6. M. S. Salama and A. Stein, “Error decomposition and estimation of inherent optical properties,” Appl. Opt. 48, 4947-4962(2009).
    [CrossRef] [PubMed]
  7. D. Antoine, F. d'Ortenzio, S. B. Hooker, G. Becu, B. Gentili, D. Tailliez, and A. J. Scott, “Assessment of uncertainty in the ocean reflectance determined by three satellite ocean color sensors (MERIS, SeaWiFS and MODIS-A) at an offshore site in the Mediterranean Sea (BOUSSOLE project),” J. Geophys. Res. 113, C07013 (2008).
    [CrossRef]
  8. J. O'Reilly, S. Maritorena, B. G. Mitchell, D. Siegel, K. L. Carder, S. Garver, M. Kahru, and C. McClain, “Ocean color chlorophyll algorithms for SeaWiFS,” J. Geophys. Res. 103, 24937-24953 (1998).
    [CrossRef]
  9. T. S. Moore, J. W. Campbell, and M. D. Dowell, “A class-based approach to characterizing and mapping the uncertainty of the MODIS ocean chlorophyll product,” Remote Sens. Environ. 113, 2424-2430 (2009).
    [CrossRef]
  10. T. Platt and S. Sathyendranath, “Oceanic primary production: estimation by remote sensing at local and regional scales,” Science 241, 1613-1620 (1988).
    [CrossRef] [PubMed]
  11. M. J. Behrenfeld, E. Boss, D. Siegel, and D. M. Shea, “Carbon-based ocean productivity and phytoplankton physiology from space,” Global Biogeochem, Cycles 19, GB1006 (2005).
    [CrossRef]
  12. C. Hu, F. E. Muller-Kager, G. A. Vargo, M. B. Neely, and E. Johns, “Linkages between coastal runoff and the Florida Keys ecosystem: a study of a dark plume event,” Geophys. Res. Lett. 31, L15307 (2004).
    [CrossRef]
  13. Z. P. Lee, A. Weidemann, J. Kindle, R. Arnone, K. L. Carder, and C. Davis, “Euphotic zone depth: its derivation and implication to ocean-color remote sensing,” J. Geophys. Res. 112, C03009 (2007).
    [CrossRef]
  14. M. Doron, M. Babin, A. Mangin, and O. Hembise, “Estimation of light penetration, and horizontal and vertical visibility in oceanic and coastal waters from surface reflectance,” J. Geophys. Res. 112, C06003 (2007).
    [CrossRef]
  15. G. Chang and A. L. Whitmire, “Effects of bulk particle characteristics on backscattering and optical closure,” Opt. Express 17, 2132-2142 (2009).
    [CrossRef] [PubMed]
  16. W. W. Gregg and M. E. Conkright, “Decadal changes in global ocean chlorophyll,” Geophys. Res. Lett. 29, 1730 (2002).
    [CrossRef]
  17. C. R. McClain, R. A. Barnes, J. R. E. Eplee, B. A. Franz, N. C. Hsu, F. S. Patt, C. M. Pietras, W. D. Robinson, B. D. Schieber, G. M. Schmidt, M. Wang, S. W. Bailey, and P. J. Werdell, “SeaWiFS postlaunch calibration and validation analyses, Part 2,” NASA Tech. Memo. 2000-206892, S.B.Hooker, and E.R.Firestone, eds. (NASA Goddard Space Flight Center, 2000), Vol. 10, p. 57.
  18. H. R. Gordon and M. Wang, “Retrieval of water-leaving radiance and aerosol optical thickness over oceans with SeaWiFS: A preliminary algorithm,” Appl. Opt. 33, 443-452 (1994).
    [CrossRef] [PubMed]
  19. International Ocean-Colour Coordinating Group, “Remote sensing of inherent optical properties: fundamentals, tests of algorithms, and applications,” in Reports of the International Ocean-Colour Coordinating Group, No. 5, Z. -P.Lee, ed. (IOCCG, 2006), p. 126.
  20. P. Wang, E. Boss, and C. Roesler, “Uncertainties of inherent optical properties obtained from semi-analytical inversions of ocean color,” Appl. Opt. 44, 4074-4085 (2005).
    [CrossRef] [PubMed]
  21. H. R. Gordon, “Normalized water-leaving radiance: revisiting the influence of surface roughness,” Appl. Opt. 44, 241-248(2005).
    [CrossRef] [PubMed]
  22. F. E. Hoge and P. E. Lyon, “Satellite retrieval of inherent optical properties by linear matrix inversion of oceanic radiance models: an analysis of model and radiance measurement errors,” J. Geophys. Res. 101, 16631-16648 (1996).
    [CrossRef]
  23. Z. P. Lee, K. L. Carder, and R. Arnone, “Deriving inherent optical properties from water color: a multiband quasi-analytical algorithm for optically deep waters,” Appl. Opt. 41, 5755-5772(2002).
    [CrossRef] [PubMed]
  24. S. L. Meyer, Data Analysis for Scientists and Engineers (Wiley, 1975).
  25. H. R. Gordon and A. Morel, Remote Assessment of Ocean Color for Interpretation of Satellite Visible Imagery: A Review (Springer-Verlag, 1983), p. 44.
  26. R. Zaneveld, A. Barnard, and Z.-P. Lee, “Why are inherent optical properties needed in ocean-colour remote sensing,” in Remote Sensing of Inherent Optical Properties: Fundamentals, Tests of Algorithms and Applications, Z. -P.Lee, ed. (IOCCG, 2006).
    [PubMed]
  27. S. Maritorena, D. A. Siegel, and A. R. Peterson, “Optimization of a semianalytical ocean color model for global-scale applications,” Appl. Opt. 41, 2705-2714 (2002).
    [CrossRef] [PubMed]
  28. K. L. Carder, F. R. Chen, Z. P. Lee, S. K. Hawes, and D. Kamykowski, “Semianalytic Moderate-Resolution Imaging Spectrometer algorithms for chlorophyll-a and absorption with bio-optical domains based on nitrate-depletion temperatures,” J. Geophys. Res. 104, 5403-5421 (1999).
    [CrossRef]
  29. H. R. Gordon, O. B. Brown, R. H. Evans, J. W. Brown, R. C. Smith, K. S. Baker, and D. K. Clark, “A semianalytic radiance model of ocean color,” J. Geophys. Res. 93, 10909-10924(1988).
    [CrossRef]
  30. Z. P. Lee, K. L. Carder, C. D. Mobley, R. G. Steward, and J. S. Patch, “Hyperspectral remote sensing for shallow waters. 1. A semianalytical model,” Appl. Opt. 37, 6329-6338(1998).
    [CrossRef]
  31. A. Morel and B. Gentili, “Diffuse reflectance of oceanic waters (2): Bi-directional aspects,” Appl. Opt. 32, 6864-6879 (1993).
    [CrossRef] [PubMed]
  32. J. R. V. Zaneveld, “A theoretical derivation of the dependence of the remotely sensed reflectance of the ocean on the inherent optical properties,” J. Geophys. Res. 100, 13135-13142 (1995).
    [CrossRef]
  33. R. Pope and E. Fry, “Absorption spectrum (380-700 nm) of pure waters: II. Integrating cavity measurements,” Appl. Opt. 36, 8710-8723 (1997).
    [CrossRef]
  34. R. C. Smith and K. S. Baker, “Optical properties of the clearest natural waters,” Appl. Opt. 20, 177-184 (1981).
    [CrossRef] [PubMed]
  35. H. R. Gordon, “Radiometric considerations for ocean color remote sensors,” Appl. Opt. 29, 3228-3236 (1990).
    [CrossRef] [PubMed]
  36. C. Hu, K. L. Carder, and F. E. Muller-Karger, “How precise are SeaWiFS ocean color estimates? Implications of digitization-noise errors,” Remote Sens. Environ. 76, 239-249 (2001).
    [CrossRef]
  37. G. Zibordi, S. B. Hooker, J. F. Berthon, and D. D'Alimonte, “Autonomous above-water radiance measurements from an offshore platform: a field assessment experiment,” J. Atmos. Oceanic Technol. 19, 808-819 (2002).
    [CrossRef]
  38. P. J. Werdell and S. W. Bailey, “An improved bio-optical data set for ocean color algorithm development and satellite data product validation,” Remote Sens. Environ. 98, 122-140 (2005).
    [CrossRef]
  39. A. Morel, “Optical properties of pure water and pure sea water,” in Optical Aspects of Oceanography, N. G. Jerlov and E. S. Nielsen, eds. (Academic, 1974), pp. 1-24.
  40. C. D. Mobley, Hydrolight 3.0 Users' Guide (SRI International, 1995).
  41. Z. P. Lee, K. L. Carder, and K. P. Du, “Effects of molecular and particle scatterings on model parameters for remote-sensing reflectance,” Appl. Opt. 43, 4957-4964 (2004).
    [CrossRef] [PubMed]
  42. Y. Huot, A. Morel, M. S. Twardowski, D. Stramski, and R. A. Reynolds, “Particle optical backscattering along a chlorophyll gradient in the upper layer of the eastern South Pacific Ocean,” Biogeosciences 5, 495-507 (2008).
    [CrossRef]
  43. A. Morel, B. Gentili, H. Claustre, A. Babin, A. Bricaud, J. Ras, and F. Tieche, “Optical properties of the "clearest" natural waters,” Limnol. Oceanogr. 52, 217-229 (2007).
    [CrossRef]
  44. X. Zhang, L. Hu, and M.-X. He, “Scattering by pure seawater: effect of salinity,” Opt. Express 17, 5698-5710 (2009).
    [CrossRef] [PubMed]
  45. M. S. Twardowski, H. Claustre, S. A. Freeman, D. Stramski, and Y. Huot, “Optical backscattering properties of the “clearest” natural waters,” Biogeosciences 4, 1041-1058(2007).
    [CrossRef]
  46. H. Loisel, J. M. Nicolas, A. Sciandra, D. Stramski, and A. Poteau, “Spectral dependency of optical backscattering by marine particles from satellite remote sensing of the global ocean,” J. Geophys. Res. 111, C09024 (2006).
    [CrossRef]
  47. S. Sathyendranath, L. Prieur, and A. Morel, “A three-component model of ocean colour and its application to remote sensing of phytoplankton pigments in coastal waters,” Int. J. Remote Sens. 10, 1373-1394 (1989).
    [CrossRef]
  48. H. R. Gordon and W. R. Mcluney, “Estimation of the depth of sunlight penetration in the sea for remote sensing,” Appl. Opt. 14, 413-416 (1975).
    [CrossRef] [PubMed]
  49. K. L. Carder, R. G. Steward, G. R. Harvey, and P. B. Ortner, “Marine humic and fulvic acids: their effects on remote sensing of ocean chlorophyll,” Limnol. Oceanogr. 34, 68-81(1989).
    [CrossRef]
  50. L. Guo, P. H. Santschi, and K. W. Warnken, “Dynamics of dissolved organic carbon (DOC) in oceanic environments,” Limnol. Oceanogr. 40, 1392-1403 (1995).
    [CrossRef]
  51. H. R. Gordon, “Can the Lambert-Beer law be applied to the diffuse attenuation coefficient of ocean water?,” Limnol. Oceanogr. 34, 1389-1409 (1989).
    [CrossRef]
  52. Z. P. Lee, M. Darecki, K. L. Carder, C. Davis, D. Stramski, and W. J. Rhea, “Diffuse attenuation coefficient of downwelling irradiance: an evaluation of remote sensing methods,” J. Geophys. Res. 110, C02017 (2005).
    [CrossRef]
  53. A. Bricaud, M. Babin, A. Morel, and H. Claustre, “Variability in the chlorophyll-specific absorption coefficients of natural phytoplankton: analysis and parameterization,” J. Geophys. Res. 100, 13321-13332 (1995).
    [CrossRef]
  54. A. Bricaud, A. Morel, and L. Prieur, “Absorption by dissolved organic matter of the sea (yellow substance) in the UV and visible domains,” Limnol. Oceanogr. 26, 43-53 (1981).
    [CrossRef]
  55. C. S. Roesler, M. J. Perry, and K. L. Carder, “Modeling in situ phytoplankton absorption from total absorption spectra in productive inland marine waters,” Limnol. Oceanogr. 34, 1510-1523 (1989).
    [CrossRef]
  56. M. S. Twardowski, E. Boss, J. M. Sullivan, and P. L. Donaghay, “Modeling the spectral shape of absorption by chromophoric dissolved organic matter,” Mar. Chem. 89, 69-88(2004).
    [CrossRef]
  57. M. J. Behrenfeld, T. K. Westberry, E. S. Boss, R. T. O'Malley, D. A. Siegel, J. D. Wiggert, B. A. Franz, C. R. McClain, G. C. Feldman, S. C. Doney, J. K. Moore, G. Dall'Olmo, A. J. Milligan, I. Lima, and N. Mahowald, “Satellite-detected fluorescence reveals global physiology of ocean phytoplankton,” Biogeosciences 6, 779-794 (2009).
    [CrossRef]
  58. A. Morel and S. Maritorena, “Bio-optical properties of oceanic waters: a reappraisal,” J. Geophys. Res. 106, 7163-7180 (2001).
    [CrossRef]
  59. J. R. V. Zaneveld., A. H. Barnard, and E. Boss, “Theoretical derivation of the depth average of remotely sensed optical parameters,” Opt. Express 13, 9052-9061 (2005).
    [CrossRef] [PubMed]
  60. Y.-J. Park and K. Ruddick, “Model of remote-sensing reflectance including bidirectional effects for case 1 and case 2 waters,” Appl. Opt. 44, 1236-1249 (2005).
    [CrossRef] [PubMed]

