Abstract

We explore the use of nonsymmetric geometries to simulate the single-scattering properties of airborne dust particles with complicated morphologies. Specifically, the shapes of irregular dust particles are assumed to be nonsymmetric hexahedra defined by using the Monte Carlo method. A combination of the discrete dipole approximation method and an improved geometric optics method is employed to compute the single-scattering properties of dust particles for size parameters ranging from 0.5 to 3000. The primary optical effect of eliminating the geometric symmetry of regular hexahedra is to smooth the scattering features in the phase function and to decrease the backscatter. The optical properties of the nonsymmetric hexahedra are used to mimic the laboratory measurements. It is demonstrated that a relatively close agreement can be achieved by using only one shape of nonsymmetric hexahedra. The agreement between the theoretical results and their measurement counterparts can be further improved by using a mixture of nonsymmetric hexahedra. It is also shown that the hexahedron model is much more appropriate than the “equivalent sphere” model for simulating the optical properties of dust particles, particularly, in the case of the elements of the phase matrix that associated with the polarization state of scattered light.

© 2010 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. G. A. d'Almeida, P. Koepke, and E. P. Shettle, Atmospheric Aerosols: Global Climatology and Radiative Characteristics (Deepak, 1991).
  2. P. Chýlek and J. Coakley, “Aerosols and climate,” Science 183, 75-77 (1974).
    [CrossRef]
  3. J. Haywood and O. Boucher, “Estimates of the direct and indirect radiative forcing due to troposphere aerosols: a review,” Rev. Geophys. 38, 513-544 (2000).
    [CrossRef]
  4. V. Ramanathan, P. J. Crutzen, J. T. Kiehl, and D. Rosenfeld, “Aerosols, climate, and the hydrological cycle,” Science 294, 2119-2124 (2001).
    [CrossRef]
  5. I. N. Sokolik, D. Winker, G. Bergametti, D. Gillette, G. Carmichael, Y. J. Kaufman, L. Gomes, L. Schuetz, and J. Penner, “Introduction to special section on mineral dust: outstanding problems in quantifying the radiative impact of mineral dust,” J. Geophys. Res. 106, 18015-18027 (2001).
    [CrossRef]
  6. Y. J. Kaufman, D. Tanre, and O. Boucher, “A satellite view of aerosols in the climate system,” Nature 419, 215-222 (2002).
    [CrossRef]
  7. H. Volten, O. Muñoz, J. W. Hovenier, and L. B. F. M. Waters, “An update of the Amsterdam light scattering database,” J. Quant. Spectrosc. Radiat. Transfer 100, 437-443 (2006).
    [CrossRef]
  8. R. A. West, L. R. Doose, A. M. Eibl, M. G. Tomasko, and M. I. Mishchenko, “Laboratory measurements of mineral dust scattering phase function and linear polarization,” J. Geophys. Res. 102, 16871-16881 (1997).
    [CrossRef]
  9. D. B. Curtis, B. Meland, M. Aycibin, N. P. Arnold, V. H. Grassian, M. A. Young, and P. D. Kleiber, “A laboratory investigation of light scattering from representative components of mineral dust aerosols at a wavelength of 550 nm,” J. Geophys. Res. 113, D08210 (2008).
    [CrossRef]
  10. O. V. Kalashnikova and I. N. Sokolik, “Importance of shapes and compositions of wind-blown dust particles for remote sensing at solar wavelengths,” Geophys. Res. Lett. 29, doi:10.1029/2002GL014947 (2002).
    [CrossRef]
  11. M. I. Mishchenko, A. A. Lacis, B. E. Carlson, and L. D. Travis, “Nonsphericity of dust-like tropospheric aerosols: implications for aerosol remote sensing and climate modeling,” Geophys. Res. Lett. 22, 1077-1080 (1995).
    [CrossRef]
  12. Q. Feng, P. Yang, G. W. Kattawar, C. N. Hsu, S.-C. Tsay, and I. Laszlo, “Effects of particle nonsphericity and radiation polarization on retrieving dust properties from MODIS observations,” J. Aerosol Sci. 40, 776-789 (2009).
    [CrossRef]
  13. M. Kahnert, T. Nousiainen, and B. Veihelmann, “Spherical and spheroidal model particles as an error source in aerosol climate forcing and radiance computations: a case study for feldspar aerosols,” J. Geophys. Res. 110, D18S13 (2005).
    [CrossRef]
  14. M. Kahnert, T. Nousiainen, and P. Raisanen, “Mie simulations as an error source in mineral aerosol radiative forcing calculations,” Q. J. R. Meteorol. Soc. 133, 299-307 (2007).
    [CrossRef]
  15. M. I. Mishchenko, J. W. Hovenier, and L. D. Travis, Light Scattering by Nonspherical Particles: Theory, Measurements, and Applications (Academic, 2000), pp. 327.
  16. H. C. van de Hulst, Light Scattering by Small Particles (Dover, 1981).
  17. C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, 1983).
  18. T. Nousiainen, “Optical modeling of mineral dust particles: a review,” J. Quant. Spectrosc. Radiat. Transfer 110, 1261-1279 (2009).
    [CrossRef]
  19. A. Macke and M. I. Mishchenko, “Applicability of regular particle shapes in light scattering calculations for atmospheric ice particles,” Appl. Opt. 35, 4291-4296 (1996).
    [CrossRef]
  20. F. M. Kahnert, J. J. Stamnes, and K. Stamnes, “Can simple particle shapes be used to model scalar optical properties of an ensemble of wavelength-sized particles with complex shapes?,” J. Opt. Soc. Am. A 19, 521-531 (2002).
    [CrossRef]
  21. M. I. Mishchenko, L. D. Travis, R. A. Kahn, and R. A. West, “Modeling phase functions for dustlike troposheric aerosols using a shape mixture of randomly oriented polydisperse spheroids,” J. Geophys. Res. 102, 16831-16847 (1997).
    [CrossRef]
  22. O. Dubovik, B. N. Holben, T. Lapyonok, A. Sinyuk, M. I. Mishchenko, P. Yang, and I. Slutsker, “Non-spherical aerosol retrieval method employing light scattering by spheroids,” Geophys. Res. Lett. 29, 014506 (2002).
    [CrossRef]
  23. O. Dubovik, A. Sinyuk, T. Lapyonok, B. N. Holben, M. I. Mishchenko, P. Yang, T. F. Eck, H. Volten, O. Munoz, B. Veihelmann, W. J. van der Zande, J. F. Leon, M. Sorokin, and I. Slutsker, “Application of spheroid models to account for aerosol particle nonsphericity in remote sensing of desert dust,” J. Geophys. Res. 111, D11208 (2006).
    [CrossRef]
  24. P. Yang, Q. Feng, G. Hong, G. W. Kattawar, W. J. Wiscombe, M. I. Mishchenko, O. Dubovik, I. Laszlo, and I. N. Sokolik, “Modeling of the scattering and radiative properties of nonspherical dust particles,” J. Aerosol. Sci. 38, 995-1014(2007).
    [CrossRef]
  25. L. Bi, P. Yang, G. W. Kattawar, and R. Kahn, “Single-scattering properties of tri-axial ellipsoidal particles for a size parameter range from the Rayleigh to geometric-optics regimes,” Appl. Opt. 48, 114-126 (2009).
    [CrossRef]
  26. A. A. Kokhanovsky, “Optical properties of irregularly shaped particles,” J. Appl. Phys. D 36, 915-923 (2003).
    [CrossRef]
  27. O. V. Kalashnikova, R. Kahn, I. N. Sokolik, and W.-H. Li, “Ability of multiangle remote sensing observations to identify and distinguish mineral dust types: optical models and retrievals of optically thick plumes,” J. Geophys. Res. 110, D18S14(2005).
    [CrossRef]
  28. P. Chylek, G. W. Grams, and R. G. Pinnick, “Light scattering by irregular randomly oriented particles,” Science 193, 480-482 (1976).
    [CrossRef]
  29. J. B. Pollack and J. N. Cuzzi, “Scattering by nonspherical particles of size comparable to a wavelength: a new semi-empirical theory and its application to tropospheric aerosols,” J. Atmos. Sci. 37, 868-881 (1980).
    [CrossRef]
  30. P. Drossart, “A statistical model for the scattering by irregular particles,” Astrophys. J. 361, L29-L32 (1990).
    [CrossRef]
  31. T. C. Grenfell and S. G. Warren, “Representation of a nonspherical ice particle by a collection of independent spheres for scattering and absorption of radiation,” J. Geophys. Res. 104, 31697-31709 (1999).
    [CrossRef]
  32. B. Veihelmann, “Sunlight on atmospheric water vapor and mineral aerosol: modeling the link between laboratory data and remote sensing,” Ph.D. thesis (Radboud University Nijmegen, 2005).
  33. P. Yang, K. N. Liou, M. I. Mishchenko, and B.-C. Gao, “Efficient finite-difference time domain scheme for light scattering by dielectric particles: application to aerosols,” Appl. Opt. 39, 3727-3737 (2000).
    [CrossRef]
  34. A. Macke, J. Mueller, and E. Raschke, “Single scattering properties of atmospheric ice crystals,” J. Atmos. Sci. 53, 2813-2825 (1996).
    [CrossRef]
  35. M. I. Mishchenko, L. D. Travis, and A. Macke, “Scattering of light by polydisperse, randomly oriented, finite circular cylinders,” Appl. Opt. 35, 4927-4940 (1996).
    [CrossRef]
  36. A. Macke, “Scattering of light by polyhedral ice crystals,” Appl. Opt. 32, 2780-2788 (1993).
    [CrossRef]
  37. P. Yang, B. A. Baum, A. J. Heymsfield, Y.-X. Hu, H.-L. Huang, S.-C. Tsay, and S. A. Ackerman, “Single scattering properties of droxtals,” J. Quant. Spectrosc. Radiat. Transfer 79-80, 1159-1169 (2003).
  38. Z. Zhang, P. Yang, G. W. Kattawar, S.-C. Tsay, B. A. Baum, Y. Hu, A. J. Heymsfield, and J. Reichardt, “Geometrical-optics solution to light scattering by droxtal ice crystals,” Appl. Opt. 43, 2490-2499 (2004).
    [CrossRef]
  39. Z. Zhang, P. Yang, G. W. Kattawar, and W. J. Wiscombe, “Single-scattering properties of platonic solids in geometrical-optics regime,” J. Quant. Spectrosc. Radiat. Transfer 106, 595-603 (2007).
    [CrossRef]
  40. P. C. Waterman, “Matrix formulation of electromagnetic scattering,” Proc. IEEE 53, 805-812 (1965).
    [CrossRef]
  41. M. I. Mishchenko, L. D. Travis, and D. W. Mackowski, “T-matrix computations of light scattering by nonspherical particles: a review,” J. Quant. Spectrosc. Radiat. Transfer 55, 535-575 (1996).
    [CrossRef]
  42. A. Doicu, Y. Eremin, and T. Wriedt, Acoustic and Electromagnetic Scattering Analysis Using Discrete Sources (Academic, 2000).
  43. E. M. Purcell and C. R. Pennypacker, “Scattering and absorption of light by nonspherical dielectric grains,” Astrophys. J. 186, 705-714 (1973).
    [CrossRef]
  44. B. T. Draine, “The discrete-dipole approximation and its application to interstellar graphite grains,” Astrophys. J. 333, 848-872 (1988).
    [CrossRef]
  45. G. H. Goedecke and S. G. O'Brien, “Scattering by irregular inhomogeneous particles via the digitized Green's function algorithm,” Appl. Opt. 27, 2431-2438 (1988).
    [CrossRef]
  46. M. A. Yurkin and A. G. Hoekstra, “The discrete dipole approximation: an overview and recent developments,” J. Quant. Spectrosc. Radiat. Transfer 106, 558-589 (2007).
    [CrossRef]
  47. S. K. Yee, “Numerical solution of initial boundary value problems involving Maxwell's equations in isotropic media,” IEEE Trans. Antennas Propag. 14, 302-307 (1966).
    [CrossRef]
  48. P. Yang and K. N. Liou, “Finite-difference time domain method for light scattering by small ice crystals in three-dimensional space,” J. Opt. Soc. Am. A 13, 2072-2085(1996).
    [CrossRef]
  49. W. Sun, Q. Fu, and Z. Chen, “Finite-difference time-domain solution of light scattering by dielectric particles with perfectly matched layer absorbing boundary conditions,” Appl. Opt. 38, 3141-3151 (1999).
    [CrossRef]
  50. P. Yang and K. N. Liou, “Geometric-optics-integral-equation method for light scattering by nonspherical ice crystals,” Appl. Opt. 35, 6568-6584 (1996).
    [CrossRef]
  51. K. Muinonen, “Scattering of light by crystals: a modified Kirchhoff approximation,” Appl. Opt. 28, 3044-3050 (1989).
    [CrossRef]
  52. P. Yang and K. N. Liou, “Single-scattering properties of complex ice crystals in terrestrial atmosphere,” Contrib. Atmos. Phys. 71, 223-248 (1998).
  53. E. W. Weisstein, “Hexahedron,” from MathWorld--A Wolfram Web Resource, http://mathworld.wolfram.com/Hexahedron.html
  54. J. S. Foot, “Some observations of the optical properties of clouds: II. Cirrus,” Q. J. R. Meteorol. Soc. 114, 145-164(1988).
    [CrossRef]
  55. E. S. Fry, J. Musser, G. W. Kattawar, and P. Zhai, “Integrating cavities: temporal response,” Appl. Opt. 45, 9053-9065 (2006).
    [CrossRef]
  56. G. Hong, P. Yang, F. Z. Weng, and Q. H. Liu, “Microwave scattering properties of sand particles: application to the simulation of microwave radiances over sandstorms,” J. Quant. Spectrosc. Radiat. Transfer 109, 684-702(2008).
    [CrossRef]
  57. W. Gordon, “Far-field approximations to the Kirchoff-Helmholtz representations of scattered fields,” IEEE Trans. Antennas Propag. 23, 590-592 (1975).
    [CrossRef]
  58. K. N. Liou, Q. Cai, J. B. Pollack, and J. N. Cuzzi, “Light scattering by randomly oriented cubes and parallelepipeds,” Appl. Opt. 22, 3001-3008 (1983).
    [CrossRef]
  59. T. Nousiainen, M. Kahnert, and B. Veihelmann, “Light scattering modeling of small feldspar aerosol particles using polyhedral prisms and spheroids,” J. Quant. Spectrosc. Radiat. Transfer 101, 471-484 (2006).
    [CrossRef]
  60. O. V. Kalashnikova and R. A. Kahn, “Mineral dust plume evolution over the Atlantic from combined MISR/MODIS aerosol retrievals,” J. Geophys. Res. 113, D24204 (2008).
    [CrossRef]
  61. Y. Liu, P. Koutrakis, and R. Kahn, “Estimating fine particulate mattercomponent concentrations and size distributions using satellite-retrieved fractional aerosol optical depth: part 1--method development,” J. Air Waste Manage. Assoc. 57, 1351-1359 (2007).
  62. Y. Liu, P. Koutrakis, R. Kahn, S. Turquety, and R. M. Yantosca, “Estimating fine particulate matter component concentrations and size distributions using satellite-retrieved fractional aerosol optical depth: part 2--a case study,” J. Air Waste Manage. Assoc. 57, 1360-1369 (2007).
  63. M. Hess, R. B. A. Koelemeijer, and P. Stamnes, “Scattering matrices of imperfect hexagonal ice crystals,” J. Quant. Spectrosc. Radiat. Transfer 60, 301-308 (1998).
    [CrossRef]
  64. Q. Fu, T. J. Thorsen, J. Su, J. M. Ge, and J. P. Huang, “Test of Mie-based single-scattering properties of non-spherical dust aerosols in radiative flux calculations,” J. Quant. Spectrosc. Radiat. Transfer 110, 1640-1653 (2009).
    [CrossRef]
  65. M. Z. Jacobson, “A physically-based treatment of elemental carbon optics: implications for global direct forcing of aerosols,” Geophys. Res. Lett. 27, 217-220 (2000).
    [CrossRef]
  66. S. Otto, E. Bierwirth, and B. Weinzierl, “Solar radiative effects of a Saharan dust plume observed during SAMUM assuming spheroidal model particles,” Tellus B 61, 270-296(2009).
    [CrossRef]
  67. M. Kahnert, A. Kylling, “Radiance and flux simulations for mineral dust aerosols: assessing the error due to using spherical or spheroidal model particles,” J. Geophys. Res. 109, D09203 (2004).
    [CrossRef]
  68. C. Pilinis and X. Li, “Particle shape and internal inhomogeneity effects in the optical properties of tropospheric aerosols of relevance to climate forcing,” J. Geophys. Res. 103, 3789-3800 (1998).
    [CrossRef]