2009 (5)

M. S. Salama and A. Stein, “Error decomposition and estimation of inherent optical properties,” Appl. Opt. 48, 4947-4962(2009).
[CrossRef] [PubMed]

T. S. Moore, J. W. Campbell, and M. D. Dowell, “A class-based approach to characterizing and mapping the uncertainty of the MODIS ocean chlorophyll product,” Remote Sens. Environ. 113, 2424-2430 (2009).
[CrossRef]

G. Chang and A. L. Whitmire, “Effects of bulk particle characteristics on backscattering and optical closure,” Opt. Express 17, 2132-2142 (2009).
[CrossRef] [PubMed]

X. Zhang, L. Hu, and M.-X. He, “Scattering by pure seawater: effect of salinity,” Opt. Express 17, 5698-5710 (2009).
[CrossRef] [PubMed]

M. J. Behrenfeld, T. K. Westberry, E. S. Boss, R. T. O'Malley, D. A. Siegel, J. D. Wiggert, B. A. Franz, C. R. McClain, G. C. Feldman, S. C. Doney, J. K. Moore, G. Dall'Olmo, A. J. Milligan, I. Lima, and N. Mahowald, “Satellite-detected fluorescence reveals global physiology of ocean phytoplankton,” Biogeosciences 6, 779-794 (2009).
[CrossRef]

2008 (2)

Y. Huot, A. Morel, M. S. Twardowski, D. Stramski, and R. A. Reynolds, “Particle optical backscattering along a chlorophyll gradient in the upper layer of the eastern South Pacific Ocean,” Biogeosciences 5, 495-507 (2008).
[CrossRef]

D. Antoine, F. d'Ortenzio, S. B. Hooker, G. Becu, B. Gentili, D. Tailliez, and A. J. Scott, “Assessment of uncertainty in the ocean reflectance determined by three satellite ocean color sensors (MERIS, SeaWiFS and MODIS-A) at an offshore site in the Mediterranean Sea (BOUSSOLE project),” J. Geophys. Res. 113, C07013 (2008).
[CrossRef]

2007 (5)

Z. P. Lee, A. Weidemann, J. Kindle, R. Arnone, K. L. Carder, and C. Davis, “Euphotic zone depth: its derivation and implication to ocean-color remote sensing,” J. Geophys. Res. 112, C03009 (2007).
[CrossRef]

M. Doron, M. Babin, A. Mangin, and O. Hembise, “Estimation of light penetration, and horizontal and vertical visibility in oceanic and coastal waters from surface reflectance,” J. Geophys. Res. 112, C06003 (2007).
[CrossRef]

A. Morel, B. Gentili, H. Claustre, A. Babin, A. Bricaud, J. Ras, and F. Tieche, “Optical properties of the "clearest" natural waters,” Limnol. Oceanogr. 52, 217-229 (2007).
[CrossRef]

M. S. Twardowski, H. Claustre, S. A. Freeman, D. Stramski, and Y. Huot, “Optical backscattering properties of the “clearest” natural waters,” Biogeosciences 4, 1041-1058(2007).
[CrossRef]

M. Chami and M. Defoin-Platel, “How ambiguous is the inverse problem of ocean color in coastal waters?,” J. Geophys. Res. 112, C03004 (2007).
[CrossRef]

2006 (1)

H. Loisel, J. M. Nicolas, A. Sciandra, D. Stramski, and A. Poteau, “Spectral dependency of optical backscattering by marine particles from satellite remote sensing of the global ocean,” J. Geophys. Res. 111, C09024 (2006).
[CrossRef]

2005 (7)

P. J. Werdell and S. W. Bailey, “An improved bio-optical data set for ocean color algorithm development and satellite data product validation,” Remote Sens. Environ. 98, 122-140 (2005).
[CrossRef]

M. J. Behrenfeld, E. Boss, D. Siegel, and D. M. Shea, “Carbon-based ocean productivity and phytoplankton physiology from space,” Global Biogeochem, Cycles 19, GB1006 (2005).
[CrossRef]

P. Wang, E. Boss, and C. Roesler, “Uncertainties of inherent optical properties obtained from semi-analytical inversions of ocean color,” Appl. Opt. 44, 4074-4085 (2005).
[CrossRef] [PubMed]

H. R. Gordon, “Normalized water-leaving radiance: revisiting the influence of surface roughness,” Appl. Opt. 44, 241-248(2005).
[CrossRef] [PubMed]

J. R. V. Zaneveld., A. H. Barnard, and E. Boss, “Theoretical derivation of the depth average of remotely sensed optical parameters,” Opt. Express 13, 9052-9061 (2005).
[CrossRef] [PubMed]

Y.-J. Park and K. Ruddick, “Model of remote-sensing reflectance including bidirectional effects for case 1 and case 2 waters,” Appl. Opt. 44, 1236-1249 (2005).
[CrossRef] [PubMed]

Z. P. Lee, M. Darecki, K. L. Carder, C. Davis, D. Stramski, and W. J. Rhea, “Diffuse attenuation coefficient of downwelling irradiance: an evaluation of remote sensing methods,” J. Geophys. Res. 110, C02017 (2005).
[CrossRef]

2004 (3)

M. S. Twardowski, E. Boss, J. M. Sullivan, and P. L. Donaghay, “Modeling the spectral shape of absorption by chromophoric dissolved organic matter,” Mar. Chem. 89, 69-88(2004).
[CrossRef]

C. Hu, F. E. Muller-Kager, G. A. Vargo, M. B. Neely, and E. Johns, “Linkages between coastal runoff and the Florida Keys ecosystem: a study of a dark plume event,” Geophys. Res. Lett. 31, L15307 (2004).
[CrossRef]

Z. P. Lee, K. L. Carder, and K. P. Du, “Effects of molecular and particle scatterings on model parameters for remote-sensing reflectance,” Appl. Opt. 43, 4957-4964 (2004).
[CrossRef] [PubMed]

2002 (4)

W. W. Gregg and M. E. Conkright, “Decadal changes in global ocean chlorophyll,” Geophys. Res. Lett. 29, 1730 (2002).
[CrossRef]

Z. P. Lee, K. L. Carder, and R. Arnone, “Deriving inherent optical properties from water color: a multiband quasi-analytical algorithm for optically deep waters,” Appl. Opt. 41, 5755-5772(2002).
[CrossRef] [PubMed]

S. Maritorena, D. A. Siegel, and A. R. Peterson, “Optimization of a semianalytical ocean color model for global-scale applications,” Appl. Opt. 41, 2705-2714 (2002).
[CrossRef] [PubMed]

G. Zibordi, S. B. Hooker, J. F. Berthon, and D. D'Alimonte, “Autonomous above-water radiance measurements from an offshore platform: a field assessment experiment,” J. Atmos. Oceanic Technol. 19, 808-819 (2002).
[CrossRef]

2001 (2)

A. Morel and S. Maritorena, “Bio-optical properties of oceanic waters: a reappraisal,” J. Geophys. Res. 106, 7163-7180 (2001).
[CrossRef]

C. Hu, K. L. Carder, and F. E. Muller-Karger, “How precise are SeaWiFS ocean color estimates? Implications of digitization-noise errors,” Remote Sens. Environ. 76, 239-249 (2001).
[CrossRef]

1999 (1)

K. L. Carder, F. R. Chen, Z. P. Lee, S. K. Hawes, and D. Kamykowski, “Semianalytic Moderate-Resolution Imaging Spectrometer algorithms for chlorophyll-a and absorption with bio-optical domains based on nitrate-depletion temperatures,” J. Geophys. Res. 104, 5403-5421 (1999).
[CrossRef]

1998 (2)

J. O'Reilly, S. Maritorena, B. G. Mitchell, D. Siegel, K. L. Carder, S. Garver, M. Kahru, and C. McClain, “Ocean color chlorophyll algorithms for SeaWiFS,” J. Geophys. Res. 103, 24937-24953 (1998).
[CrossRef]

Z. P. Lee, K. L. Carder, C. D. Mobley, R. G. Steward, and J. S. Patch, “Hyperspectral remote sensing for shallow waters. 1. A semianalytical model,” Appl. Opt. 37, 6329-6338(1998).
[CrossRef]

1997 (1)

1996 (1)

F. E. Hoge and P. E. Lyon, “Satellite retrieval of inherent optical properties by linear matrix inversion of oceanic radiance models: an analysis of model and radiance measurement errors,” J. Geophys. Res. 101, 16631-16648 (1996).
[CrossRef]

1995 (3)

J. R. V. Zaneveld, “A theoretical derivation of the dependence of the remotely sensed reflectance of the ocean on the inherent optical properties,” J. Geophys. Res. 100, 13135-13142 (1995).
[CrossRef]

L. Guo, P. H. Santschi, and K. W. Warnken, “Dynamics of dissolved organic carbon (DOC) in oceanic environments,” Limnol. Oceanogr. 40, 1392-1403 (1995).
[CrossRef]

A. Bricaud, M. Babin, A. Morel, and H. Claustre, “Variability in the chlorophyll-specific absorption coefficients of natural phytoplankton: analysis and parameterization,” J. Geophys. Res. 100, 13321-13332 (1995).
[CrossRef]

1994 (1)

1993 (1)

1990 (1)

1989 (4)

S. Sathyendranath, L. Prieur, and A. Morel, “A three-component model of ocean colour and its application to remote sensing of phytoplankton pigments in coastal waters,” Int. J. Remote Sens. 10, 1373-1394 (1989).
[CrossRef]

C. S. Roesler, M. J. Perry, and K. L. Carder, “Modeling in situ phytoplankton absorption from total absorption spectra in productive inland marine waters,” Limnol. Oceanogr. 34, 1510-1523 (1989).
[CrossRef]

H. R. Gordon, “Can the Lambert-Beer law be applied to the diffuse attenuation coefficient of ocean water?,” Limnol. Oceanogr. 34, 1389-1409 (1989).
[CrossRef]

K. L. Carder, R. G. Steward, G. R. Harvey, and P. B. Ortner, “Marine humic and fulvic acids: their effects on remote sensing of ocean chlorophyll,” Limnol. Oceanogr. 34, 68-81(1989).
[CrossRef]

1988 (2)

H. R. Gordon, O. B. Brown, R. H. Evans, J. W. Brown, R. C. Smith, K. S. Baker, and D. K. Clark, “A semianalytic radiance model of ocean color,” J. Geophys. Res. 93, 10909-10924(1988).
[CrossRef]

T. Platt and S. Sathyendranath, “Oceanic primary production: estimation by remote sensing at local and regional scales,” Science 241, 1613-1620 (1988).
[CrossRef] [PubMed]

1981 (2)

R. C. Smith and K. S. Baker, “Optical properties of the clearest natural waters,” Appl. Opt. 20, 177-184 (1981).
[CrossRef] [PubMed]

A. Bricaud, A. Morel, and L. Prieur, “Absorption by dissolved organic matter of the sea (yellow substance) in the UV and visible domains,” Limnol. Oceanogr. 26, 43-53 (1981).
[CrossRef]

1975 (1)

Antoine, D.

D. Antoine, F. d'Ortenzio, S. B. Hooker, G. Becu, B. Gentili, D. Tailliez, and A. J. Scott, “Assessment of uncertainty in the ocean reflectance determined by three satellite ocean color sensors (MERIS, SeaWiFS and MODIS-A) at an offshore site in the Mediterranean Sea (BOUSSOLE project),” J. Geophys. Res. 113, C07013 (2008).
[CrossRef]

Arnone, R.

Z. P. Lee, A. Weidemann, J. Kindle, R. Arnone, K. L. Carder, and C. Davis, “Euphotic zone depth: its derivation and implication to ocean-color remote sensing,” J. Geophys. Res. 112, C03009 (2007).
[CrossRef]

Z. P. Lee, K. L. Carder, and R. Arnone, “Deriving inherent optical properties from water color: a multiband quasi-analytical algorithm for optically deep waters,” Appl. Opt. 41, 5755-5772(2002).
[CrossRef] [PubMed]

Babin, A.

A. Morel, B. Gentili, H. Claustre, A. Babin, A. Bricaud, J. Ras, and F. Tieche, “Optical properties of the "clearest" natural waters,” Limnol. Oceanogr. 52, 217-229 (2007).
[CrossRef]

Babin, M.

M. Doron, M. Babin, A. Mangin, and O. Hembise, “Estimation of light penetration, and horizontal and vertical visibility in oceanic and coastal waters from surface reflectance,” J. Geophys. Res. 112, C06003 (2007).
[CrossRef]

A. Bricaud, M. Babin, A. Morel, and H. Claustre, “Variability in the chlorophyll-specific absorption coefficients of natural phytoplankton: analysis and parameterization,” J. Geophys. Res. 100, 13321-13332 (1995).
[CrossRef]

Bailey, S. W.

P. J. Werdell and S. W. Bailey, “An improved bio-optical data set for ocean color algorithm development and satellite data product validation,” Remote Sens. Environ. 98, 122-140 (2005).
[CrossRef]

C. R. McClain, R. A. Barnes, J. R. E. Eplee, B. A. Franz, N. C. Hsu, F. S. Patt, C. M. Pietras, W. D. Robinson, B. D. Schieber, G. M. Schmidt, M. Wang, S. W. Bailey, and P. J. Werdell, “SeaWiFS postlaunch calibration and validation analyses, Part 2,” NASA Tech. Memo. 2000-206892, S.B.Hooker, and E.R.Firestone, eds. (NASA Goddard Space Flight Center, 2000), Vol. 10, p. 57.

Baker, K. S.

H. R. Gordon, O. B. Brown, R. H. Evans, J. W. Brown, R. C. Smith, K. S. Baker, and D. K. Clark, “A semianalytic radiance model of ocean color,” J. Geophys. Res. 93, 10909-10924(1988).
[CrossRef]

R. C. Smith and K. S. Baker, “Optical properties of the clearest natural waters,” Appl. Opt. 20, 177-184 (1981).
[CrossRef] [PubMed]

Barnard, A.

R. Zaneveld, A. Barnard, and Z.-P. Lee, “Why are inherent optical properties needed in ocean-colour remote sensing,” in Remote Sensing of Inherent Optical Properties: Fundamentals, Tests of Algorithms and Applications, Z. -P.Lee, ed. (IOCCG, 2006).
[PubMed]

Barnard, A. H.

Barnes, R. A.

C. R. McClain, R. A. Barnes, J. R. E. Eplee, B. A. Franz, N. C. Hsu, F. S. Patt, C. M. Pietras, W. D. Robinson, B. D. Schieber, G. M. Schmidt, M. Wang, S. W. Bailey, and P. J. Werdell, “SeaWiFS postlaunch calibration and validation analyses, Part 2,” NASA Tech. Memo. 2000-206892, S.B.Hooker, and E.R.Firestone, eds. (NASA Goddard Space Flight Center, 2000), Vol. 10, p. 57.

Becu, G.

D. Antoine, F. d'Ortenzio, S. B. Hooker, G. Becu, B. Gentili, D. Tailliez, and A. J. Scott, “Assessment of uncertainty in the ocean reflectance determined by three satellite ocean color sensors (MERIS, SeaWiFS and MODIS-A) at an offshore site in the Mediterranean Sea (BOUSSOLE project),” J. Geophys. Res. 113, C07013 (2008).
[CrossRef]

Behrenfeld, M. J.

M. J. Behrenfeld, T. K. Westberry, E. S. Boss, R. T. O'Malley, D. A. Siegel, J. D. Wiggert, B. A. Franz, C. R. McClain, G. C. Feldman, S. C. Doney, J. K. Moore, G. Dall'Olmo, A. J. Milligan, I. Lima, and N. Mahowald, “Satellite-detected fluorescence reveals global physiology of ocean phytoplankton,” Biogeosciences 6, 779-794 (2009).
[CrossRef]

M. J. Behrenfeld, E. Boss, D. Siegel, and D. M. Shea, “Carbon-based ocean productivity and phytoplankton physiology from space,” Global Biogeochem, Cycles 19, GB1006 (2005).
[CrossRef]

Berthon, J. F.

G. Zibordi, S. B. Hooker, J. F. Berthon, and D. D'Alimonte, “Autonomous above-water radiance measurements from an offshore platform: a field assessment experiment,” J. Atmos. Oceanic Technol. 19, 808-819 (2002).
[CrossRef]

Boss, E.

M. J. Behrenfeld, E. Boss, D. Siegel, and D. M. Shea, “Carbon-based ocean productivity and phytoplankton physiology from space,” Global Biogeochem, Cycles 19, GB1006 (2005).
[CrossRef]

P. Wang, E. Boss, and C. Roesler, “Uncertainties of inherent optical properties obtained from semi-analytical inversions of ocean color,” Appl. Opt. 44, 4074-4085 (2005).
[CrossRef] [PubMed]

J. R. V. Zaneveld., A. H. Barnard, and E. Boss, “Theoretical derivation of the depth average of remotely sensed optical parameters,” Opt. Express 13, 9052-9061 (2005).
[CrossRef] [PubMed]

M. S. Twardowski, E. Boss, J. M. Sullivan, and P. L. Donaghay, “Modeling the spectral shape of absorption by chromophoric dissolved organic matter,” Mar. Chem. 89, 69-88(2004).
[CrossRef]

Boss, E. S.

M. J. Behrenfeld, T. K. Westberry, E. S. Boss, R. T. O'Malley, D. A. Siegel, J. D. Wiggert, B. A. Franz, C. R. McClain, G. C. Feldman, S. C. Doney, J. K. Moore, G. Dall'Olmo, A. J. Milligan, I. Lima, and N. Mahowald, “Satellite-detected fluorescence reveals global physiology of ocean phytoplankton,” Biogeosciences 6, 779-794 (2009).
[CrossRef]

E. S. Boss and S. Maritorena, “Uncertainties in the products of ocean-colour remote sensing,” in Remote Sensing of Inherent Optical Properties: Fundamentals, Tests of Algorithms and Applications, Z. -P.Lee, ed. (IOCCG, 2006).
[PubMed]

Bricaud, A.

A. Morel, B. Gentili, H. Claustre, A. Babin, A. Bricaud, J. Ras, and F. Tieche, “Optical properties of the "clearest" natural waters,” Limnol. Oceanogr. 52, 217-229 (2007).
[CrossRef]

A. Bricaud, M. Babin, A. Morel, and H. Claustre, “Variability in the chlorophyll-specific absorption coefficients of natural phytoplankton: analysis and parameterization,” J. Geophys. Res. 100, 13321-13332 (1995).
[CrossRef]

A. Bricaud, A. Morel, and L. Prieur, “Absorption by dissolved organic matter of the sea (yellow substance) in the UV and visible domains,” Limnol. Oceanogr. 26, 43-53 (1981).
[CrossRef]

Brown, J. W.

H. R. Gordon, O. B. Brown, R. H. Evans, J. W. Brown, R. C. Smith, K. S. Baker, and D. K. Clark, “A semianalytic radiance model of ocean color,” J. Geophys. Res. 93, 10909-10924(1988).
[CrossRef]

Brown, O. B.

H. R. Gordon, O. B. Brown, R. H. Evans, J. W. Brown, R. C. Smith, K. S. Baker, and D. K. Clark, “A semianalytic radiance model of ocean color,” J. Geophys. Res. 93, 10909-10924(1988).
[CrossRef]

Campbell, J. W.

T. S. Moore, J. W. Campbell, and M. D. Dowell, “A class-based approach to characterizing and mapping the uncertainty of the MODIS ocean chlorophyll product,” Remote Sens. Environ. 113, 2424-2430 (2009).
[CrossRef]

Carder, K. L.

Z. P. Lee, A. Weidemann, J. Kindle, R. Arnone, K. L. Carder, and C. Davis, “Euphotic zone depth: its derivation and implication to ocean-color remote sensing,” J. Geophys. Res. 112, C03009 (2007).
[CrossRef]

Z. P. Lee, M. Darecki, K. L. Carder, C. Davis, D. Stramski, and W. J. Rhea, “Diffuse attenuation coefficient of downwelling irradiance: an evaluation of remote sensing methods,” J. Geophys. Res. 110, C02017 (2005).
[CrossRef]

Z. P. Lee, K. L. Carder, and K. P. Du, “Effects of molecular and particle scatterings on model parameters for remote-sensing reflectance,” Appl. Opt. 43, 4957-4964 (2004).
[CrossRef] [PubMed]

Z. P. Lee, K. L. Carder, and R. Arnone, “Deriving inherent optical properties from water color: a multiband quasi-analytical algorithm for optically deep waters,” Appl. Opt. 41, 5755-5772(2002).
[CrossRef] [PubMed]

C. Hu, K. L. Carder, and F. E. Muller-Karger, “How precise are SeaWiFS ocean color estimates? Implications of digitization-noise errors,” Remote Sens. Environ. 76, 239-249 (2001).
[CrossRef]

K. L. Carder, F. R. Chen, Z. P. Lee, S. K. Hawes, and D. Kamykowski, “Semianalytic Moderate-Resolution Imaging Spectrometer algorithms for chlorophyll-a and absorption with bio-optical domains based on nitrate-depletion temperatures,” J. Geophys. Res. 104, 5403-5421 (1999).
[CrossRef]

Z. P. Lee, K. L. Carder, C. D. Mobley, R. G. Steward, and J. S. Patch, “Hyperspectral remote sensing for shallow waters. 1. A semianalytical model,” Appl. Opt. 37, 6329-6338(1998).
[CrossRef]

J. O'Reilly, S. Maritorena, B. G. Mitchell, D. Siegel, K. L. Carder, S. Garver, M. Kahru, and C. McClain, “Ocean color chlorophyll algorithms for SeaWiFS,” J. Geophys. Res. 103, 24937-24953 (1998).
[CrossRef]

K. L. Carder, R. G. Steward, G. R. Harvey, and P. B. Ortner, “Marine humic and fulvic acids: their effects on remote sensing of ocean chlorophyll,” Limnol. Oceanogr. 34, 68-81(1989).
[CrossRef]

C. S. Roesler, M. J. Perry, and K. L. Carder, “Modeling in situ phytoplankton absorption from total absorption spectra in productive inland marine waters,” Limnol. Oceanogr. 34, 1510-1523 (1989).
[CrossRef]

Chami, M.

M. Chami and M. Defoin-Platel, “How ambiguous is the inverse problem of ocean color in coastal waters?,” J. Geophys. Res. 112, C03004 (2007).
[CrossRef]

Chang, G.

Chen, F. R.

K. L. Carder, F. R. Chen, Z. P. Lee, S. K. Hawes, and D. Kamykowski, “Semianalytic Moderate-Resolution Imaging Spectrometer algorithms for chlorophyll-a and absorption with bio-optical domains based on nitrate-depletion temperatures,” J. Geophys. Res. 104, 5403-5421 (1999).
[CrossRef]

Clark, D. K.

H. R. Gordon, O. B. Brown, R. H. Evans, J. W. Brown, R. C. Smith, K. S. Baker, and D. K. Clark, “A semianalytic radiance model of ocean color,” J. Geophys. Res. 93, 10909-10924(1988).
[CrossRef]

Claustre, H.

A. Morel, B. Gentili, H. Claustre, A. Babin, A. Bricaud, J. Ras, and F. Tieche, “Optical properties of the "clearest" natural waters,” Limnol. Oceanogr. 52, 217-229 (2007).
[CrossRef]

M. S. Twardowski, H. Claustre, S. A. Freeman, D. Stramski, and Y. Huot, “Optical backscattering properties of the “clearest” natural waters,” Biogeosciences 4, 1041-1058(2007).
[CrossRef]

A. Bricaud, M. Babin, A. Morel, and H. Claustre, “Variability in the chlorophyll-specific absorption coefficients of natural phytoplankton: analysis and parameterization,” J. Geophys. Res. 100, 13321-13332 (1995).
[CrossRef]

Conkright, M. E.

W. W. Gregg and M. E. Conkright, “Decadal changes in global ocean chlorophyll,” Geophys. Res. Lett. 29, 1730 (2002).
[CrossRef]

D'Alimonte, D.

G. Zibordi, S. B. Hooker, J. F. Berthon, and D. D'Alimonte, “Autonomous above-water radiance measurements from an offshore platform: a field assessment experiment,” J. Atmos. Oceanic Technol. 19, 808-819 (2002).
[CrossRef]

Dall'Olmo, G.

M. J. Behrenfeld, T. K. Westberry, E. S. Boss, R. T. O'Malley, D. A. Siegel, J. D. Wiggert, B. A. Franz, C. R. McClain, G. C. Feldman, S. C. Doney, J. K. Moore, G. Dall'Olmo, A. J. Milligan, I. Lima, and N. Mahowald, “Satellite-detected fluorescence reveals global physiology of ocean phytoplankton,” Biogeosciences 6, 779-794 (2009).
[CrossRef]

Darecki, M.

Z. P. Lee, M. Darecki, K. L. Carder, C. Davis, D. Stramski, and W. J. Rhea, “Diffuse attenuation coefficient of downwelling irradiance: an evaluation of remote sensing methods,” J. Geophys. Res. 110, C02017 (2005).
[CrossRef]

Davis, C.