2009 (5)

Q. Feng, P. Yang, G. W. Kattawar, C. N. Hsu, S.-C. Tsay, and I. Laszlo, “Effects of particle nonsphericity and radiation polarization on retrieving dust properties from MODIS observations,” J. Aerosol Sci. 40, 776-789 (2009).
[CrossRef]

T. Nousiainen, “Optical modeling of mineral dust particles: a review,” J. Quant. Spectrosc. Radiat. Transfer 110, 1261-1279 (2009).
[CrossRef]

L. Bi, P. Yang, G. W. Kattawar, and R. Kahn, “Single-scattering properties of tri-axial ellipsoidal particles for a size parameter range from the Rayleigh to geometric-optics regimes,” Appl. Opt. 48, 114-126 (2009).
[CrossRef]

Q. Fu, T. J. Thorsen, J. Su, J. M. Ge, and J. P. Huang, “Test of Mie-based single-scattering properties of non-spherical dust aerosols in radiative flux calculations,” J. Quant. Spectrosc. Radiat. Transfer 110, 1640-1653 (2009).
[CrossRef]

S. Otto, E. Bierwirth, and B. Weinzierl, “Solar radiative effects of a Saharan dust plume observed during SAMUM assuming spheroidal model particles,” Tellus B 61, 270-296(2009).
[CrossRef]

2008 (3)

O. V. Kalashnikova and R. A. Kahn, “Mineral dust plume evolution over the Atlantic from combined MISR/MODIS aerosol retrievals,” J. Geophys. Res. 113, D24204 (2008).
[CrossRef]

G. Hong, P. Yang, F. Z. Weng, and Q. H. Liu, “Microwave scattering properties of sand particles: application to the simulation of microwave radiances over sandstorms,” J. Quant. Spectrosc. Radiat. Transfer 109, 684-702(2008).
[CrossRef]

D. B. Curtis, B. Meland, M. Aycibin, N. P. Arnold, V. H. Grassian, M. A. Young, and P. D. Kleiber, “A laboratory investigation of light scattering from representative components of mineral dust aerosols at a wavelength of 550 nm,” J. Geophys. Res. 113, D08210 (2008).
[CrossRef]

2007 (6)

M. Kahnert, T. Nousiainen, and P. Raisanen, “Mie simulations as an error source in mineral aerosol radiative forcing calculations,” Q. J. R. Meteorol. Soc. 133, 299-307 (2007).
[CrossRef]

P. Yang, Q. Feng, G. Hong, G. W. Kattawar, W. J. Wiscombe, M. I. Mishchenko, O. Dubovik, I. Laszlo, and I. N. Sokolik, “Modeling of the scattering and radiative properties of nonspherical dust particles,” J. Aerosol. Sci. 38, 995-1014(2007).
[CrossRef]

Z. Zhang, P. Yang, G. W. Kattawar, and W. J. Wiscombe, “Single-scattering properties of platonic solids in geometrical-optics regime,” J. Quant. Spectrosc. Radiat. Transfer 106, 595-603 (2007).
[CrossRef]

M. A. Yurkin and A. G. Hoekstra, “The discrete dipole approximation: an overview and recent developments,” J. Quant. Spectrosc. Radiat. Transfer 106, 558-589 (2007).
[CrossRef]

Y. Liu, P. Koutrakis, and R. Kahn, “Estimating fine particulate mattercomponent concentrations and size distributions using satellite-retrieved fractional aerosol optical depth: part 1--method development,” J. Air Waste Manage. Assoc. 57, 1351-1359 (2007).

Y. Liu, P. Koutrakis, R. Kahn, S. Turquety, and R. M. Yantosca, “Estimating fine particulate matter component concentrations and size distributions using satellite-retrieved fractional aerosol optical depth: part 2--a case study,” J. Air Waste Manage. Assoc. 57, 1360-1369 (2007).

2006 (4)

T. Nousiainen, M. Kahnert, and B. Veihelmann, “Light scattering modeling of small feldspar aerosol particles using polyhedral prisms and spheroids,” J. Quant. Spectrosc. Radiat. Transfer 101, 471-484 (2006).
[CrossRef]

E. S. Fry, J. Musser, G. W. Kattawar, and P. Zhai, “Integrating cavities: temporal response,” Appl. Opt. 45, 9053-9065 (2006).
[CrossRef]

O. Dubovik, A. Sinyuk, T. Lapyonok, B. N. Holben, M. I. Mishchenko, P. Yang, T. F. Eck, H. Volten, O. Munoz, B. Veihelmann, W. J. van der Zande, J. F. Leon, M. Sorokin, and I. Slutsker, “Application of spheroid models to account for aerosol particle nonsphericity in remote sensing of desert dust,” J. Geophys. Res. 111, D11208 (2006).
[CrossRef]

H. Volten, O. Muñoz, J. W. Hovenier, and L. B. F. M. Waters, “An update of the Amsterdam light scattering database,” J. Quant. Spectrosc. Radiat. Transfer 100, 437-443 (2006).
[CrossRef]

2005 (2)

M. Kahnert, T. Nousiainen, and B. Veihelmann, “Spherical and spheroidal model particles as an error source in aerosol climate forcing and radiance computations: a case study for feldspar aerosols,” J. Geophys. Res. 110, D18S13 (2005).
[CrossRef]

O. V. Kalashnikova, R. Kahn, I. N. Sokolik, and W.-H. Li, “Ability of multiangle remote sensing observations to identify and distinguish mineral dust types: optical models and retrievals of optically thick plumes,” J. Geophys. Res. 110, D18S14(2005).
[CrossRef]

2004 (2)

Z. Zhang, P. Yang, G. W. Kattawar, S.-C. Tsay, B. A. Baum, Y. Hu, A. J. Heymsfield, and J. Reichardt, “Geometrical-optics solution to light scattering by droxtal ice crystals,” Appl. Opt. 43, 2490-2499 (2004).
[CrossRef]

M. Kahnert, A. Kylling, “Radiance and flux simulations for mineral dust aerosols: assessing the error due to using spherical or spheroidal model particles,” J. Geophys. Res. 109, D09203 (2004).
[CrossRef]

2003 (2)

P. Yang, B. A. Baum, A. J. Heymsfield, Y.-X. Hu, H.-L. Huang, S.-C. Tsay, and S. A. Ackerman, “Single scattering properties of droxtals,” J. Quant. Spectrosc. Radiat. Transfer 79-80, 1159-1169 (2003).

A. A. Kokhanovsky, “Optical properties of irregularly shaped particles,” J. Appl. Phys. D 36, 915-923 (2003).
[CrossRef]

2002 (4)

O. Dubovik, B. N. Holben, T. Lapyonok, A. Sinyuk, M. I. Mishchenko, P. Yang, and I. Slutsker, “Non-spherical aerosol retrieval method employing light scattering by spheroids,” Geophys. Res. Lett. 29, 014506 (2002).
[CrossRef]

Y. J. Kaufman, D. Tanre, and O. Boucher, “A satellite view of aerosols in the climate system,” Nature 419, 215-222 (2002).
[CrossRef]

F. M. Kahnert, J. J. Stamnes, and K. Stamnes, “Can simple particle shapes be used to model scalar optical properties of an ensemble of wavelength-sized particles with complex shapes?,” J. Opt. Soc. Am. A 19, 521-531 (2002).
[CrossRef]

O. V. Kalashnikova and I. N. Sokolik, “Importance of shapes and compositions of wind-blown dust particles for remote sensing at solar wavelengths,” Geophys. Res. Lett. 29, doi:10.1029/2002GL014947 (2002).
[CrossRef]

2001 (2)

V. Ramanathan, P. J. Crutzen, J. T. Kiehl, and D. Rosenfeld, “Aerosols, climate, and the hydrological cycle,” Science 294, 2119-2124 (2001).
[CrossRef]

I. N. Sokolik, D. Winker, G. Bergametti, D. Gillette, G. Carmichael, Y. J. Kaufman, L. Gomes, L. Schuetz, and J. Penner, “Introduction to special section on mineral dust: outstanding problems in quantifying the radiative impact of mineral dust,” J. Geophys. Res. 106, 18015-18027 (2001).
[CrossRef]

2000 (3)

J. Haywood and O. Boucher, “Estimates of the direct and indirect radiative forcing due to troposphere aerosols: a review,” Rev. Geophys. 38, 513-544 (2000).
[CrossRef]

P. Yang, K. N. Liou, M. I. Mishchenko, and B.-C. Gao, “Efficient finite-difference time domain scheme for light scattering by dielectric particles: application to aerosols,” Appl. Opt. 39, 3727-3737 (2000).
[CrossRef]

M. Z. Jacobson, “A physically-based treatment of elemental carbon optics: implications for global direct forcing of aerosols,” Geophys. Res. Lett. 27, 217-220 (2000).
[CrossRef]

1999 (2)

W. Sun, Q. Fu, and Z. Chen, “Finite-difference time-domain solution of light scattering by dielectric particles with perfectly matched layer absorbing boundary conditions,” Appl. Opt. 38, 3141-3151 (1999).
[CrossRef]

T. C. Grenfell and S. G. Warren, “Representation of a nonspherical ice particle by a collection of independent spheres for scattering and absorption of radiation,” J. Geophys. Res. 104, 31697-31709 (1999).
[CrossRef]

1998 (3)

P. Yang and K. N. Liou, “Single-scattering properties of complex ice crystals in terrestrial atmosphere,” Contrib. Atmos. Phys. 71, 223-248 (1998).

M. Hess, R. B. A. Koelemeijer, and P. Stamnes, “Scattering matrices of imperfect hexagonal ice crystals,” J. Quant. Spectrosc. Radiat. Transfer 60, 301-308 (1998).
[CrossRef]

C. Pilinis and X. Li, “Particle shape and internal inhomogeneity effects in the optical properties of tropospheric aerosols of relevance to climate forcing,” J. Geophys. Res. 103, 3789-3800 (1998).
[CrossRef]

1997 (2)

R. A. West, L. R. Doose, A. M. Eibl, M. G. Tomasko, and M. I. Mishchenko, “Laboratory measurements of mineral dust scattering phase function and linear polarization,” J. Geophys. Res. 102, 16871-16881 (1997).
[CrossRef]

M. I. Mishchenko, L. D. Travis, R. A. Kahn, and R. A. West, “Modeling phase functions for dustlike troposheric aerosols using a shape mixture of randomly oriented polydisperse spheroids,” J. Geophys. Res. 102, 16831-16847 (1997).
[CrossRef]

1996 (6)

1995 (1)

M. I. Mishchenko, A. A. Lacis, B. E. Carlson, and L. D. Travis, “Nonsphericity of dust-like tropospheric aerosols: implications for aerosol remote sensing and climate modeling,” Geophys. Res. Lett. 22, 1077-1080 (1995).
[CrossRef]

1993 (1)

1990 (1)

P. Drossart, “A statistical model for the scattering by irregular particles,” Astrophys. J. 361, L29-L32 (1990).
[CrossRef]

1989 (1)

1988 (3)

J. S. Foot, “Some observations of the optical properties of clouds: II. Cirrus,” Q. J. R. Meteorol. Soc. 114, 145-164(1988).
[CrossRef]

B. T. Draine, “The discrete-dipole approximation and its application to interstellar graphite grains,” Astrophys. J. 333, 848-872 (1988).
[CrossRef]

G. H. Goedecke and S. G. O'Brien, “Scattering by irregular inhomogeneous particles via the digitized Green's function algorithm,” Appl. Opt. 27, 2431-2438 (1988).
[CrossRef]

1983 (1)

1980 (1)

J. B. Pollack and J. N. Cuzzi, “Scattering by nonspherical particles of size comparable to a wavelength: a new semi-empirical theory and its application to tropospheric aerosols,” J. Atmos. Sci. 37, 868-881 (1980).
[CrossRef]

1976 (1)

P. Chylek, G. W. Grams, and R. G. Pinnick, “Light scattering by irregular randomly oriented particles,” Science 193, 480-482 (1976).
[CrossRef]

1975 (1)

W. Gordon, “Far-field approximations to the Kirchoff-Helmholtz representations of scattered fields,” IEEE Trans. Antennas Propag. 23, 590-592 (1975).
[CrossRef]

1974 (1)

P. Chýlek and J. Coakley, “Aerosols and climate,” Science 183, 75-77 (1974).
[CrossRef]

1973 (1)

E. M. Purcell and C. R. Pennypacker, “Scattering and absorption of light by nonspherical dielectric grains,” Astrophys. J. 186, 705-714 (1973).
[CrossRef]

1966 (1)

S. K. Yee, “Numerical solution of initial boundary value problems involving Maxwell's equations in isotropic media,” IEEE Trans. Antennas Propag. 14, 302-307 (1966).
[CrossRef]

1965 (1)

P. C. Waterman, “Matrix formulation of electromagnetic scattering,” Proc. IEEE 53, 805-812 (1965).
[CrossRef]

Ackerman, S. A.

P. Yang, B. A. Baum, A. J. Heymsfield, Y.-X. Hu, H.-L. Huang, S.-C. Tsay, and S. A. Ackerman, “Single scattering properties of droxtals,” J. Quant. Spectrosc. Radiat. Transfer 79-80, 1159-1169 (2003).

Arnold, N. P.

D. B. Curtis, B. Meland, M. Aycibin, N. P. Arnold, V. H. Grassian, M. A. Young, and P. D. Kleiber, “A laboratory investigation of light scattering from representative components of mineral dust aerosols at a wavelength of 550 nm,” J. Geophys. Res. 113, D08210 (2008).
[CrossRef]

Aycibin, M.

D. B. Curtis, B. Meland, M. Aycibin, N. P. Arnold, V. H. Grassian, M. A. Young, and P. D. Kleiber, “A laboratory investigation of light scattering from representative components of mineral dust aerosols at a wavelength of 550 nm,” J. Geophys. Res. 113, D08210 (2008).
[CrossRef]

Baum, B. A.

Z. Zhang, P. Yang, G. W. Kattawar, S.-C. Tsay, B. A. Baum, Y. Hu, A. J. Heymsfield, and J. Reichardt, “Geometrical-optics solution to light scattering by droxtal ice crystals,” Appl. Opt. 43, 2490-2499 (2004).
[CrossRef]

P. Yang, B. A. Baum, A. J. Heymsfield, Y.-X. Hu, H.-L. Huang, S.-C. Tsay, and S. A. Ackerman, “Single scattering properties of droxtals,” J. Quant. Spectrosc. Radiat. Transfer 79-80, 1159-1169 (2003).

Bergametti, G.

I. N. Sokolik, D. Winker, G. Bergametti, D. Gillette, G. Carmichael, Y. J. Kaufman, L. Gomes, L. Schuetz, and J. Penner, “Introduction to special section on mineral dust: outstanding problems in quantifying the radiative impact of mineral dust,” J. Geophys. Res. 106, 18015-18027 (2001).
[CrossRef]

Bi, L.

Bierwirth, E.

S. Otto, E. Bierwirth, and B. Weinzierl, “Solar radiative effects of a Saharan dust plume observed during SAMUM assuming spheroidal model particles,” Tellus B 61, 270-296(2009).
[CrossRef]

Bohren, C. F.

C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, 1983).

Boucher, O.