Z. P. Lee, A. Weidemann, J. Kindle, R. Arnone, K. L. Carder, and C. Davis, “Euphotic zone depth: its derivation and implication to ocean-color remote sensing,” J. Geophys. Res. 112, C03009 (2007).
[CrossRef]

Z. P. Lee, M. Darecki, K. L. Carder, C. Davis, D. Stramski, and W. J. Rhea, “Diffuse attenuation coefficient of downwelling irradiance: an evaluation of remote sensing methods,” J. Geophys. Res. 110, C02017 (2005).
[CrossRef]

Defoin-Platel, M.

M. Chami and M. Defoin-Platel, “How ambiguous is the inverse problem of ocean color in coastal waters?,” J. Geophys. Res. 112, C03004 (2007).
[CrossRef]

Donaghay, P. L.

M. S. Twardowski, E. Boss, J. M. Sullivan, and P. L. Donaghay, “Modeling the spectral shape of absorption by chromophoric dissolved organic matter,” Mar. Chem. 89, 69-88(2004).
[CrossRef]

Doney, S. C.

M. J. Behrenfeld, T. K. Westberry, E. S. Boss, R. T. O'Malley, D. A. Siegel, J. D. Wiggert, B. A. Franz, C. R. McClain, G. C. Feldman, S. C. Doney, J. K. Moore, G. Dall'Olmo, A. J. Milligan, I. Lima, and N. Mahowald, “Satellite-detected fluorescence reveals global physiology of ocean phytoplankton,” Biogeosciences 6, 779-794 (2009).
[CrossRef]

Doron, M.

M. Doron, M. Babin, A. Mangin, and O. Hembise, “Estimation of light penetration, and horizontal and vertical visibility in oceanic and coastal waters from surface reflectance,” J. Geophys. Res. 112, C06003 (2007).
[CrossRef]

d'Ortenzio, F.

D. Antoine, F. d'Ortenzio, S. B. Hooker, G. Becu, B. Gentili, D. Tailliez, and A. J. Scott, “Assessment of uncertainty in the ocean reflectance determined by three satellite ocean color sensors (MERIS, SeaWiFS and MODIS-A) at an offshore site in the Mediterranean Sea (BOUSSOLE project),” J. Geophys. Res. 113, C07013 (2008).
[CrossRef]

Dowell, M. D.

T. S. Moore, J. W. Campbell, and M. D. Dowell, “A class-based approach to characterizing and mapping the uncertainty of the MODIS ocean chlorophyll product,” Remote Sens. Environ. 113, 2424-2430 (2009).
[CrossRef]

Du, K. P.

Eplee, J. R. E.

C. R. McClain, R. A. Barnes, J. R. E. Eplee, B. A. Franz, N. C. Hsu, F. S. Patt, C. M. Pietras, W. D. Robinson, B. D. Schieber, G. M. Schmidt, M. Wang, S. W. Bailey, and P. J. Werdell, “SeaWiFS postlaunch calibration and validation analyses, Part 2,” NASA Tech. Memo. 2000-206892, S.B.Hooker, and E.R.Firestone, eds. (NASA Goddard Space Flight Center, 2000), Vol. 10, p. 57.

Evans, R. H.

H. R. Gordon, O. B. Brown, R. H. Evans, J. W. Brown, R. C. Smith, K. S. Baker, and D. K. Clark, “A semianalytic radiance model of ocean color,” J. Geophys. Res. 93, 10909-10924(1988).
[CrossRef]

Feldman, G. C.

M. J. Behrenfeld, T. K. Westberry, E. S. Boss, R. T. O'Malley, D. A. Siegel, J. D. Wiggert, B. A. Franz, C. R. McClain, G. C. Feldman, S. C. Doney, J. K. Moore, G. Dall'Olmo, A. J. Milligan, I. Lima, and N. Mahowald, “Satellite-detected fluorescence reveals global physiology of ocean phytoplankton,” Biogeosciences 6, 779-794 (2009).
[CrossRef]

Franz, B. A.

M. J. Behrenfeld, T. K. Westberry, E. S. Boss, R. T. O'Malley, D. A. Siegel, J. D. Wiggert, B. A. Franz, C. R. McClain, G. C. Feldman, S. C. Doney, J. K. Moore, G. Dall'Olmo, A. J. Milligan, I. Lima, and N. Mahowald, “Satellite-detected fluorescence reveals global physiology of ocean phytoplankton,” Biogeosciences 6, 779-794 (2009).
[CrossRef]

C. R. McClain, R. A. Barnes, J. R. E. Eplee, B. A. Franz, N. C. Hsu, F. S. Patt, C. M. Pietras, W. D. Robinson, B. D. Schieber, G. M. Schmidt, M. Wang, S. W. Bailey, and P. J. Werdell, “SeaWiFS postlaunch calibration and validation analyses, Part 2,” NASA Tech. Memo. 2000-206892, S.B.Hooker, and E.R.Firestone, eds. (NASA Goddard Space Flight Center, 2000), Vol. 10, p. 57.

Freeman, S. A.

M. S. Twardowski, H. Claustre, S. A. Freeman, D. Stramski, and Y. Huot, “Optical backscattering properties of the “clearest” natural waters,” Biogeosciences 4, 1041-1058(2007).
[CrossRef]

Fry, E.

Garver, S.

J. O'Reilly, S. Maritorena, B. G. Mitchell, D. Siegel, K. L. Carder, S. Garver, M. Kahru, and C. McClain, “Ocean color chlorophyll algorithms for SeaWiFS,” J. Geophys. Res. 103, 24937-24953 (1998).
[CrossRef]

Gentili, B.

D. Antoine, F. d'Ortenzio, S. B. Hooker, G. Becu, B. Gentili, D. Tailliez, and A. J. Scott, “Assessment of uncertainty in the ocean reflectance determined by three satellite ocean color sensors (MERIS, SeaWiFS and MODIS-A) at an offshore site in the Mediterranean Sea (BOUSSOLE project),” J. Geophys. Res. 113, C07013 (2008).
[CrossRef]

A. Morel, B. Gentili, H. Claustre, A. Babin, A. Bricaud, J. Ras, and F. Tieche, “Optical properties of the "clearest" natural waters,” Limnol. Oceanogr. 52, 217-229 (2007).
[CrossRef]

A. Morel and B. Gentili, “Diffuse reflectance of oceanic waters (2): Bi-directional aspects,” Appl. Opt. 32, 6864-6879 (1993).
[CrossRef] [PubMed]

Gordon, H. R.

H. R. Gordon, “Normalized water-leaving radiance: revisiting the influence of surface roughness,” Appl. Opt. 44, 241-248(2005).
[CrossRef] [PubMed]

H. R. Gordon and M. Wang, “Retrieval of water-leaving radiance and aerosol optical thickness over oceans with SeaWiFS: A preliminary algorithm,” Appl. Opt. 33, 443-452 (1994).
[CrossRef] [PubMed]

H. R. Gordon, “Radiometric considerations for ocean color remote sensors,” Appl. Opt. 29, 3228-3236 (1990).
[CrossRef] [PubMed]

H. R. Gordon, “Can the Lambert-Beer law be applied to the diffuse attenuation coefficient of ocean water?,” Limnol. Oceanogr. 34, 1389-1409 (1989).
[CrossRef]

H. R. Gordon, O. B. Brown, R. H. Evans, J. W. Brown, R. C. Smith, K. S. Baker, and D. K. Clark, “A semianalytic radiance model of ocean color,” J. Geophys. Res. 93, 10909-10924(1988).
[CrossRef]

H. R. Gordon and W. R. Mcluney, “Estimation of the depth of sunlight penetration in the sea for remote sensing,” Appl. Opt. 14, 413-416 (1975).
[CrossRef] [PubMed]

H. R. Gordon and A. Morel, Remote Assessment of Ocean Color for Interpretation of Satellite Visible Imagery: A Review (Springer-Verlag, 1983), p. 44.

Gregg, W. W.

W. W. Gregg and M. E. Conkright, “Decadal changes in global ocean chlorophyll,” Geophys. Res. Lett. 29, 1730 (2002).
[CrossRef]

Guo, L.

L. Guo, P. H. Santschi, and K. W. Warnken, “Dynamics of dissolved organic carbon (DOC) in oceanic environments,” Limnol. Oceanogr. 40, 1392-1403 (1995).
[CrossRef]

Harvey, G. R.

K. L. Carder, R. G. Steward, G. R. Harvey, and P. B. Ortner, “Marine humic and fulvic acids: their effects on remote sensing of ocean chlorophyll,” Limnol. Oceanogr. 34, 68-81(1989).
[CrossRef]

Hawes, S. K.

K. L. Carder, F. R. Chen, Z. P. Lee, S. K. Hawes, and D. Kamykowski, “Semianalytic Moderate-Resolution Imaging Spectrometer algorithms for chlorophyll-a and absorption with bio-optical domains based on nitrate-depletion temperatures,” J. Geophys. Res. 104, 5403-5421 (1999).
[CrossRef]

He, M.-X.

Hembise, O.

M. Doron, M. Babin, A. Mangin, and O. Hembise, “Estimation of light penetration, and horizontal and vertical visibility in oceanic and coastal waters from surface reflectance,” J. Geophys. Res. 112, C06003 (2007).
[CrossRef]

Hoge, F. E.

F. E. Hoge and P. E. Lyon, “Satellite retrieval of inherent optical properties by linear matrix inversion of oceanic radiance models: an analysis of model and radiance measurement errors,” J. Geophys. Res. 101, 16631-16648 (1996).
[CrossRef]

Hooker, S. B.

D. Antoine, F. d'Ortenzio, S. B. Hooker, G. Becu, B. Gentili, D. Tailliez, and A. J. Scott, “Assessment of uncertainty in the ocean reflectance determined by three satellite ocean color sensors (MERIS, SeaWiFS and MODIS-A) at an offshore site in the Mediterranean Sea (BOUSSOLE project),” J. Geophys. Res. 113, C07013 (2008).
[CrossRef]

G. Zibordi, S. B. Hooker, J. F. Berthon, and D. D'Alimonte, “Autonomous above-water radiance measurements from an offshore platform: a field assessment experiment,” J. Atmos. Oceanic Technol. 19, 808-819 (2002).
[CrossRef]

Hsu, N. C.

C. R. McClain, R. A. Barnes, J. R. E. Eplee, B. A. Franz, N. C. Hsu, F. S. Patt, C. M. Pietras, W. D. Robinson, B. D. Schieber, G. M. Schmidt, M. Wang, S. W. Bailey, and P. J. Werdell, “SeaWiFS postlaunch calibration and validation analyses, Part 2,” NASA Tech. Memo. 2000-206892, S.B.Hooker, and E.R.Firestone, eds. (NASA Goddard Space Flight Center, 2000), Vol. 10, p. 57.

Hu, C.

C. Hu, F. E. Muller-Kager, G. A. Vargo, M. B. Neely, and E. Johns, “Linkages between coastal runoff and the Florida Keys ecosystem: a study of a dark plume event,” Geophys. Res. Lett. 31, L15307 (2004).
[CrossRef]

C. Hu, K. L. Carder, and F. E. Muller-Karger, “How precise are SeaWiFS ocean color estimates? Implications of digitization-noise errors,” Remote Sens. Environ. 76, 239-249 (2001).
[CrossRef]

Hu, L.

Huot, Y.

Y. Huot, A. Morel, M. S. Twardowski, D. Stramski, and R. A. Reynolds, “Particle optical backscattering along a chlorophyll gradient in the upper layer of the eastern South Pacific Ocean,” Biogeosciences 5, 495-507 (2008).
[CrossRef]

M. S. Twardowski, H. Claustre, S. A. Freeman, D. Stramski, and Y. Huot, “Optical backscattering properties of the “clearest” natural waters,” Biogeosciences 4, 1041-1058(2007).
[CrossRef]

Johns, E.

C. Hu, F. E. Muller-Kager, G. A. Vargo, M. B. Neely, and E. Johns, “Linkages between coastal runoff and the Florida Keys ecosystem: a study of a dark plume event,” Geophys. Res. Lett. 31, L15307 (2004).
[CrossRef]

Kahru, M.

J. O'Reilly, S. Maritorena, B. G. Mitchell, D. Siegel, K. L. Carder, S. Garver, M. Kahru, and C. McClain, “Ocean color chlorophyll algorithms for SeaWiFS,” J. Geophys. Res. 103, 24937-24953 (1998).
[CrossRef]

Kamykowski, D.

K. L. Carder, F. R. Chen, Z. P. Lee, S. K. Hawes, and D. Kamykowski, “Semianalytic Moderate-Resolution Imaging Spectrometer algorithms for chlorophyll-a and absorption with bio-optical domains based on nitrate-depletion temperatures,” J. Geophys. Res. 104, 5403-5421 (1999).
[CrossRef]

Kindle, J.

Z. P. Lee, A. Weidemann, J. Kindle, R. Arnone, K. L. Carder, and C. Davis, “Euphotic zone depth: its derivation and implication to ocean-color remote sensing,” J. Geophys. Res. 112, C03009 (2007).
[CrossRef]

Lee, Z. P.

Z. P. Lee, A. Weidemann, J. Kindle, R. Arnone, K. L. Carder, and C. Davis, “Euphotic zone depth: its derivation and implication to ocean-color remote sensing,” J. Geophys. Res. 112, C03009 (2007).
[CrossRef]

Z. P. Lee, M. Darecki, K. L. Carder, C. Davis, D. Stramski, and W. J. Rhea, “Diffuse attenuation coefficient of downwelling irradiance: an evaluation of remote sensing methods,” J. Geophys. Res. 110, C02017 (2005).
[CrossRef]

Z. P. Lee, K. L. Carder, and K. P. Du, “Effects of molecular and particle scatterings on model parameters for remote-sensing reflectance,” Appl. Opt. 43, 4957-4964 (2004).
[CrossRef] [PubMed]

Z. P. Lee, K. L. Carder, and R. Arnone, “Deriving inherent optical properties from water color: a multiband quasi-analytical algorithm for optically deep waters,” Appl. Opt. 41, 5755-5772(2002).
[CrossRef] [PubMed]

K. L. Carder, F. R. Chen, Z. P. Lee, S. K. Hawes, and D. Kamykowski, “Semianalytic Moderate-Resolution Imaging Spectrometer algorithms for chlorophyll-a and absorption with bio-optical domains based on nitrate-depletion temperatures,” J. Geophys. Res. 104, 5403-5421 (1999).
[CrossRef]

Z. P. Lee, K. L. Carder, C. D. Mobley, R. G. Steward, and J. S. Patch, “Hyperspectral remote sensing for shallow waters. 1. A semianalytical model,” Appl. Opt. 37, 6329-6338(1998).
[CrossRef]

Lee, Z.-P.

R. Zaneveld, A. Barnard, and Z.-P. Lee, “Why are inherent optical properties needed in ocean-colour remote sensing,” in Remote Sensing of Inherent Optical Properties: Fundamentals, Tests of Algorithms and Applications, Z. -P.Lee, ed. (IOCCG, 2006).
[PubMed]

Lima, I.

M. J. Behrenfeld, T. K. Westberry, E. S. Boss, R. T. O'Malley, D. A. Siegel, J. D. Wiggert, B. A. Franz, C. R. McClain, G. C. Feldman, S. C. Doney, J. K. Moore, G. Dall'Olmo, A. J. Milligan, I. Lima, and N. Mahowald, “Satellite-detected fluorescence reveals global physiology of ocean phytoplankton,” Biogeosciences 6, 779-794 (2009).
[CrossRef]

Loisel, H.

H. Loisel, J. M. Nicolas, A. Sciandra, D. Stramski, and A. Poteau, “Spectral dependency of optical backscattering by marine particles from satellite remote sensing of the global ocean,” J. Geophys. Res. 111, C09024 (2006).
[CrossRef]

Lyon, P. E.

F. E. Hoge and P. E. Lyon, “Satellite retrieval of inherent optical properties by linear matrix inversion of oceanic radiance models: an analysis of model and radiance measurement errors,” J. Geophys. Res. 101, 16631-16648 (1996).
[CrossRef]

Mahowald, N.

M. J. Behrenfeld, T. K. Westberry, E. S. Boss, R. T. O'Malley, D. A. Siegel, J. D. Wiggert, B. A. Franz, C. R. McClain, G. C. Feldman, S. C. Doney, J. K. Moore, G. Dall'Olmo, A. J. Milligan, I. Lima, and N. Mahowald, “Satellite-detected fluorescence reveals global physiology of ocean phytoplankton,” Biogeosciences 6, 779-794 (2009).
[CrossRef]

Mangin, A.

M. Doron, M. Babin, A. Mangin, and O. Hembise, “Estimation of light penetration, and horizontal and vertical visibility in oceanic and coastal waters from surface reflectance,” J. Geophys. Res. 112, C06003 (2007).
[CrossRef]

Maritorena, S.

S. Maritorena, D. A. Siegel, and A. R. Peterson, “Optimization of a semianalytical ocean color model for global-scale applications,” Appl. Opt. 41, 2705-2714 (2002).
[CrossRef] [PubMed]

A. Morel and S. Maritorena, “Bio-optical properties of oceanic waters: a reappraisal,” J. Geophys. Res. 106, 7163-7180 (2001).
[CrossRef]

J. O'Reilly, S. Maritorena, B. G. Mitchell, D. Siegel, K. L. Carder, S. Garver, M. Kahru, and C. McClain, “Ocean color chlorophyll algorithms for SeaWiFS,” J. Geophys. Res. 103, 24937-24953 (1998).
[CrossRef]

E. S. Boss and S. Maritorena, “Uncertainties in the products of ocean-colour remote sensing,” in Remote Sensing of Inherent Optical Properties: Fundamentals, Tests of Algorithms and Applications, Z. -P.Lee, ed. (IOCCG, 2006).
[PubMed]

McClain, C.

J. O'Reilly, S. Maritorena, B. G. Mitchell, D. Siegel, K. L. Carder, S. Garver, M. Kahru, and C. McClain, “Ocean color chlorophyll algorithms for SeaWiFS,” J. Geophys. Res. 103, 24937-24953 (1998).
[CrossRef]

McClain, C. R.

M. J. Behrenfeld, T. K. Westberry, E. S. Boss, R. T. O'Malley, D. A. Siegel, J. D. Wiggert, B. A. Franz, C. R. McClain, G. C. Feldman, S. C. Doney, J. K. Moore, G. Dall'Olmo, A. J. Milligan, I. Lima, and N. Mahowald, “Satellite-detected fluorescence reveals global physiology of ocean phytoplankton,” Biogeosciences 6, 779-794 (2009).
[CrossRef]

C. R. McClain, R. A. Barnes, J. R. E. Eplee, B. A. Franz, N. C. Hsu, F. S. Patt, C. M. Pietras, W. D. Robinson, B. D. Schieber, G. M. Schmidt, M. Wang, S. W. Bailey, and P. J. Werdell, “SeaWiFS postlaunch calibration and validation analyses, Part 2,” NASA Tech. Memo. 2000-206892, S.B.Hooker, and E.R.Firestone, eds. (NASA Goddard Space Flight Center, 2000), Vol. 10, p. 57.

Mcluney, W. R.

Meyer, S. L.

S. L. Meyer, Data Analysis for Scientists and Engineers (Wiley, 1975).

Milligan, A. J.

M. J. Behrenfeld, T. K. Westberry, E. S. Boss, R. T. O'Malley, D. A. Siegel, J. D. Wiggert, B. A. Franz, C. R. McClain, G. C. Feldman, S. C. Doney, J. K. Moore, G. Dall'Olmo, A. J. Milligan, I. Lima, and N. Mahowald, “Satellite-detected fluorescence reveals global physiology of ocean phytoplankton,” Biogeosciences 6, 779-794 (2009).
[CrossRef]

Mitchell, B. G.

J. O'Reilly, S. Maritorena, B. G. Mitchell, D. Siegel, K. L. Carder, S. Garver, M. Kahru, and C. McClain, “Ocean color chlorophyll algorithms for SeaWiFS,” J. Geophys. Res. 103, 24937-24953 (1998).
[CrossRef]

Mobley, C. D.

Moore, J. K.

M. J. Behrenfeld, T. K. Westberry, E. S. Boss, R. T. O'Malley, D. A. Siegel, J. D. Wiggert, B. A. Franz, C. R. McClain, G. C. Feldman, S. C. Doney, J. K. Moore, G. Dall'Olmo, A. J. Milligan, I. Lima, and N. Mahowald, “Satellite-detected fluorescence reveals global physiology of ocean phytoplankton,” Biogeosciences 6, 779-794 (2009).
[CrossRef]

Moore, T. S.

T. S. Moore, J. W. Campbell, and M. D. Dowell, “A class-based approach to characterizing and mapping the uncertainty of the MODIS ocean chlorophyll product,” Remote Sens. Environ. 113, 2424-2430 (2009).
[CrossRef]

Morel, A.

Y. Huot, A. Morel, M. S. Twardowski, D. Stramski, and R. A. Reynolds, “Particle optical backscattering along a chlorophyll gradient in the upper layer of the eastern South Pacific Ocean,” Biogeosciences 5, 495-507 (2008).
[CrossRef]

A. Morel, B. Gentili, H. Claustre, A. Babin, A. Bricaud, J. Ras, and F. Tieche, “Optical properties of the "clearest" natural waters,” Limnol. Oceanogr. 52, 217-229 (2007).
[CrossRef]

A. Morel and S. Maritorena, “Bio-optical properties of oceanic waters: a reappraisal,” J. Geophys. Res. 106, 7163-7180 (2001).
[CrossRef]

A. Bricaud, M. Babin, A. Morel, and H. Claustre, “Variability in the chlorophyll-specific absorption coefficients of natural phytoplankton: analysis and parameterization,” J. Geophys. Res. 100, 13321-13332 (1995).
[CrossRef]

A. Morel and B. Gentili, “Diffuse reflectance of oceanic waters (2): Bi-directional aspects,” Appl. Opt. 32, 6864-6879 (1993).
[CrossRef] [PubMed]

S. Sathyendranath, L. Prieur, and A. Morel, “A three-component model of ocean colour and its application to remote sensing of phytoplankton pigments in coastal waters,” Int. J. Remote Sens. 10, 1373-1394 (1989).
[CrossRef]

A. Bricaud, A. Morel, and L. Prieur, “Absorption by dissolved organic matter of the sea (yellow substance) in the UV and visible domains,” Limnol. Oceanogr. 26, 43-53 (1981).
[CrossRef]

A. Morel, “Optical properties of pure water and pure sea water,” in Optical Aspects of Oceanography, N. G. Jerlov and E. S. Nielsen, eds. (Academic, 1974), pp. 1-24.

H. R. Gordon and A. Morel, Remote Assessment of Ocean Color for Interpretation of Satellite Visible Imagery: A Review (Springer-Verlag, 1983), p. 44.

Muller-Kager, F. E.

C. Hu, F. E. Muller-Kager, G. A. Vargo, M. B. Neely, and E. Johns, “Linkages between coastal runoff and the Florida Keys ecosystem: a study of a dark plume event,” Geophys. Res. Lett. 31, L15307 (2004).
[CrossRef]

Muller-Karger, F. E.

C. Hu, K. L. Carder, and F. E. Muller-Karger, “How precise are SeaWiFS ocean color estimates? Implications of digitization-noise errors,” Remote Sens. Environ. 76, 239-249 (2001).
[CrossRef]

Neely, M. B.

C. Hu, F. E. Muller-Kager, G. A. Vargo, M. B. Neely, and E. Johns, “Linkages between coastal runoff and the Florida Keys ecosystem: a study of a dark plume event,” Geophys. Res. Lett. 31, L15307 (2004).
[CrossRef]

Nicolas, J. M.

H. Loisel, J. M. Nicolas, A. Sciandra, D. Stramski, and A. Poteau, “Spectral dependency of optical backscattering by marine particles from satellite remote sensing of the global ocean,” J. Geophys. Res. 111, C09024 (2006).
[CrossRef]

O'Malley, R. T.

M. J. Behrenfeld, T. K. Westberry, E. S. Boss, R. T. O'Malley, D. A. Siegel, J. D. Wiggert, B. A. Franz, C. R. McClain, G. C. Feldman, S. C. Doney, J. K. Moore, G. Dall'Olmo, A. J. Milligan, I. Lima, and N. Mahowald, “Satellite-detected fluorescence reveals global physiology of ocean phytoplankton,” Biogeosciences 6, 779-794 (2009).
[CrossRef]

O'Reilly, J.

J. O'Reilly, S. Maritorena, B. G. Mitchell, D. Siegel, K. L. Carder, S. Garver, M. Kahru, and C. McClain, “Ocean color chlorophyll algorithms for SeaWiFS,” J. Geophys. Res. 103, 24937-24953 (1998).
[CrossRef]

Ortner, P. B.

K. L. Carder, R. G. Steward, G. R. Harvey, and P. B. Ortner, “Marine humic and fulvic acids: their effects on remote sensing of ocean chlorophyll,” Limnol. Oceanogr. 34, 68-81(1989).
[CrossRef]

Park, Y.-J.

Patch, J. S.

Patt, F. S.

C. R. McClain, R. A. Barnes, J. R. E. Eplee, B. A. Franz, N. C. Hsu, F. S. Patt, C. M. Pietras, W. D. Robinson, B. D. Schieber, G. M. Schmidt, M. Wang, S. W. Bailey, and P. J. Werdell, “SeaWiFS postlaunch calibration and validation analyses, Part 2,” NASA Tech. Memo. 2000-206892, S.B.Hooker, and E.R.Firestone, eds. (NASA Goddard Space Flight Center, 2000), Vol. 10, p. 57.

Perry, M. J.

C. S. Roesler, M. J. Perry, and K. L. Carder, “Modeling in situ phytoplankton absorption from total absorption spectra in productive inland marine waters,” Limnol. Oceanogr. 34, 1510-1523 (1989).
[CrossRef]

Peterson, A. R.

Pietras, C. M.