Y. J. Kaufman, D. Tanre, and O. Boucher, “A satellite view of aerosols in the climate system,” Nature 419, 215-222 (2002).
[CrossRef]

J. Haywood and O. Boucher, “Estimates of the direct and indirect radiative forcing due to troposphere aerosols: a review,” Rev. Geophys. 38, 513-544 (2000).
[CrossRef]

Cai, Q.

Carlson, B. E.

M. I. Mishchenko, A. A. Lacis, B. E. Carlson, and L. D. Travis, “Nonsphericity of dust-like tropospheric aerosols: implications for aerosol remote sensing and climate modeling,” Geophys. Res. Lett. 22, 1077-1080 (1995).
[CrossRef]

Carmichael, G.

I. N. Sokolik, D. Winker, G. Bergametti, D. Gillette, G. Carmichael, Y. J. Kaufman, L. Gomes, L. Schuetz, and J. Penner, “Introduction to special section on mineral dust: outstanding problems in quantifying the radiative impact of mineral dust,” J. Geophys. Res. 106, 18015-18027 (2001).
[CrossRef]

Chen, Z.

Chylek, P.

P. Chylek, G. W. Grams, and R. G. Pinnick, “Light scattering by irregular randomly oriented particles,” Science 193, 480-482 (1976).
[CrossRef]

Chýlek , P.

P. Chýlek and J. Coakley, “Aerosols and climate,” Science 183, 75-77 (1974).
[CrossRef]

Coakley, J.

P. Chýlek and J. Coakley, “Aerosols and climate,” Science 183, 75-77 (1974).
[CrossRef]

Crutzen, P. J.

V. Ramanathan, P. J. Crutzen, J. T. Kiehl, and D. Rosenfeld, “Aerosols, climate, and the hydrological cycle,” Science 294, 2119-2124 (2001).
[CrossRef]

Curtis, D. B.

D. B. Curtis, B. Meland, M. Aycibin, N. P. Arnold, V. H. Grassian, M. A. Young, and P. D. Kleiber, “A laboratory investigation of light scattering from representative components of mineral dust aerosols at a wavelength of 550 nm,” J. Geophys. Res. 113, D08210 (2008).
[CrossRef]

Cuzzi, J. N.

K. N. Liou, Q. Cai, J. B. Pollack, and J. N. Cuzzi, “Light scattering by randomly oriented cubes and parallelepipeds,” Appl. Opt. 22, 3001-3008 (1983).
[CrossRef]

J. B. Pollack and J. N. Cuzzi, “Scattering by nonspherical particles of size comparable to a wavelength: a new semi-empirical theory and its application to tropospheric aerosols,” J. Atmos. Sci. 37, 868-881 (1980).
[CrossRef]

d'Almeida, G. A.

G. A. d'Almeida, P. Koepke, and E. P. Shettle, Atmospheric Aerosols: Global Climatology and Radiative Characteristics (Deepak, 1991).

Doicu, A.

A. Doicu, Y. Eremin, and T. Wriedt, Acoustic and Electromagnetic Scattering Analysis Using Discrete Sources (Academic, 2000).

Doose, L. R.

R. A. West, L. R. Doose, A. M. Eibl, M. G. Tomasko, and M. I. Mishchenko, “Laboratory measurements of mineral dust scattering phase function and linear polarization,” J. Geophys. Res. 102, 16871-16881 (1997).
[CrossRef]

Draine, B. T.

B. T. Draine, “The discrete-dipole approximation and its application to interstellar graphite grains,” Astrophys. J. 333, 848-872 (1988).
[CrossRef]

Drossart, P.

P. Drossart, “A statistical model for the scattering by irregular particles,” Astrophys. J. 361, L29-L32 (1990).
[CrossRef]

Dubovik, O.

P. Yang, Q. Feng, G. Hong, G. W. Kattawar, W. J. Wiscombe, M. I. Mishchenko, O. Dubovik, I. Laszlo, and I. N. Sokolik, “Modeling of the scattering and radiative properties of nonspherical dust particles,” J. Aerosol. Sci. 38, 995-1014(2007).
[CrossRef]

O. Dubovik, A. Sinyuk, T. Lapyonok, B. N. Holben, M. I. Mishchenko, P. Yang, T. F. Eck, H. Volten, O. Munoz, B. Veihelmann, W. J. van der Zande, J. F. Leon, M. Sorokin, and I. Slutsker, “Application of spheroid models to account for aerosol particle nonsphericity in remote sensing of desert dust,” J. Geophys. Res. 111, D11208 (2006).
[CrossRef]

O. Dubovik, B. N. Holben, T. Lapyonok, A. Sinyuk, M. I. Mishchenko, P. Yang, and I. Slutsker, “Non-spherical aerosol retrieval method employing light scattering by spheroids,” Geophys. Res. Lett. 29, 014506 (2002).
[CrossRef]

Eck, T. F.

O. Dubovik, A. Sinyuk, T. Lapyonok, B. N. Holben, M. I. Mishchenko, P. Yang, T. F. Eck, H. Volten, O. Munoz, B. Veihelmann, W. J. van der Zande, J. F. Leon, M. Sorokin, and I. Slutsker, “Application of spheroid models to account for aerosol particle nonsphericity in remote sensing of desert dust,” J. Geophys. Res. 111, D11208 (2006).
[CrossRef]

Eibl, A. M.

R. A. West, L. R. Doose, A. M. Eibl, M. G. Tomasko, and M. I. Mishchenko, “Laboratory measurements of mineral dust scattering phase function and linear polarization,” J. Geophys. Res. 102, 16871-16881 (1997).
[CrossRef]

Eremin, Y.

A. Doicu, Y. Eremin, and T. Wriedt, Acoustic and Electromagnetic Scattering Analysis Using Discrete Sources (Academic, 2000).

Feng, Q.

Q. Feng, P. Yang, G. W. Kattawar, C. N. Hsu, S.-C. Tsay, and I. Laszlo, “Effects of particle nonsphericity and radiation polarization on retrieving dust properties from MODIS observations,” J. Aerosol Sci. 40, 776-789 (2009).
[CrossRef]

P. Yang, Q. Feng, G. Hong, G. W. Kattawar, W. J. Wiscombe, M. I. Mishchenko, O. Dubovik, I. Laszlo, and I. N. Sokolik, “Modeling of the scattering and radiative properties of nonspherical dust particles,” J. Aerosol. Sci. 38, 995-1014(2007).
[CrossRef]

Foot, J. S.

J. S. Foot, “Some observations of the optical properties of clouds: II. Cirrus,” Q. J. R. Meteorol. Soc. 114, 145-164(1988).
[CrossRef]

Fry, E. S.

Fu, Q.

Q. Fu, T. J. Thorsen, J. Su, J. M. Ge, and J. P. Huang, “Test of Mie-based single-scattering properties of non-spherical dust aerosols in radiative flux calculations,” J. Quant. Spectrosc. Radiat. Transfer 110, 1640-1653 (2009).
[CrossRef]

W. Sun, Q. Fu, and Z. Chen, “Finite-difference time-domain solution of light scattering by dielectric particles with perfectly matched layer absorbing boundary conditions,” Appl. Opt. 38, 3141-3151 (1999).
[CrossRef]

Gao, B.-C.

Ge, J. M.

Q. Fu, T. J. Thorsen, J. Su, J. M. Ge, and J. P. Huang, “Test of Mie-based single-scattering properties of non-spherical dust aerosols in radiative flux calculations,” J. Quant. Spectrosc. Radiat. Transfer 110, 1640-1653 (2009).
[CrossRef]

Gillette, D.

I. N. Sokolik, D. Winker, G. Bergametti, D. Gillette, G. Carmichael, Y. J. Kaufman, L. Gomes, L. Schuetz, and J. Penner, “Introduction to special section on mineral dust: outstanding problems in quantifying the radiative impact of mineral dust,” J. Geophys. Res. 106, 18015-18027 (2001).
[CrossRef]

Goedecke, G. H.

Gomes, L.

I. N. Sokolik, D. Winker, G. Bergametti, D. Gillette, G. Carmichael, Y. J. Kaufman, L. Gomes, L. Schuetz, and J. Penner, “Introduction to special section on mineral dust: outstanding problems in quantifying the radiative impact of mineral dust,” J. Geophys. Res. 106, 18015-18027 (2001).
[CrossRef]

Gordon, W.

W. Gordon, “Far-field approximations to the Kirchoff-Helmholtz representations of scattered fields,” IEEE Trans. Antennas Propag. 23, 590-592 (1975).
[CrossRef]

Grams, G. W.

P. Chylek, G. W. Grams, and R. G. Pinnick, “Light scattering by irregular randomly oriented particles,” Science 193, 480-482 (1976).
[CrossRef]

Grassian, V. H.

D. B. Curtis, B. Meland, M. Aycibin, N. P. Arnold, V. H. Grassian, M. A. Young, and P. D. Kleiber, “A laboratory investigation of light scattering from representative components of mineral dust aerosols at a wavelength of 550 nm,” J. Geophys. Res. 113, D08210 (2008).
[CrossRef]

Grenfell, T. C.

T. C. Grenfell and S. G. Warren, “Representation of a nonspherical ice particle by a collection of independent spheres for scattering and absorption of radiation,” J. Geophys. Res. 104, 31697-31709 (1999).
[CrossRef]

Haywood, J.

J. Haywood and O. Boucher, “Estimates of the direct and indirect radiative forcing due to troposphere aerosols: a review,” Rev. Geophys. 38, 513-544 (2000).
[CrossRef]

Hess, M.

M. Hess, R. B. A. Koelemeijer, and P. Stamnes, “Scattering matrices of imperfect hexagonal ice crystals,” J. Quant. Spectrosc. Radiat. Transfer 60, 301-308 (1998).
[CrossRef]

Heymsfield, A. J.

Z. Zhang, P. Yang, G. W. Kattawar, S.-C. Tsay, B. A. Baum, Y. Hu, A. J. Heymsfield, and J. Reichardt, “Geometrical-optics solution to light scattering by droxtal ice crystals,” Appl. Opt. 43, 2490-2499 (2004).
[CrossRef]

P. Yang, B. A. Baum, A. J. Heymsfield, Y.-X. Hu, H.-L. Huang, S.-C. Tsay, and S. A. Ackerman, “Single scattering properties of droxtals,” J. Quant. Spectrosc. Radiat. Transfer 79-80, 1159-1169 (2003).

Hoekstra, A. G.

M. A. Yurkin and A. G. Hoekstra, “The discrete dipole approximation: an overview and recent developments,” J. Quant. Spectrosc. Radiat. Transfer 106, 558-589 (2007).
[CrossRef]

Holben, B. N.

O. Dubovik, A. Sinyuk, T. Lapyonok, B. N. Holben, M. I. Mishchenko, P. Yang, T. F. Eck, H. Volten, O. Munoz, B. Veihelmann, W. J. van der Zande, J. F. Leon, M. Sorokin, and I. Slutsker, “Application of spheroid models to account for aerosol particle nonsphericity in remote sensing of desert dust,” J. Geophys. Res. 111, D11208 (2006).
[CrossRef]

O. Dubovik, B. N. Holben, T. Lapyonok, A. Sinyuk, M. I. Mishchenko, P. Yang, and I. Slutsker, “Non-spherical aerosol retrieval method employing light scattering by spheroids,” Geophys. Res. Lett. 29, 014506 (2002).
[CrossRef]

Hong, G.

G. Hong, P. Yang, F. Z. Weng, and Q. H. Liu, “Microwave scattering properties of sand particles: application to the simulation of microwave radiances over sandstorms,” J. Quant. Spectrosc. Radiat. Transfer 109, 684-702(2008).
[CrossRef]

P. Yang, Q. Feng, G. Hong, G. W. Kattawar, W. J. Wiscombe, M. I. Mishchenko, O. Dubovik, I. Laszlo, and I. N. Sokolik, “Modeling of the scattering and radiative properties of nonspherical dust particles,” J. Aerosol. Sci. 38, 995-1014(2007).
[CrossRef]

Hovenier, J. W.

H. Volten, O. Muñoz, J. W. Hovenier, and L. B. F. M. Waters, “An update of the Amsterdam light scattering database,” J. Quant. Spectrosc. Radiat. Transfer 100, 437-443 (2006).
[CrossRef]

M. I. Mishchenko, J. W. Hovenier, and L. D. Travis, Light Scattering by Nonspherical Particles: Theory, Measurements, and Applications (Academic, 2000), pp. 327.

Hsu, C. N.

Q. Feng, P. Yang, G. W. Kattawar, C. N. Hsu, S.-C. Tsay, and I. Laszlo, “Effects of particle nonsphericity and radiation polarization on retrieving dust properties from MODIS observations,” J. Aerosol Sci. 40, 776-789 (2009).
[CrossRef]

Hu, Y.

Hu, Y.-X.

P. Yang, B. A. Baum, A. J. Heymsfield, Y.-X. Hu, H.-L. Huang, S.-C. Tsay, and S. A. Ackerman, “Single scattering properties of droxtals,” J. Quant. Spectrosc. Radiat. Transfer 79-80, 1159-1169 (2003).

Huang, H.-L.

P. Yang, B. A. Baum, A. J. Heymsfield, Y.-X. Hu, H.-L. Huang, S.-C. Tsay, and S. A. Ackerman, “Single scattering properties of droxtals,” J. Quant. Spectrosc. Radiat. Transfer 79-80, 1159-1169 (2003).

Huang, J. P.

Q. Fu, T. J. Thorsen, J. Su, J. M. Ge, and J. P. Huang, “Test of Mie-based single-scattering properties of non-spherical dust aerosols in radiative flux calculations,” J. Quant. Spectrosc. Radiat. Transfer 110, 1640-1653 (2009).
[CrossRef]

Huffman, D. R.

C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, 1983).

Jacobson, M. Z.

M. Z. Jacobson, “A physically-based treatment of elemental carbon optics: implications for global direct forcing of aerosols,” Geophys. Res. Lett. 27, 217-220 (2000).
[CrossRef]

Kahn, R.

L. Bi, P. Yang, G. W. Kattawar, and R. Kahn, “Single-scattering properties of tri-axial ellipsoidal particles for a size parameter range from the Rayleigh to geometric-optics regimes,” Appl. Opt. 48, 114-126 (2009).
[CrossRef]

Y. Liu, P. Koutrakis, and R. Kahn, “Estimating fine particulate mattercomponent concentrations and size distributions using satellite-retrieved fractional aerosol optical depth: part 1--method development,” J. Air Waste Manage. Assoc. 57, 1351-1359 (2007).

Y. Liu, P. Koutrakis, R. Kahn, S. Turquety, and R. M. Yantosca, “Estimating fine particulate matter component concentrations and size distributions using satellite-retrieved fractional aerosol optical depth: part 2--a case study,” J. Air Waste Manage. Assoc. 57, 1360-1369 (2007).

O. V. Kalashnikova, R. Kahn, I. N. Sokolik, and W.-H. Li, “Ability of multiangle remote sensing observations to identify and distinguish mineral dust types: optical models and retrievals of optically thick plumes,” J. Geophys. Res. 110, D18S14(2005).
[CrossRef]

Kahn, R. A.

O. V. Kalashnikova and R. A. Kahn, “Mineral dust plume evolution over the Atlantic from combined MISR/MODIS aerosol retrievals,” J. Geophys. Res. 113, D24204 (2008).
[CrossRef]

M. I. Mishchenko, L. D. Travis, R. A. Kahn, and R. A. West, “Modeling phase functions for dustlike troposheric aerosols using a shape mixture of randomly oriented polydisperse spheroids,” J. Geophys. Res. 102, 16831-16847 (1997).
[CrossRef]

Kahnert, F. M.

Kahnert, M.

M. Kahnert, T. Nousiainen, and P. Raisanen, “Mie simulations as an error source in mineral aerosol radiative forcing calculations,” Q. J. R. Meteorol. Soc. 133, 299-307 (2007).
[CrossRef]

T. Nousiainen, M. Kahnert, and B. Veihelmann, “Light scattering modeling of small feldspar aerosol particles using polyhedral prisms and spheroids,” J. Quant. Spectrosc. Radiat. Transfer 101, 471-484 (2006).
[CrossRef]

M. Kahnert, T. Nousiainen, and B. Veihelmann, “Spherical and spheroidal model particles as an error source in aerosol climate forcing and radiance computations: a case study for feldspar aerosols,” J. Geophys. Res. 110, D18S13 (2005).
[CrossRef]

M. Kahnert, A. Kylling, “Radiance and flux simulations for mineral dust aerosols: assessing the error due to using spherical or spheroidal model particles,” J. Geophys. Res. 109, D09203 (2004).
[CrossRef]

Kalashnikova, O. V.

O. V. Kalashnikova and R. A. Kahn, “Mineral dust plume evolution over the Atlantic from combined MISR/MODIS aerosol retrievals,” J. Geophys. Res. 113, D24204 (2008).
[CrossRef]

O. V. Kalashnikova, R. Kahn, I. N. Sokolik, and W.-H. Li, “Ability of multiangle remote sensing observations to identify and distinguish mineral dust types: optical models and retrievals of optically thick plumes,” J. Geophys. Res. 110, D18S14(2005).
[CrossRef]

O. V. Kalashnikova and I. N. Sokolik, “Importance of shapes and compositions of wind-blown dust particles for remote sensing at solar wavelengths,” Geophys. Res. Lett. 29, doi:10.1029/2002GL014947 (2002).
[CrossRef]

Kattawar, G. W.

Q. Feng, P. Yang, G. W. Kattawar, C. N. Hsu, S.-C. Tsay, and I. Laszlo, “Effects of particle nonsphericity and radiation polarization on retrieving dust properties from MODIS observations,” J. Aerosol Sci. 40, 776-789 (2009).
[CrossRef]

L. Bi, P. Yang, G. W. Kattawar, and R. Kahn, “Single-scattering properties of tri-axial ellipsoidal particles for a size parameter range from the Rayleigh to geometric-optics regimes,” Appl. Opt. 48, 114-126 (2009).
[CrossRef]

P. Yang, Q. Feng, G. Hong, G. W. Kattawar, W. J. Wiscombe, M. I. Mishchenko, O. Dubovik, I. Laszlo, and I. N. Sokolik, “Modeling of the scattering and radiative properties of nonspherical dust particles,” J. Aerosol. Sci. 38, 995-1014(2007).
[CrossRef]

Z. Zhang, P. Yang, G. W. Kattawar, and W. J. Wiscombe, “Single-scattering properties of platonic solids in geometrical-optics regime,” J. Quant. Spectrosc. Radiat. Transfer 106, 595-603 (2007).
[CrossRef]

E. S. Fry, J. Musser, G. W. Kattawar, and P. Zhai, “Integrating cavities: temporal response,” Appl. Opt. 45, 9053-9065 (2006).
[CrossRef]

Z. Zhang, P. Yang, G. W. Kattawar, S.-C. Tsay, B. A. Baum, Y. Hu, A. J. Heymsfield, and J. Reichardt, “Geometrical-optics solution to light scattering by droxtal ice crystals,” Appl. Opt. 43, 2490-2499 (2004).
[CrossRef]

Kaufman, Y. J.

Y. J. Kaufman, D. Tanre, and O. Boucher, “A satellite view of aerosols in the climate system,” Nature 419, 215-222 (2002).
[CrossRef]

I. N. Sokolik, D. Winker, G. Bergametti, D. Gillette, G. Carmichael, Y. J. Kaufman, L. Gomes, L. Schuetz, and J. Penner, “Introduction to special section on mineral dust: outstanding problems in quantifying the radiative impact of mineral dust,” J. Geophys. Res. 106, 18015-18027 (2001).
[CrossRef]

Kiehl, J. T.

V. Ramanathan, P. J. Crutzen, J. T. Kiehl, and D. Rosenfeld, “Aerosols, climate, and the hydrological cycle,” Science 294, 2119-2124 (2001).
[CrossRef]

Kleiber, P. D.

D. B. Curtis, B. Meland, M. Aycibin, N. P. Arnold, V. H. Grassian, M. A. Young, and P. D. Kleiber, “A laboratory investigation of light scattering from representative components of mineral dust aerosols at a wavelength of 550 nm,” J. Geophys. Res. 113, D08210 (2008).
[CrossRef]

Koelemeijer, R. B. A.

M. Hess, R. B. A. Koelemeijer, and P. Stamnes, “Scattering matrices of imperfect hexagonal ice crystals,” J. Quant. Spectrosc. Radiat. Transfer 60, 301-308 (1998).
[CrossRef]

Koepke, P.

G. A. d'Almeida, P. Koepke, and E. P. Shettle, Atmospheric Aerosols: Global Climatology and Radiative Characteristics (Deepak, 1991).

Kokhanovsky, A. A.

A. A. Kokhanovsky, “Optical properties of irregularly shaped particles,” J. Appl. Phys. D 36, 915-923 (2003).
[CrossRef]

Koutrakis, P.

Y. Liu, P. Koutrakis, and R. Kahn, “Estimating fine particulate mattercomponent concentrations and size distributions using satellite-retrieved fractional aerosol optical depth: part 1--method development,” J. Air Waste Manage. Assoc. 57, 1351-1359 (2007).