C. R. McClain, R. A. Barnes, J. R. E. Eplee, B. A. Franz, N. C. Hsu, F. S. Patt, C. M. Pietras, W. D. Robinson, B. D. Schieber, G. M. Schmidt, M. Wang, S. W. Bailey, and P. J. Werdell, “SeaWiFS postlaunch calibration and validation analyses, Part 2,” NASA Tech. Memo. 2000-206892, S.B.Hooker, and E.R.Firestone, eds. (NASA Goddard Space Flight Center, 2000), Vol. 10, p. 57.

Platt, T.

T. Platt and S. Sathyendranath, “Oceanic primary production: estimation by remote sensing at local and regional scales,” Science 241, 1613-1620 (1988).
[CrossRef] [PubMed]

Pope, R.

Poteau, A.

H. Loisel, J. M. Nicolas, A. Sciandra, D. Stramski, and A. Poteau, “Spectral dependency of optical backscattering by marine particles from satellite remote sensing of the global ocean,” J. Geophys. Res. 111, C09024 (2006).
[CrossRef]

Prieur, L.

S. Sathyendranath, L. Prieur, and A. Morel, “A three-component model of ocean colour and its application to remote sensing of phytoplankton pigments in coastal waters,” Int. J. Remote Sens. 10, 1373-1394 (1989).
[CrossRef]

A. Bricaud, A. Morel, and L. Prieur, “Absorption by dissolved organic matter of the sea (yellow substance) in the UV and visible domains,” Limnol. Oceanogr. 26, 43-53 (1981).
[CrossRef]

Ras, J.

A. Morel, B. Gentili, H. Claustre, A. Babin, A. Bricaud, J. Ras, and F. Tieche, “Optical properties of the "clearest" natural waters,” Limnol. Oceanogr. 52, 217-229 (2007).
[CrossRef]

Reynolds, R. A.

Y. Huot, A. Morel, M. S. Twardowski, D. Stramski, and R. A. Reynolds, “Particle optical backscattering along a chlorophyll gradient in the upper layer of the eastern South Pacific Ocean,” Biogeosciences 5, 495-507 (2008).
[CrossRef]

Rhea, W. J.

Z. P. Lee, M. Darecki, K. L. Carder, C. Davis, D. Stramski, and W. J. Rhea, “Diffuse attenuation coefficient of downwelling irradiance: an evaluation of remote sensing methods,” J. Geophys. Res. 110, C02017 (2005).
[CrossRef]

Robinson, W. D.

C. R. McClain, R. A. Barnes, J. R. E. Eplee, B. A. Franz, N. C. Hsu, F. S. Patt, C. M. Pietras, W. D. Robinson, B. D. Schieber, G. M. Schmidt, M. Wang, S. W. Bailey, and P. J. Werdell, “SeaWiFS postlaunch calibration and validation analyses, Part 2,” NASA Tech. Memo. 2000-206892, S.B.Hooker, and E.R.Firestone, eds. (NASA Goddard Space Flight Center, 2000), Vol. 10, p. 57.

Roesler, C.

Roesler, C. S.

C. S. Roesler, M. J. Perry, and K. L. Carder, “Modeling in situ phytoplankton absorption from total absorption spectra in productive inland marine waters,” Limnol. Oceanogr. 34, 1510-1523 (1989).
[CrossRef]

Ruddick, K.

Salama, M. S.

Santschi, P. H.

L. Guo, P. H. Santschi, and K. W. Warnken, “Dynamics of dissolved organic carbon (DOC) in oceanic environments,” Limnol. Oceanogr. 40, 1392-1403 (1995).
[CrossRef]

Sathyendranath, S.

S. Sathyendranath, L. Prieur, and A. Morel, “A three-component model of ocean colour and its application to remote sensing of phytoplankton pigments in coastal waters,” Int. J. Remote Sens. 10, 1373-1394 (1989).
[CrossRef]

T. Platt and S. Sathyendranath, “Oceanic primary production: estimation by remote sensing at local and regional scales,” Science 241, 1613-1620 (1988).
[CrossRef] [PubMed]

Schieber, B. D.

C. R. McClain, R. A. Barnes, J. R. E. Eplee, B. A. Franz, N. C. Hsu, F. S. Patt, C. M. Pietras, W. D. Robinson, B. D. Schieber, G. M. Schmidt, M. Wang, S. W. Bailey, and P. J. Werdell, “SeaWiFS postlaunch calibration and validation analyses, Part 2,” NASA Tech. Memo. 2000-206892, S.B.Hooker, and E.R.Firestone, eds. (NASA Goddard Space Flight Center, 2000), Vol. 10, p. 57.

Schmidt, G. M.

C. R. McClain, R. A. Barnes, J. R. E. Eplee, B. A. Franz, N. C. Hsu, F. S. Patt, C. M. Pietras, W. D. Robinson, B. D. Schieber, G. M. Schmidt, M. Wang, S. W. Bailey, and P. J. Werdell, “SeaWiFS postlaunch calibration and validation analyses, Part 2,” NASA Tech. Memo. 2000-206892, S.B.Hooker, and E.R.Firestone, eds. (NASA Goddard Space Flight Center, 2000), Vol. 10, p. 57.

Sciandra, A.

H. Loisel, J. M. Nicolas, A. Sciandra, D. Stramski, and A. Poteau, “Spectral dependency of optical backscattering by marine particles from satellite remote sensing of the global ocean,” J. Geophys. Res. 111, C09024 (2006).
[CrossRef]

Scott, A. J.

D. Antoine, F. d'Ortenzio, S. B. Hooker, G. Becu, B. Gentili, D. Tailliez, and A. J. Scott, “Assessment of uncertainty in the ocean reflectance determined by three satellite ocean color sensors (MERIS, SeaWiFS and MODIS-A) at an offshore site in the Mediterranean Sea (BOUSSOLE project),” J. Geophys. Res. 113, C07013 (2008).
[CrossRef]

Shea, D. M.

M. J. Behrenfeld, E. Boss, D. Siegel, and D. M. Shea, “Carbon-based ocean productivity and phytoplankton physiology from space,” Global Biogeochem, Cycles 19, GB1006 (2005).
[CrossRef]

Siegel, D.

M. J. Behrenfeld, E. Boss, D. Siegel, and D. M. Shea, “Carbon-based ocean productivity and phytoplankton physiology from space,” Global Biogeochem, Cycles 19, GB1006 (2005).
[CrossRef]

J. O'Reilly, S. Maritorena, B. G. Mitchell, D. Siegel, K. L. Carder, S. Garver, M. Kahru, and C. McClain, “Ocean color chlorophyll algorithms for SeaWiFS,” J. Geophys. Res. 103, 24937-24953 (1998).
[CrossRef]

Siegel, D. A.

M. J. Behrenfeld, T. K. Westberry, E. S. Boss, R. T. O'Malley, D. A. Siegel, J. D. Wiggert, B. A. Franz, C. R. McClain, G. C. Feldman, S. C. Doney, J. K. Moore, G. Dall'Olmo, A. J. Milligan, I. Lima, and N. Mahowald, “Satellite-detected fluorescence reveals global physiology of ocean phytoplankton,” Biogeosciences 6, 779-794 (2009).
[CrossRef]

S. Maritorena, D. A. Siegel, and A. R. Peterson, “Optimization of a semianalytical ocean color model for global-scale applications,” Appl. Opt. 41, 2705-2714 (2002).
[CrossRef] [PubMed]

Smith, R. C.

H. R. Gordon, O. B. Brown, R. H. Evans, J. W. Brown, R. C. Smith, K. S. Baker, and D. K. Clark, “A semianalytic radiance model of ocean color,” J. Geophys. Res. 93, 10909-10924(1988).
[CrossRef]

R. C. Smith and K. S. Baker, “Optical properties of the clearest natural waters,” Appl. Opt. 20, 177-184 (1981).
[CrossRef] [PubMed]

Stein, A.

Steward, R. G.

Z. P. Lee, K. L. Carder, C. D. Mobley, R. G. Steward, and J. S. Patch, “Hyperspectral remote sensing for shallow waters. 1. A semianalytical model,” Appl. Opt. 37, 6329-6338(1998).
[CrossRef]

K. L. Carder, R. G. Steward, G. R. Harvey, and P. B. Ortner, “Marine humic and fulvic acids: their effects on remote sensing of ocean chlorophyll,” Limnol. Oceanogr. 34, 68-81(1989).
[CrossRef]

Stramski, D.

Y. Huot, A. Morel, M. S. Twardowski, D. Stramski, and R. A. Reynolds, “Particle optical backscattering along a chlorophyll gradient in the upper layer of the eastern South Pacific Ocean,” Biogeosciences 5, 495-507 (2008).
[CrossRef]

M. S. Twardowski, H. Claustre, S. A. Freeman, D. Stramski, and Y. Huot, “Optical backscattering properties of the “clearest” natural waters,” Biogeosciences 4, 1041-1058(2007).
[CrossRef]

H. Loisel, J. M. Nicolas, A. Sciandra, D. Stramski, and A. Poteau, “Spectral dependency of optical backscattering by marine particles from satellite remote sensing of the global ocean,” J. Geophys. Res. 111, C09024 (2006).
[CrossRef]

Z. P. Lee, M. Darecki, K. L. Carder, C. Davis, D. Stramski, and W. J. Rhea, “Diffuse attenuation coefficient of downwelling irradiance: an evaluation of remote sensing methods,” J. Geophys. Res. 110, C02017 (2005).
[CrossRef]

Sullivan, J. M.

M. S. Twardowski, E. Boss, J. M. Sullivan, and P. L. Donaghay, “Modeling the spectral shape of absorption by chromophoric dissolved organic matter,” Mar. Chem. 89, 69-88(2004).
[CrossRef]

Tailliez, D.

D. Antoine, F. d'Ortenzio, S. B. Hooker, G. Becu, B. Gentili, D. Tailliez, and A. J. Scott, “Assessment of uncertainty in the ocean reflectance determined by three satellite ocean color sensors (MERIS, SeaWiFS and MODIS-A) at an offshore site in the Mediterranean Sea (BOUSSOLE project),” J. Geophys. Res. 113, C07013 (2008).
[CrossRef]

Tieche, F.

A. Morel, B. Gentili, H. Claustre, A. Babin, A. Bricaud, J. Ras, and F. Tieche, “Optical properties of the "clearest" natural waters,” Limnol. Oceanogr. 52, 217-229 (2007).
[CrossRef]

Twardowski, M. S.

Y. Huot, A. Morel, M. S. Twardowski, D. Stramski, and R. A. Reynolds, “Particle optical backscattering along a chlorophyll gradient in the upper layer of the eastern South Pacific Ocean,” Biogeosciences 5, 495-507 (2008).
[CrossRef]

M. S. Twardowski, H. Claustre, S. A. Freeman, D. Stramski, and Y. Huot, “Optical backscattering properties of the “clearest” natural waters,” Biogeosciences 4, 1041-1058(2007).
[CrossRef]

M. S. Twardowski, E. Boss, J. M. Sullivan, and P. L. Donaghay, “Modeling the spectral shape of absorption by chromophoric dissolved organic matter,” Mar. Chem. 89, 69-88(2004).
[CrossRef]

Vargo, G. A.

C. Hu, F. E. Muller-Kager, G. A. Vargo, M. B. Neely, and E. Johns, “Linkages between coastal runoff and the Florida Keys ecosystem: a study of a dark plume event,” Geophys. Res. Lett. 31, L15307 (2004).
[CrossRef]

Wang, M.

H. R. Gordon and M. Wang, “Retrieval of water-leaving radiance and aerosol optical thickness over oceans with SeaWiFS: A preliminary algorithm,” Appl. Opt. 33, 443-452 (1994).
[CrossRef] [PubMed]

C. R. McClain, R. A. Barnes, J. R. E. Eplee, B. A. Franz, N. C. Hsu, F. S. Patt, C. M. Pietras, W. D. Robinson, B. D. Schieber, G. M. Schmidt, M. Wang, S. W. Bailey, and P. J. Werdell, “SeaWiFS postlaunch calibration and validation analyses, Part 2,” NASA Tech. Memo. 2000-206892, S.B.Hooker, and E.R.Firestone, eds. (NASA Goddard Space Flight Center, 2000), Vol. 10, p. 57.

Wang, P.

Warnken, K. W.

L. Guo, P. H. Santschi, and K. W. Warnken, “Dynamics of dissolved organic carbon (DOC) in oceanic environments,” Limnol. Oceanogr. 40, 1392-1403 (1995).
[CrossRef]

Weidemann, A.

Z. P. Lee, A. Weidemann, J. Kindle, R. Arnone, K. L. Carder, and C. Davis, “Euphotic zone depth: its derivation and implication to ocean-color remote sensing,” J. Geophys. Res. 112, C03009 (2007).
[CrossRef]

Werdell, P. J.

P. J. Werdell and S. W. Bailey, “An improved bio-optical data set for ocean color algorithm development and satellite data product validation,” Remote Sens. Environ. 98, 122-140 (2005).
[CrossRef]

C. R. McClain, R. A. Barnes, J. R. E. Eplee, B. A. Franz, N. C. Hsu, F. S. Patt, C. M. Pietras, W. D. Robinson, B. D. Schieber, G. M. Schmidt, M. Wang, S. W. Bailey, and P. J. Werdell, “SeaWiFS postlaunch calibration and validation analyses, Part 2,” NASA Tech. Memo. 2000-206892, S.B.Hooker, and E.R.Firestone, eds. (NASA Goddard Space Flight Center, 2000), Vol. 10, p. 57.

Westberry, T. K.

M. J. Behrenfeld, T. K. Westberry, E. S. Boss, R. T. O'Malley, D. A. Siegel, J. D. Wiggert, B. A. Franz, C. R. McClain, G. C. Feldman, S. C. Doney, J. K. Moore, G. Dall'Olmo, A. J. Milligan, I. Lima, and N. Mahowald, “Satellite-detected fluorescence reveals global physiology of ocean phytoplankton,” Biogeosciences 6, 779-794 (2009).
[CrossRef]

Whitmire, A. L.

Wiggert, J. D.

M. J. Behrenfeld, T. K. Westberry, E. S. Boss, R. T. O'Malley, D. A. Siegel, J. D. Wiggert, B. A. Franz, C. R. McClain, G. C. Feldman, S. C. Doney, J. K. Moore, G. Dall'Olmo, A. J. Milligan, I. Lima, and N. Mahowald, “Satellite-detected fluorescence reveals global physiology of ocean phytoplankton,” Biogeosciences 6, 779-794 (2009).
[CrossRef]

Zaneveld, J. R. V.

J. R. V. Zaneveld., A. H. Barnard, and E. Boss, “Theoretical derivation of the depth average of remotely sensed optical parameters,” Opt. Express 13, 9052-9061 (2005).
[CrossRef] [PubMed]

J. R. V. Zaneveld, “A theoretical derivation of the dependence of the remotely sensed reflectance of the ocean on the inherent optical properties,” J. Geophys. Res. 100, 13135-13142 (1995).
[CrossRef]

Zaneveld, R.

R. Zaneveld, A. Barnard, and Z.-P. Lee, “Why are inherent optical properties needed in ocean-colour remote sensing,” in Remote Sensing of Inherent Optical Properties: Fundamentals, Tests of Algorithms and Applications, Z. -P.Lee, ed. (IOCCG, 2006).
[PubMed]

Zhang, X.

Zibordi, G.

G. Zibordi, S. B. Hooker, J. F. Berthon, and D. D'Alimonte, “Autonomous above-water radiance measurements from an offshore platform: a field assessment experiment,” J. Atmos. Oceanic Technol. 19, 808-819 (2002).
[CrossRef]

Appl. Opt. (14)

M. S. Salama and A. Stein, “Error decomposition and estimation of inherent optical properties,” Appl. Opt. 48, 4947-4962(2009).
[CrossRef] [PubMed]

H. R. Gordon and M. Wang, “Retrieval of water-leaving radiance and aerosol optical thickness over oceans with SeaWiFS: A preliminary algorithm,” Appl. Opt. 33, 443-452 (1994).
[CrossRef] [PubMed]

P. Wang, E. Boss, and C. Roesler, “Uncertainties of inherent optical properties obtained from semi-analytical inversions of ocean color,” Appl. Opt. 44, 4074-4085 (2005).
[CrossRef] [PubMed]

H. R. Gordon, “Normalized water-leaving radiance: revisiting the influence of surface roughness,” Appl. Opt. 44, 241-248(2005).
[CrossRef] [PubMed]

Z. P. Lee, K. L. Carder, and R. Arnone, “Deriving inherent optical properties from water color: a multiband quasi-analytical algorithm for optically deep waters,” Appl. Opt. 41, 5755-5772(2002).
[CrossRef] [PubMed]

S. Maritorena, D. A. Siegel, and A. R. Peterson, “Optimization of a semianalytical ocean color model for global-scale applications,” Appl. Opt. 41, 2705-2714 (2002).
[CrossRef] [PubMed]

Z. P. Lee, K. L. Carder, C. D. Mobley, R. G. Steward, and J. S. Patch, “Hyperspectral remote sensing for shallow waters. 1. A semianalytical model,” Appl. Opt. 37, 6329-6338(1998).
[CrossRef]

A. Morel and B. Gentili, “Diffuse reflectance of oceanic waters (2): Bi-directional aspects,” Appl. Opt. 32, 6864-6879 (1993).
[CrossRef] [PubMed]

R. Pope and E. Fry, “Absorption spectrum (380-700 nm) of pure waters: II. Integrating cavity measurements,” Appl. Opt. 36, 8710-8723 (1997).
[CrossRef]

R. C. Smith and K. S. Baker, “Optical properties of the clearest natural waters,” Appl. Opt. 20, 177-184 (1981).
[CrossRef] [PubMed]

H. R. Gordon, “Radiometric considerations for ocean color remote sensors,” Appl. Opt. 29, 3228-3236 (1990).
[CrossRef] [PubMed]

Z. P. Lee, K. L. Carder, and K. P. Du, “Effects of molecular and particle scatterings on model parameters for remote-sensing reflectance,” Appl. Opt. 43, 4957-4964 (2004).
[CrossRef] [PubMed]

H. R. Gordon and W. R. Mcluney, “Estimation of the depth of sunlight penetration in the sea for remote sensing,” Appl. Opt. 14, 413-416 (1975).
[CrossRef] [PubMed]

Y.-J. Park and K. Ruddick, “Model of remote-sensing reflectance including bidirectional effects for case 1 and case 2 waters,” Appl. Opt. 44, 1236-1249 (2005).
[CrossRef] [PubMed]

Biogeosciences (3)

M. S. Twardowski, H. Claustre, S. A. Freeman, D. Stramski, and Y. Huot, “Optical backscattering properties of the “clearest” natural waters,” Biogeosciences 4, 1041-1058(2007).
[CrossRef]

M. J. Behrenfeld, T. K. Westberry, E. S. Boss, R. T. O'Malley, D. A. Siegel, J. D. Wiggert, B. A. Franz, C. R. McClain, G. C. Feldman, S. C. Doney, J. K. Moore, G. Dall'Olmo, A. J. Milligan, I. Lima, and N. Mahowald, “Satellite-detected fluorescence reveals global physiology of ocean phytoplankton,” Biogeosciences 6, 779-794 (2009).
[CrossRef]

Y. Huot, A. Morel, M. S. Twardowski, D. Stramski, and R. A. Reynolds, “Particle optical backscattering along a chlorophyll gradient in the upper layer of the eastern South Pacific Ocean,” Biogeosciences 5, 495-507 (2008).
[CrossRef]

Geophys. Res. Lett. (2)

C. Hu, F. E. Muller-Kager, G. A. Vargo, M. B. Neely, and E. Johns, “Linkages between coastal runoff and the Florida Keys ecosystem: a study of a dark plume event,” Geophys. Res. Lett. 31, L15307 (2004).
[CrossRef]

W. W. Gregg and M. E. Conkright, “Decadal changes in global ocean chlorophyll,” Geophys. Res. Lett. 29, 1730 (2002).
[CrossRef]

Global Biogeochem, Cycles (1)

M. J. Behrenfeld, E. Boss, D. Siegel, and D. M. Shea, “Carbon-based ocean productivity and phytoplankton physiology from space,” Global Biogeochem, Cycles 19, GB1006 (2005).
[CrossRef]

Int. J. Remote Sens. (1)

S. Sathyendranath, L. Prieur, and A. Morel, “A three-component model of ocean colour and its application to remote sensing of phytoplankton pigments in coastal waters,” Int. J. Remote Sens. 10, 1373-1394 (1989).
[CrossRef]

J. Atmos. Oceanic Technol. (1)

G. Zibordi, S. B. Hooker, J. F. Berthon, and D. D'Alimonte, “Autonomous above-water radiance measurements from an offshore platform: a field assessment experiment,” J. Atmos. Oceanic Technol. 19, 808-819 (2002).
[CrossRef]

J. Geophys. Res. (13)

Z. P. Lee, M. Darecki, K. L. Carder, C. Davis, D. Stramski, and W. J. Rhea, “Diffuse attenuation coefficient of downwelling irradiance: an evaluation of remote sensing methods,” J. Geophys. Res. 110, C02017 (2005).
[CrossRef]

A. Bricaud, M. Babin, A. Morel, and H. Claustre, “Variability in the chlorophyll-specific absorption coefficients of natural phytoplankton: analysis and parameterization,” J. Geophys. Res. 100, 13321-13332 (1995).
[CrossRef]

A. Morel and S. Maritorena, “Bio-optical properties of oceanic waters: a reappraisal,” J. Geophys. Res. 106, 7163-7180 (2001).
[CrossRef]

H. Loisel, J. M. Nicolas, A. Sciandra, D. Stramski, and A. Poteau, “Spectral dependency of optical backscattering by marine particles from satellite remote sensing of the global ocean,” J. Geophys. Res. 111, C09024 (2006).
[CrossRef]

M. Chami and M. Defoin-Platel, “How ambiguous is the inverse problem of ocean color in coastal waters?,” J. Geophys. Res. 112, C03004 (2007).
[CrossRef]

Z. P. Lee, A. Weidemann, J. Kindle, R. Arnone, K. L. Carder, and C. Davis, “Euphotic zone depth: its derivation and implication to ocean-color remote sensing,” J. Geophys. Res. 112, C03009 (2007).
[CrossRef]

M. Doron, M. Babin, A. Mangin, and O. Hembise, “Estimation of light penetration, and horizontal and vertical visibility in oceanic and coastal waters from surface reflectance,” J. Geophys. Res. 112, C06003 (2007).
[CrossRef]

D. Antoine, F. d'Ortenzio, S. B. Hooker, G. Becu, B. Gentili, D. Tailliez, and A. J. Scott, “Assessment of uncertainty in the ocean reflectance determined by three satellite ocean color sensors (MERIS, SeaWiFS and MODIS-A) at an offshore site in the Mediterranean Sea (BOUSSOLE project),” J. Geophys. Res. 113, C07013 (2008).
[CrossRef]

J. O'Reilly, S. Maritorena, B. G. Mitchell, D. Siegel, K. L. Carder, S. Garver, M. Kahru, and C. McClain, “Ocean color chlorophyll algorithms for SeaWiFS,” J. Geophys. Res. 103, 24937-24953 (1998).
[CrossRef]

J. R. V. Zaneveld, “A theoretical derivation of the dependence of the remotely sensed reflectance of the ocean on the inherent optical properties,” J. Geophys. Res. 100, 13135-13142 (1995).
[CrossRef]

K. L. Carder, F. R. Chen, Z. P. Lee, S. K. Hawes, and D. Kamykowski, “Semianalytic Moderate-Resolution Imaging Spectrometer algorithms for chlorophyll-a and absorption with bio-optical domains based on nitrate-depletion temperatures,” J. Geophys. Res. 104, 5403-5421 (1999).
[CrossRef]

H. R. Gordon, O. B. Brown, R. H. Evans, J. W. Brown, R. C. Smith, K. S. Baker, and D. K. Clark, “A semianalytic radiance model of ocean color,” J. Geophys. Res. 93, 10909-10924(1988).
[CrossRef]

F. E. Hoge and P. E. Lyon, “Satellite retrieval of inherent optical properties by linear matrix inversion of oceanic radiance models: an analysis of model and radiance measurement errors,” J. Geophys. Res. 101, 16631-16648 (1996).
[CrossRef]

Limnol. Oceanogr. (6)

A. Bricaud, A. Morel, and L. Prieur, “Absorption by dissolved organic matter of the sea (yellow substance) in the UV and visible domains,” Limnol. Oceanogr. 26, 43-53 (1981).
[CrossRef]

C. S. Roesler, M. J. Perry, and K. L. Carder, “Modeling in situ phytoplankton absorption from total absorption spectra in productive inland marine waters,” Limnol. Oceanogr. 34, 1510-1523 (1989).
[CrossRef]

K. L. Carder, R. G. Steward, G. R. Harvey, and P. B. Ortner, “Marine humic and fulvic acids: their effects on remote sensing of ocean chlorophyll,” Limnol. Oceanogr. 34, 68-81(1989).
[CrossRef]

L. Guo, P. H. Santschi, and K. W. Warnken, “Dynamics of dissolved organic carbon (DOC) in oceanic environments,” Limnol. Oceanogr. 40, 1392-1403 (1995).
[CrossRef]

H. R. Gordon, “Can the Lambert-Beer law be applied to the diffuse attenuation coefficient of ocean water?,” Limnol. Oceanogr. 34, 1389-1409 (1989).
[CrossRef]

A. Morel, B. Gentili, H. Claustre, A. Babin, A. Bricaud, J. Ras, and F. Tieche, “Optical properties of the "clearest" natural waters,” Limnol. Oceanogr. 52, 217-229 (2007).
[CrossRef]

Mar. Chem. (1)

M. S. Twardowski, E. Boss, J. M. Sullivan, and P. L. Donaghay, “Modeling the spectral shape of absorption by chromophoric dissolved organic matter,” Mar. Chem. 89, 69-88(2004).
[CrossRef]

Opt. Express (3)

Remote Sens. Environ. (3)

T. S. Moore, J. W. Campbell, and M. D. Dowell, “A class-based approach to characterizing and mapping the uncertainty of the MODIS ocean chlorophyll product,” Remote Sens. Environ. 113, 2424-2430 (2009).
[CrossRef]

C. Hu, K. L. Carder, and F. E. Muller-Karger, “How precise are SeaWiFS ocean color estimates? Implications of digitization-noise errors,” Remote Sens. Environ. 76, 239-249 (2001).
[CrossRef]

P. J. Werdell and S. W. Bailey, “An improved bio-optical data set for ocean color algorithm development and satellite data product validation,” Remote Sens. Environ. 98, 122-140 (2005).
[CrossRef]

Science (1)

T. Platt and S. Sathyendranath, “Oceanic primary production: estimation by remote sensing at local and regional scales,” Science 241, 1613-1620 (1988).
[CrossRef] [PubMed]

Other (11)

International Ocean-Colour Coordinating Group, “Why ocean colour? The societal benefits of ocean-colour technology,” in Reports of the International Ocean-Colour Coordinating Group, No. 7, T. Platt, N. Hoepffner, V. Stuart, and C. Brown, eds. (IOCCG, 2008).