Y. Liu, P. Koutrakis, R. Kahn, S. Turquety, and R. M. Yantosca, “Estimating fine particulate matter component concentrations and size distributions using satellite-retrieved fractional aerosol optical depth: part 2--a case study,” J. Air Waste Manage. Assoc. 57, 1360-1369 (2007).

Kylling, A.

M. Kahnert, A. Kylling, “Radiance and flux simulations for mineral dust aerosols: assessing the error due to using spherical or spheroidal model particles,” J. Geophys. Res. 109, D09203 (2004).
[CrossRef]

Lacis, A. A.

M. I. Mishchenko, A. A. Lacis, B. E. Carlson, and L. D. Travis, “Nonsphericity of dust-like tropospheric aerosols: implications for aerosol remote sensing and climate modeling,” Geophys. Res. Lett. 22, 1077-1080 (1995).
[CrossRef]

Lapyonok, T.

O. Dubovik, A. Sinyuk, T. Lapyonok, B. N. Holben, M. I. Mishchenko, P. Yang, T. F. Eck, H. Volten, O. Munoz, B. Veihelmann, W. J. van der Zande, J. F. Leon, M. Sorokin, and I. Slutsker, “Application of spheroid models to account for aerosol particle nonsphericity in remote sensing of desert dust,” J. Geophys. Res. 111, D11208 (2006).
[CrossRef]

O. Dubovik, B. N. Holben, T. Lapyonok, A. Sinyuk, M. I. Mishchenko, P. Yang, and I. Slutsker, “Non-spherical aerosol retrieval method employing light scattering by spheroids,” Geophys. Res. Lett. 29, 014506 (2002).
[CrossRef]

Laszlo, I.

Q. Feng, P. Yang, G. W. Kattawar, C. N. Hsu, S.-C. Tsay, and I. Laszlo, “Effects of particle nonsphericity and radiation polarization on retrieving dust properties from MODIS observations,” J. Aerosol Sci. 40, 776-789 (2009).
[CrossRef]

P. Yang, Q. Feng, G. Hong, G. W. Kattawar, W. J. Wiscombe, M. I. Mishchenko, O. Dubovik, I. Laszlo, and I. N. Sokolik, “Modeling of the scattering and radiative properties of nonspherical dust particles,” J. Aerosol. Sci. 38, 995-1014(2007).
[CrossRef]

Leon, J. F.

O. Dubovik, A. Sinyuk, T. Lapyonok, B. N. Holben, M. I. Mishchenko, P. Yang, T. F. Eck, H. Volten, O. Munoz, B. Veihelmann, W. J. van der Zande, J. F. Leon, M. Sorokin, and I. Slutsker, “Application of spheroid models to account for aerosol particle nonsphericity in remote sensing of desert dust,” J. Geophys. Res. 111, D11208 (2006).
[CrossRef]

Li, W.-H.

O. V. Kalashnikova, R. Kahn, I. N. Sokolik, and W.-H. Li, “Ability of multiangle remote sensing observations to identify and distinguish mineral dust types: optical models and retrievals of optically thick plumes,” J. Geophys. Res. 110, D18S14(2005).
[CrossRef]

Li, X.

C. Pilinis and X. Li, “Particle shape and internal inhomogeneity effects in the optical properties of tropospheric aerosols of relevance to climate forcing,” J. Geophys. Res. 103, 3789-3800 (1998).
[CrossRef]

Liou, K. N.

Liu, Q. H.

G. Hong, P. Yang, F. Z. Weng, and Q. H. Liu, “Microwave scattering properties of sand particles: application to the simulation of microwave radiances over sandstorms,” J. Quant. Spectrosc. Radiat. Transfer 109, 684-702(2008).
[CrossRef]

Liu, Y.

Y. Liu, P. Koutrakis, and R. Kahn, “Estimating fine particulate mattercomponent concentrations and size distributions using satellite-retrieved fractional aerosol optical depth: part 1--method development,” J. Air Waste Manage. Assoc. 57, 1351-1359 (2007).

Y. Liu, P. Koutrakis, R. Kahn, S. Turquety, and R. M. Yantosca, “Estimating fine particulate matter component concentrations and size distributions using satellite-retrieved fractional aerosol optical depth: part 2--a case study,” J. Air Waste Manage. Assoc. 57, 1360-1369 (2007).

Macke, A.

Mackowski, D. W.

M. I. Mishchenko, L. D. Travis, and D. W. Mackowski, “T-matrix computations of light scattering by nonspherical particles: a review,” J. Quant. Spectrosc. Radiat. Transfer 55, 535-575 (1996).
[CrossRef]

Meland, B.

D. B. Curtis, B. Meland, M. Aycibin, N. P. Arnold, V. H. Grassian, M. A. Young, and P. D. Kleiber, “A laboratory investigation of light scattering from representative components of mineral dust aerosols at a wavelength of 550 nm,” J. Geophys. Res. 113, D08210 (2008).
[CrossRef]

Mishchenko, M. I.

P. Yang, Q. Feng, G. Hong, G. W. Kattawar, W. J. Wiscombe, M. I. Mishchenko, O. Dubovik, I. Laszlo, and I. N. Sokolik, “Modeling of the scattering and radiative properties of nonspherical dust particles,” J. Aerosol. Sci. 38, 995-1014(2007).
[CrossRef]

O. Dubovik, A. Sinyuk, T. Lapyonok, B. N. Holben, M. I. Mishchenko, P. Yang, T. F. Eck, H. Volten, O. Munoz, B. Veihelmann, W. J. van der Zande, J. F. Leon, M. Sorokin, and I. Slutsker, “Application of spheroid models to account for aerosol particle nonsphericity in remote sensing of desert dust,” J. Geophys. Res. 111, D11208 (2006).
[CrossRef]

O. Dubovik, B. N. Holben, T. Lapyonok, A. Sinyuk, M. I. Mishchenko, P. Yang, and I. Slutsker, “Non-spherical aerosol retrieval method employing light scattering by spheroids,” Geophys. Res. Lett. 29, 014506 (2002).
[CrossRef]

P. Yang, K. N. Liou, M. I. Mishchenko, and B.-C. Gao, “Efficient finite-difference time domain scheme for light scattering by dielectric particles: application to aerosols,” Appl. Opt. 39, 3727-3737 (2000).
[CrossRef]

R. A. West, L. R. Doose, A. M. Eibl, M. G. Tomasko, and M. I. Mishchenko, “Laboratory measurements of mineral dust scattering phase function and linear polarization,” J. Geophys. Res. 102, 16871-16881 (1997).
[CrossRef]

M. I. Mishchenko, L. D. Travis, R. A. Kahn, and R. A. West, “Modeling phase functions for dustlike troposheric aerosols using a shape mixture of randomly oriented polydisperse spheroids,” J. Geophys. Res. 102, 16831-16847 (1997).
[CrossRef]

A. Macke and M. I. Mishchenko, “Applicability of regular particle shapes in light scattering calculations for atmospheric ice particles,” Appl. Opt. 35, 4291-4296 (1996).
[CrossRef]

M. I. Mishchenko, L. D. Travis, and A. Macke, “Scattering of light by polydisperse, randomly oriented, finite circular cylinders,” Appl. Opt. 35, 4927-4940 (1996).
[CrossRef]

M. I. Mishchenko, L. D. Travis, and D. W. Mackowski, “T-matrix computations of light scattering by nonspherical particles: a review,” J. Quant. Spectrosc. Radiat. Transfer 55, 535-575 (1996).
[CrossRef]

M. I. Mishchenko, A. A. Lacis, B. E. Carlson, and L. D. Travis, “Nonsphericity of dust-like tropospheric aerosols: implications for aerosol remote sensing and climate modeling,” Geophys. Res. Lett. 22, 1077-1080 (1995).
[CrossRef]

M. I. Mishchenko, J. W. Hovenier, and L. D. Travis, Light Scattering by Nonspherical Particles: Theory, Measurements, and Applications (Academic, 2000), pp. 327.

Mueller, J.

A. Macke, J. Mueller, and E. Raschke, “Single scattering properties of atmospheric ice crystals,” J. Atmos. Sci. 53, 2813-2825 (1996).
[CrossRef]

Muinonen, K.

Munoz, O.

O. Dubovik, A. Sinyuk, T. Lapyonok, B. N. Holben, M. I. Mishchenko, P. Yang, T. F. Eck, H. Volten, O. Munoz, B. Veihelmann, W. J. van der Zande, J. F. Leon, M. Sorokin, and I. Slutsker, “Application of spheroid models to account for aerosol particle nonsphericity in remote sensing of desert dust,” J. Geophys. Res. 111, D11208 (2006).
[CrossRef]

Muñoz, O.

H. Volten, O. Muñoz, J. W. Hovenier, and L. B. F. M. Waters, “An update of the Amsterdam light scattering database,” J. Quant. Spectrosc. Radiat. Transfer 100, 437-443 (2006).
[CrossRef]

Musser, J.

Nousiainen, T.

T. Nousiainen, “Optical modeling of mineral dust particles: a review,” J. Quant. Spectrosc. Radiat. Transfer 110, 1261-1279 (2009).
[CrossRef]

M. Kahnert, T. Nousiainen, and P. Raisanen, “Mie simulations as an error source in mineral aerosol radiative forcing calculations,” Q. J. R. Meteorol. Soc. 133, 299-307 (2007).
[CrossRef]

T. Nousiainen, M. Kahnert, and B. Veihelmann, “Light scattering modeling of small feldspar aerosol particles using polyhedral prisms and spheroids,” J. Quant. Spectrosc. Radiat. Transfer 101, 471-484 (2006).
[CrossRef]

M. Kahnert, T. Nousiainen, and B. Veihelmann, “Spherical and spheroidal model particles as an error source in aerosol climate forcing and radiance computations: a case study for feldspar aerosols,” J. Geophys. Res. 110, D18S13 (2005).
[CrossRef]

O'Brien, S. G.

Otto, S.

S. Otto, E. Bierwirth, and B. Weinzierl, “Solar radiative effects of a Saharan dust plume observed during SAMUM assuming spheroidal model particles,” Tellus B 61, 270-296(2009).
[CrossRef]

Penner, J.

I. N. Sokolik, D. Winker, G. Bergametti, D. Gillette, G. Carmichael, Y. J. Kaufman, L. Gomes, L. Schuetz, and J. Penner, “Introduction to special section on mineral dust: outstanding problems in quantifying the radiative impact of mineral dust,” J. Geophys. Res. 106, 18015-18027 (2001).
[CrossRef]

Pennypacker, C. R.

E. M. Purcell and C. R. Pennypacker, “Scattering and absorption of light by nonspherical dielectric grains,” Astrophys. J. 186, 705-714 (1973).
[CrossRef]

Pilinis, C.