International Ocean-Colour Coordinating Group, “Minimum requirements for an operational ocean-color sensor for the open ocean,” in Reports of the International Ocean-Color Coordinating Group, No. 1, A. Morel, ed. (IOCCG, 1998).

International Ocean-Colour Coordinating Group, “Remote sensing of ocean colour in coastal, and other optically-complex, waters,” in Reports of the International Ocean-Colour Coordinating Group, No.3, S. Sathyendranath, ed. (IOCCG, 2000).

E. S. Boss and S. Maritorena, “Uncertainties in the products of ocean-colour remote sensing,” in Remote Sensing of Inherent Optical Properties: Fundamentals, Tests of Algorithms and Applications, Z. -P.Lee, ed. (IOCCG, 2006).
[PubMed]

C. R. McClain, R. A. Barnes, J. R. E. Eplee, B. A. Franz, N. C. Hsu, F. S. Patt, C. M. Pietras, W. D. Robinson, B. D. Schieber, G. M. Schmidt, M. Wang, S. W. Bailey, and P. J. Werdell, “SeaWiFS postlaunch calibration and validation analyses, Part 2,” NASA Tech. Memo. 2000-206892, S.B.Hooker, and E.R.Firestone, eds. (NASA Goddard Space Flight Center, 2000), Vol. 10, p. 57.

International Ocean-Colour Coordinating Group, “Remote sensing of inherent optical properties: fundamentals, tests of algorithms, and applications,” in Reports of the International Ocean-Colour Coordinating Group, No. 5, Z. -P.Lee, ed. (IOCCG, 2006), p. 126.

S. L. Meyer, Data Analysis for Scientists and Engineers (Wiley, 1975).

H. R. Gordon and A. Morel, Remote Assessment of Ocean Color for Interpretation of Satellite Visible Imagery: A Review (Springer-Verlag, 1983), p. 44.

R. Zaneveld, A. Barnard, and Z.-P. Lee, “Why are inherent optical properties needed in ocean-colour remote sensing,” in Remote Sensing of Inherent Optical Properties: Fundamentals, Tests of Algorithms and Applications, Z. -P.Lee, ed. (IOCCG, 2006).
[PubMed]

A. Morel, “Optical properties of pure water and pure sea water,” in Optical Aspects of Oceanography, N. G. Jerlov and E. S. Nielsen, eds. (Academic, 1974), pp. 1-24.

C. D. Mobley, Hydrolight 3.0 Users' Guide (SRI International, 1995).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

Schematic chart to show variables and steps (S1–S7) involved in the QAA procedure, redrawn from Lee et al. [23]. Variables with uncertainties ( U 1 U 4 ) discussed in this study are highlighted with gray, while all others assumed error free.

Fig. 2
Fig. 2

Examples of simulated optical properties at 440 and 555 nm (a) for absorption coefficients and (b) for remote-sensing reflectance (subsurface). For comparison, corresponding values from the NOMAD data set [38] are also plotted. For NOMAD, there are 915 pairs of absorption coefficients, while there are 984 pairs of reflectance coefficients, but there are 46,200 pairs of values for the simulated data sets. The NOMAD r rs values were converted from above-surface remote-sensing reflectance ( R rs ) with r rs = R rs / ( 0.52 + 1.7 R rs ) .

Fig. 3
Fig. 3

(a) QAA-derived a ( 550 ) compared with known a ( 550 ) of the simulated data set. Statistics of data in log scale are shown in the figure. (b). Histogram of absolute percentage error in linear scale, | a ( 550 ) known a ( 550 ) QAA | / a ( 550 ) known . The average of this error is 15.6%.

Fig. 4
Fig. 4

Histograms of | a ( 550 ) known a ( 550 ) QAA | / a ( 550 ) QAA for a few designated a ( 550 ) QAA values. The first value in a figure represents a ( 550 ) QAA , and the second value represents the number of points for that a ( 550 ) QAA group (see text for details).

Fig. 5
Fig. 5

Relationships between Δ a ( 550 ) / a ( 550 ) QAA and a ( 550 ) QAA for a ( 550 ) QAA up to 0.4 m 1 . The values of Δ a ( 550 ) from two different calculations are presented; one (open square) is the average of | a ( 550 ) known a ( 550 ) QAA | of each group, and the other (gray triangle) is the 65th percentile of | a ( 550 ) known a ( 550 ) QAA | of each group. The solid dots represent an empirical fit [Eq. (28) divided by a ( 550 ) QAA ] for easy evaluation of Δ a ( 550 ) .

Fig. 6
Fig. 6

Relative uncertainty of QAA-derived b b p ( 550 ) (a) for the entire simulated data set and (b) for data with a ( 550 ) < 0.065 m 1 .

Fig. 7
Fig. 7

Relationship between relative uncertainty of a ( 440 ) [ Δ a ( 440 ) / a ( 440 ) QAA , red ] and QAA-derived a ( 440 ) . Also shown are contributions of Δ a ( 550 ) (blue) and Δ η (green), respectively, to the relative uncertainty.

Fig. 8
Fig. 8

Uncertainty of QAA-derived a d g ( 440 ) . Also shown are the contributions of Δ a , Δ ζ , and Δ ξ , respectively.

Fig. 9
Fig. 9

Uncertainty of QAA-derived a p h ( 440 ) (a) for the entire simulated data set, with contributions of Δ a , Δ ζ , and Δ ξ , respectively; (b) for data with 0.06 a d g ( 440 ) / a p h ( 440 ) 2 and 1.43 a d g ( 410 ) / a d g ( 440 ) 1.72 .

Equations (32)

Equations on this page are rendered with MathJax. Learn more.

u ( λ ) = b b ( λ ) a ( λ ) + b b ( λ ) .
r rs ( λ ) = ( g 0 + g 1 u ( λ ) ) u ( λ ) .
A ( λ ) = 1 u ( λ ) u ( λ ) ,
B ( λ ) = u ( λ ) 1 u ( λ ) .
χ = log ( r rs ( 443 ) + r rs ( 490 ) r rs ( λ 0 ) + 5 r rs ( 667 ) r rs ( 490 ) r rs ( 667 ) ) , a ( λ 0 ) = a w ( λ 0 ) + 10 1.146 1.366 χ 0.469 χ 2 ,
b b p ( λ 0 ) = B ( λ 0 ) a ( λ 0 ) b b w ( λ 0 ) .
b b p ( λ ) = b b p ( λ 0 ) ρ ( λ , λ 0 ) .
ρ ( λ , λ 0 ) = ( λ 0 λ ) η ,
η = 2.0 [ 1 1.2 exp ( 0.9 r rs ( 440 ) r rs ( 550 ) ) ] .
a ( λ ) = A ( λ ) ( b b p ( λ ) + b b w ( λ ) ) .
a d g ( λ 2 ) = [ a ( λ 1 ) ζ a ( λ 2 ) ] [ a w ( λ 1 ) ζ a w ( λ 2 ) ] ξ ζ , a p h ( λ 2 ) = [ ξ a ( λ 2 ) a ( λ 1 ) ] [ ξ a w ( λ 2 ) a w ( λ 1 ) ] ξ ζ .
z = f ( x i , i 1 N ) ,
Δ z = i = 1 N [ Δ z ( Δ x i ) ] 2 .
Δ z = i = 1 N ( z x i Δ x i ) 2 ,
b b p ( λ 0 ) = B ( λ 0 ) Δ a ( λ 0 ) ,
Δ b b p ( λ ) = ( B ( λ 0 ) ( λ 0 λ ) η Δ a ( λ 0 ) ) 2 + ( [ B ( λ 0 ) a ( λ 0 ) b b w ( λ 0 ) ] ( λ 0 λ ) η ln ( λ 0 λ ) Δ η ) 2 .
Δ a ( λ ) = ( A ( λ ) B ( λ 0 ) ( λ 0 λ ) η Δ a ( λ 0 ) ) 2 + ( A ( λ ) [ B ( λ 0 ) a ( λ 0 ) b b w ( λ 0 ) ] ( λ 0 λ ) η ln ( λ 0 λ ) Δ η ) 2 .
a 12 ζ = a ( λ 1 ) ζ a ( λ 2 ) .
a 12 ζ = b b p ( λ 0 ) [ A ( λ 1 ) ( λ 0 λ 1 ) η ζ A ( λ 2 ) ( λ 0 λ 2 ) η ] + σ .
σ = A ( λ 1 ) b b w ( λ 1 ) ζ A ( λ 2 ) b b w ( λ 2 ) ,
( Δ a 12 ζ ) 2 = { Δ b b p ( λ 0 ) [ A ( λ 1 ) ( λ 0 λ 1 ) η ζ A ( λ 2 ) ( λ 0 λ 2 ) η ] } 2 + { b b p ( λ 0 ) [ A ( λ 1 ) ( λ 0 λ 1 ) η ln ( λ 0 λ 1 ) ζ A ( λ 2 ) ( λ 0 λ 2 ) η ln ( λ 0 λ 2 ) ] Δ η } 2 .
( Δ a d g ( λ 2 ) ) 2 = ( Δ a 12 ζ ) 2 ( ξ ζ ) 2 + ( a 12 ζ a w ( λ 1 ) + ζ a w ( λ 2 ) ( ξ ζ ) 2 Δ ξ ) 2 + ( a w ( λ 2 ) a ( λ 2 ) ξ ζ Δ ζ + a 12 ζ a w ( λ 1 ) + ζ a w ( λ 2 ) ( ξ ζ ) 2 Δ ζ ) 2 .
a 21 ξ = ξ a ( λ 2 ) a ( λ 1 ) .
( Δ a p h ( λ 2 ) ) 2 = ( Δ a 21 ξ ) 2 ( ξ ζ ) 2 + ( a 21 ξ + a w ( λ 1 ) ξ a w ( λ 2 ) ( ξ ζ ) 2 Δ ζ ) 2 + ( a ( λ 2 ) a w ( λ 2 ) ξ ζ Δ ξ a 21 ξ + a w ( λ 1 ) ξ a w ( λ 2 ) ( ξ ζ ) 2 Δ ξ ) 2 ,
( Δ a 21 ξ ) 2 = { Δ b b p ( λ 0 ) [ ξ A ( λ 2 ) ( λ 0 λ 2 ) η A ( λ 1 ) ( λ 0 λ 1 ) η ] } 2 + { b b p ( λ 0 ) [ ξ A ( λ 2 ) ( λ 0 λ 2 ) η ln ( λ 0 λ 2 ) A ( λ 1 ) ( λ 0 λ 1 ) η ln ( λ 0 λ 1 ) ] Δ η } 2 .
a ( λ ) = a w ( λ ) + a p h ( λ ) + a d g ( λ ) , b b ( λ ) = b b w ( λ ) + b b p ( λ ) .
a p h ( λ ) = a p h ( 440 ) a p h + ( λ ) , a d g ( λ ) = a d g ( 440 ) e S ( λ 440 ) , b bp ( λ ) = b bp ( 440 ) ( 440 λ ) η .
a d g ( 440 ) = p 1 a p h ( 440 ) , b b p ( 440 ) = p 2 ( a p h ( 440 ) + a d g ( 440 ) ) .
p 2 = 0.001 + 0.3 R a p h ( 440 ) 0.006 + a p h ( 440 ) ,
ε = | a ( 550 ) known a ( 550 ) QAA | ,
Δ a ( 550 ) 0.35 ( 1 2.4 exp ( 16.0 a ( 550 ) QAA ) ) a ( 550 ) QAA .
Δ b b p ( 550 ) b b p ( 550 ) QAA = B ( 550 ) Δ a ( 550 ) B ( 550 ) a ( 550 ) QAA b b w ( 550 ) .

Metrics