C. Pilinis and X. Li, “Particle shape and internal inhomogeneity effects in the optical properties of tropospheric aerosols of relevance to climate forcing,” J. Geophys. Res. 103, 3789-3800 (1998).
[CrossRef]

Pinnick, R. G.

P. Chylek, G. W. Grams, and R. G. Pinnick, “Light scattering by irregular randomly oriented particles,” Science 193, 480-482 (1976).
[CrossRef]

Pollack, J. B.

K. N. Liou, Q. Cai, J. B. Pollack, and J. N. Cuzzi, “Light scattering by randomly oriented cubes and parallelepipeds,” Appl. Opt. 22, 3001-3008 (1983).
[CrossRef]

J. B. Pollack and J. N. Cuzzi, “Scattering by nonspherical particles of size comparable to a wavelength: a new semi-empirical theory and its application to tropospheric aerosols,” J. Atmos. Sci. 37, 868-881 (1980).
[CrossRef]

Purcell, E. M.

E. M. Purcell and C. R. Pennypacker, “Scattering and absorption of light by nonspherical dielectric grains,” Astrophys. J. 186, 705-714 (1973).
[CrossRef]

Raisanen, P.

M. Kahnert, T. Nousiainen, and P. Raisanen, “Mie simulations as an error source in mineral aerosol radiative forcing calculations,” Q. J. R. Meteorol. Soc. 133, 299-307 (2007).
[CrossRef]

Ramanathan, V.

V. Ramanathan, P. J. Crutzen, J. T. Kiehl, and D. Rosenfeld, “Aerosols, climate, and the hydrological cycle,” Science 294, 2119-2124 (2001).
[CrossRef]

Raschke, E.

A. Macke, J. Mueller, and E. Raschke, “Single scattering properties of atmospheric ice crystals,” J. Atmos. Sci. 53, 2813-2825 (1996).
[CrossRef]

Reichardt, J.

Rosenfeld, D.

V. Ramanathan, P. J. Crutzen, J. T. Kiehl, and D. Rosenfeld, “Aerosols, climate, and the hydrological cycle,” Science 294, 2119-2124 (2001).
[CrossRef]

Schuetz, L.

I. N. Sokolik, D. Winker, G. Bergametti, D. Gillette, G. Carmichael, Y. J. Kaufman, L. Gomes, L. Schuetz, and J. Penner, “Introduction to special section on mineral dust: outstanding problems in quantifying the radiative impact of mineral dust,” J. Geophys. Res. 106, 18015-18027 (2001).
[CrossRef]

Shettle, E. P.

G. A. d'Almeida, P. Koepke, and E. P. Shettle, Atmospheric Aerosols: Global Climatology and Radiative Characteristics (Deepak, 1991).

Sinyuk, A.

O. Dubovik, A. Sinyuk, T. Lapyonok, B. N. Holben, M. I. Mishchenko, P. Yang, T. F. Eck, H. Volten, O. Munoz, B. Veihelmann, W. J. van der Zande, J. F. Leon, M. Sorokin, and I. Slutsker, “Application of spheroid models to account for aerosol particle nonsphericity in remote sensing of desert dust,” J. Geophys. Res. 111, D11208 (2006).
[CrossRef]

O. Dubovik, B. N. Holben, T. Lapyonok, A. Sinyuk, M. I. Mishchenko, P. Yang, and I. Slutsker, “Non-spherical aerosol retrieval method employing light scattering by spheroids,” Geophys. Res. Lett. 29, 014506 (2002).
[CrossRef]

Slutsker, I.

O. Dubovik, A. Sinyuk, T. Lapyonok, B. N. Holben, M. I. Mishchenko, P. Yang, T. F. Eck, H. Volten, O. Munoz, B. Veihelmann, W. J. van der Zande, J. F. Leon, M. Sorokin, and I. Slutsker, “Application of spheroid models to account for aerosol particle nonsphericity in remote sensing of desert dust,” J. Geophys. Res. 111, D11208 (2006).
[CrossRef]

O. Dubovik, B. N. Holben, T. Lapyonok, A. Sinyuk, M. I. Mishchenko, P. Yang, and I. Slutsker, “Non-spherical aerosol retrieval method employing light scattering by spheroids,” Geophys. Res. Lett. 29, 014506 (2002).
[CrossRef]

Sokolik, I. N.

P. Yang, Q. Feng, G. Hong, G. W. Kattawar, W. J. Wiscombe, M. I. Mishchenko, O. Dubovik, I. Laszlo, and I. N. Sokolik, “Modeling of the scattering and radiative properties of nonspherical dust particles,” J. Aerosol. Sci. 38, 995-1014(2007).
[CrossRef]

O. V. Kalashnikova, R. Kahn, I. N. Sokolik, and W.-H. Li, “Ability of multiangle remote sensing observations to identify and distinguish mineral dust types: optical models and retrievals of optically thick plumes,” J. Geophys. Res. 110, D18S14(2005).
[CrossRef]

O. V. Kalashnikova and I. N. Sokolik, “Importance of shapes and compositions of wind-blown dust particles for remote sensing at solar wavelengths,” Geophys. Res. Lett. 29, doi:10.1029/2002GL014947 (2002).
[CrossRef]

I. N. Sokolik, D. Winker, G. Bergametti, D. Gillette, G. Carmichael, Y. J. Kaufman, L. Gomes, L. Schuetz, and J. Penner, “Introduction to special section on mineral dust: outstanding problems in quantifying the radiative impact of mineral dust,” J. Geophys. Res. 106, 18015-18027 (2001).
[CrossRef]

Sorokin, M.

O. Dubovik, A. Sinyuk, T. Lapyonok, B. N. Holben, M. I. Mishchenko, P. Yang, T. F. Eck, H. Volten, O. Munoz, B. Veihelmann, W. J. van der Zande, J. F. Leon, M. Sorokin, and I. Slutsker, “Application of spheroid models to account for aerosol particle nonsphericity in remote sensing of desert dust,” J. Geophys. Res. 111, D11208 (2006).
[CrossRef]

Stamnes, J. J.

Stamnes, K.

Stamnes, P.

M. Hess, R. B. A. Koelemeijer, and P. Stamnes, “Scattering matrices of imperfect hexagonal ice crystals,” J. Quant. Spectrosc. Radiat. Transfer 60, 301-308 (1998).
[CrossRef]

Su, J.

Q. Fu, T. J. Thorsen, J. Su, J. M. Ge, and J. P. Huang, “Test of Mie-based single-scattering properties of non-spherical dust aerosols in radiative flux calculations,” J. Quant. Spectrosc. Radiat. Transfer 110, 1640-1653 (2009).
[CrossRef]

Sun, W.

Tanre, D.

Y. J. Kaufman, D. Tanre, and O. Boucher, “A satellite view of aerosols in the climate system,” Nature 419, 215-222 (2002).
[CrossRef]

Thorsen, T. J.

Q. Fu, T. J. Thorsen, J. Su, J. M. Ge, and J. P. Huang, “Test of Mie-based single-scattering properties of non-spherical dust aerosols in radiative flux calculations,” J. Quant. Spectrosc. Radiat. Transfer 110, 1640-1653 (2009).
[CrossRef]

Tomasko, M. G.

R. A. West, L. R. Doose, A. M. Eibl, M. G. Tomasko, and M. I. Mishchenko, “Laboratory measurements of mineral dust scattering phase function and linear polarization,” J. Geophys. Res. 102, 16871-16881 (1997).
[CrossRef]

Travis, L. D.

M. I. Mishchenko, L. D. Travis, R. A. Kahn, and R. A. West, “Modeling phase functions for dustlike troposheric aerosols using a shape mixture of randomly oriented polydisperse spheroids,” J. Geophys. Res. 102, 16831-16847 (1997).
[CrossRef]

M. I. Mishchenko, L. D. Travis, and A. Macke, “Scattering of light by polydisperse, randomly oriented, finite circular cylinders,” Appl. Opt. 35, 4927-4940 (1996).
[CrossRef]

M. I. Mishchenko, L. D. Travis, and D. W. Mackowski, “T-matrix computations of light scattering by nonspherical particles: a review,” J. Quant. Spectrosc. Radiat. Transfer 55, 535-575 (1996).
[CrossRef]

M. I. Mishchenko, A. A. Lacis, B. E. Carlson, and L. D. Travis, “Nonsphericity of dust-like tropospheric aerosols: implications for aerosol remote sensing and climate modeling,” Geophys. Res. Lett. 22, 1077-1080 (1995).
[CrossRef]

M. I. Mishchenko, J. W. Hovenier, and L. D. Travis, Light Scattering by Nonspherical Particles: Theory, Measurements, and Applications (Academic, 2000), pp. 327.

Tsay, S.-C.

Q. Feng, P. Yang, G. W. Kattawar, C. N. Hsu, S.-C. Tsay, and I. Laszlo, “Effects of particle nonsphericity and radiation polarization on retrieving dust properties from MODIS observations,” J. Aerosol Sci. 40, 776-789 (2009).
[CrossRef]

Z. Zhang, P. Yang, G. W. Kattawar, S.-C. Tsay, B. A. Baum, Y. Hu, A. J. Heymsfield, and J. Reichardt, “Geometrical-optics solution to light scattering by droxtal ice crystals,” Appl. Opt. 43, 2490-2499 (2004).
[CrossRef]

P. Yang, B. A. Baum, A. J. Heymsfield, Y.-X. Hu, H.-L. Huang, S.-C. Tsay, and S. A. Ackerman, “Single scattering properties of droxtals,” J. Quant. Spectrosc. Radiat. Transfer 79-80, 1159-1169 (2003).

Turquety, S.

Y. Liu, P. Koutrakis, R. Kahn, S. Turquety, and R. M. Yantosca, “Estimating fine particulate matter component concentrations and size distributions using satellite-retrieved fractional aerosol optical depth: part 2--a case study,” J. Air Waste Manage. Assoc. 57, 1360-1369 (2007).

van de Hulst, H. C.

H. C. van de Hulst, Light Scattering by Small Particles (Dover, 1981).

van der Zande, W. J.

O. Dubovik, A. Sinyuk, T. Lapyonok, B. N. Holben, M. I. Mishchenko, P. Yang, T. F. Eck, H. Volten, O. Munoz, B. Veihelmann, W. J. van der Zande, J. F. Leon, M. Sorokin, and I. Slutsker, “Application of spheroid models to account for aerosol particle nonsphericity in remote sensing of desert dust,” J. Geophys. Res. 111, D11208 (2006).
[CrossRef]

Veihelmann, B.

O. Dubovik, A. Sinyuk, T. Lapyonok, B. N. Holben, M. I. Mishchenko, P. Yang, T. F. Eck, H. Volten, O. Munoz, B. Veihelmann, W. J. van der Zande, J. F. Leon, M. Sorokin, and I. Slutsker, “Application of spheroid models to account for aerosol particle nonsphericity in remote sensing of desert dust,” J. Geophys. Res. 111, D11208 (2006).
[CrossRef]

T. Nousiainen, M. Kahnert, and B. Veihelmann, “Light scattering modeling of small feldspar aerosol particles using polyhedral prisms and spheroids,” J. Quant. Spectrosc. Radiat. Transfer 101, 471-484 (2006).
[CrossRef]

M. Kahnert, T. Nousiainen, and B. Veihelmann, “Spherical and spheroidal model particles as an error source in aerosol climate forcing and radiance computations: a case study for feldspar aerosols,” J. Geophys. Res. 110, D18S13 (2005).
[CrossRef]

B. Veihelmann, “Sunlight on atmospheric water vapor and mineral aerosol: modeling the link between laboratory data and remote sensing,” Ph.D. thesis (Radboud University Nijmegen, 2005).

Volten, H.

O. Dubovik, A. Sinyuk, T. Lapyonok, B. N. Holben, M. I. Mishchenko, P. Yang, T. F. Eck, H. Volten, O. Munoz, B. Veihelmann, W. J. van der Zande, J. F. Leon, M. Sorokin, and I. Slutsker, “Application of spheroid models to account for aerosol particle nonsphericity in remote sensing of desert dust,” J. Geophys. Res. 111, D11208 (2006).
[CrossRef]

H. Volten, O. Muñoz, J. W. Hovenier, and L. B. F. M. Waters, “An update of the Amsterdam light scattering database,” J. Quant. Spectrosc. Radiat. Transfer 100, 437-443 (2006).
[CrossRef]

Warren, S. G.

T. C. Grenfell and S. G. Warren, “Representation of a nonspherical ice particle by a collection of independent spheres for scattering and absorption of radiation,” J. Geophys. Res. 104, 31697-31709 (1999).
[CrossRef]

Waterman, P. C.

P. C. Waterman, “Matrix formulation of electromagnetic scattering,” Proc. IEEE 53, 805-812 (1965).
[CrossRef]

Waters, L. B. F. M.

H. Volten, O. Muñoz, J. W. Hovenier, and L. B. F. M. Waters, “An update of the Amsterdam light scattering database,” J. Quant. Spectrosc. Radiat. Transfer 100, 437-443 (2006).
[CrossRef]

Weinzierl, B.

S. Otto, E. Bierwirth, and B. Weinzierl, “Solar radiative effects of a Saharan dust plume observed during SAMUM assuming spheroidal model particles,” Tellus B 61, 270-296(2009).
[CrossRef]

Weisstein, E. W.

E. W. Weisstein, “Hexahedron,” from MathWorld--A Wolfram Web Resource, http://mathworld.wolfram.com/Hexahedron.html

Weng, F. Z.

G. Hong, P. Yang, F. Z. Weng, and Q. H. Liu, “Microwave scattering properties of sand particles: application to the simulation of microwave radiances over sandstorms,” J. Quant. Spectrosc. Radiat. Transfer 109, 684-702(2008).
[CrossRef]

West, R. A.

R. A. West, L. R. Doose, A. M. Eibl, M. G. Tomasko, and M. I. Mishchenko, “Laboratory measurements of mineral dust scattering phase function and linear polarization,” J. Geophys. Res. 102, 16871-16881 (1997).
[CrossRef]

M. I. Mishchenko, L. D. Travis, R. A. Kahn, and R. A. West, “Modeling phase functions for dustlike troposheric aerosols using a shape mixture of randomly oriented polydisperse spheroids,” J. Geophys. Res. 102, 16831-16847 (1997).
[CrossRef]

Winker, D.

I. N. Sokolik, D. Winker, G. Bergametti, D. Gillette, G. Carmichael, Y. J. Kaufman, L. Gomes, L. Schuetz, and J. Penner, “Introduction to special section on mineral dust: outstanding problems in quantifying the radiative impact of mineral dust,” J. Geophys. Res. 106, 18015-18027 (2001).
[CrossRef]

Wiscombe, W. J.

P. Yang, Q. Feng, G. Hong, G. W. Kattawar, W. J. Wiscombe, M. I. Mishchenko, O. Dubovik, I. Laszlo, and I. N. Sokolik, “Modeling of the scattering and radiative properties of nonspherical dust particles,” J. Aerosol. Sci. 38, 995-1014(2007).
[CrossRef]

Z. Zhang, P. Yang, G. W. Kattawar, and W. J. Wiscombe, “Single-scattering properties of platonic solids in geometrical-optics regime,” J. Quant. Spectrosc. Radiat. Transfer 106, 595-603 (2007).
[CrossRef]

Wriedt, T.

A. Doicu, Y. Eremin, and T. Wriedt, Acoustic and Electromagnetic Scattering Analysis Using Discrete Sources (Academic, 2000).

Yang, P.

L. Bi, P. Yang, G. W. Kattawar, and R. Kahn, “Single-scattering properties of tri-axial ellipsoidal particles for a size parameter range from the Rayleigh to geometric-optics regimes,” Appl. Opt. 48, 114-126 (2009).
[CrossRef]

Q. Feng, P. Yang, G. W. Kattawar, C. N. Hsu, S.-C. Tsay, and I. Laszlo, “Effects of particle nonsphericity and radiation polarization on retrieving dust properties from MODIS observations,” J. Aerosol Sci. 40, 776-789 (2009).
[CrossRef]

G. Hong, P. Yang, F. Z. Weng, and Q. H. Liu, “Microwave scattering properties of sand particles: application to the simulation of microwave radiances over sandstorms,” J. Quant. Spectrosc. Radiat. Transfer 109, 684-702(2008).
[CrossRef]

Z. Zhang, P. Yang, G. W. Kattawar, and W. J. Wiscombe, “Single-scattering properties of platonic solids in geometrical-optics regime,” J. Quant. Spectrosc. Radiat. Transfer 106, 595-603 (2007).
[CrossRef]

P. Yang, Q. Feng, G. Hong, G. W. Kattawar, W. J. Wiscombe, M. I. Mishchenko, O. Dubovik, I. Laszlo, and I. N. Sokolik, “Modeling of the scattering and radiative properties of nonspherical dust particles,” J. Aerosol. Sci. 38, 995-1014(2007).
[CrossRef]

O. Dubovik, A. Sinyuk, T. Lapyonok, B. N. Holben, M. I. Mishchenko, P. Yang, T. F. Eck, H. Volten, O. Munoz, B. Veihelmann, W. J. van der Zande, J. F. Leon, M. Sorokin, and I. Slutsker, “Application of spheroid models to account for aerosol particle nonsphericity in remote sensing of desert dust,” J. Geophys. Res. 111, D11208 (2006).
[CrossRef]

Z. Zhang, P. Yang, G. W. Kattawar, S.-C. Tsay, B. A. Baum, Y. Hu, A. J. Heymsfield, and J. Reichardt, “Geometrical-optics solution to light scattering by droxtal ice crystals,” Appl. Opt. 43, 2490-2499 (2004).
[CrossRef]

P. Yang, B. A. Baum, A. J. Heymsfield, Y.-X. Hu, H.-L. Huang, S.-C. Tsay, and S. A. Ackerman, “Single scattering properties of droxtals,” J. Quant. Spectrosc. Radiat. Transfer 79-80, 1159-1169 (2003).

O. Dubovik, B. N. Holben, T. Lapyonok, A. Sinyuk, M. I. Mishchenko, P. Yang, and I. Slutsker, “Non-spherical aerosol retrieval method employing light scattering by spheroids,” Geophys. Res. Lett. 29, 014506 (2002).
[CrossRef]

P. Yang, K. N. Liou, M. I. Mishchenko, and B.-C. Gao, “Efficient finite-difference time domain scheme for light scattering by dielectric particles: application to aerosols,” Appl. Opt. 39, 3727-3737 (2000).
[CrossRef]

P. Yang and K. N. Liou, “Single-scattering properties of complex ice crystals in terrestrial atmosphere,” Contrib. Atmos. Phys. 71, 223-248 (1998).

P. Yang and K. N. Liou, “Geometric-optics-integral-equation method for light scattering by nonspherical ice crystals,” Appl. Opt. 35, 6568-6584 (1996).
[CrossRef]

P. Yang and K. N. Liou, “Finite-difference time domain method for light scattering by small ice crystals in three-dimensional space,” J. Opt. Soc. Am. A 13, 2072-2085(1996).
[CrossRef]

Yantosca, R. M.

Y. Liu, P. Koutrakis, R. Kahn, S. Turquety, and R. M. Yantosca, “Estimating fine particulate matter component concentrations and size distributions using satellite-retrieved fractional aerosol optical depth: part 2--a case study,” J. Air Waste Manage. Assoc. 57, 1360-1369 (2007).

Yee, S. K.

S. K. Yee, “Numerical solution of initial boundary value problems involving Maxwell's equations in isotropic media,” IEEE Trans. Antennas Propag. 14, 302-307 (1966).
[CrossRef]

Young, M. A.

D. B. Curtis, B. Meland, M. Aycibin, N. P. Arnold, V. H. Grassian, M. A. Young, and P. D. Kleiber, “A laboratory investigation of light scattering from representative components of mineral dust aerosols at a wavelength of 550 nm,” J. Geophys. Res. 113, D08210 (2008).
[CrossRef]

Yurkin, M. A.

M. A. Yurkin and A. G. Hoekstra, “The discrete dipole approximation: an overview and recent developments,” J. Quant. Spectrosc. Radiat. Transfer 106, 558-589 (2007).
[CrossRef]

Zhai, P.

Zhang, Z.

Z. Zhang, P. Yang, G. W. Kattawar, and W. J. Wiscombe, “Single-scattering properties of platonic solids in geometrical-optics regime,” J. Quant. Spectrosc. Radiat. Transfer 106, 595-603 (2007).
[CrossRef]

Z. Zhang, P. Yang, G. W. Kattawar, S.-C. Tsay, B. A. Baum, Y. Hu, A. J. Heymsfield, and J. Reichardt, “Geometrical-optics solution to light scattering by droxtal ice crystals,” Appl. Opt. 43, 2490-2499 (2004).
[CrossRef]

Appl. Opt. (12)

A. Macke and M. I. Mishchenko, “Applicability of regular particle shapes in light scattering calculations for atmospheric ice particles,” Appl. Opt. 35, 4291-4296 (1996).
[CrossRef]

L. Bi, P. Yang, G. W. Kattawar, and R. Kahn, “Single-scattering properties of tri-axial ellipsoidal particles for a size parameter range from the Rayleigh to geometric-optics regimes,” Appl. Opt. 48, 114-126 (2009).
[CrossRef]

P. Yang, K. N. Liou, M. I. Mishchenko, and B.-C. Gao, “Efficient finite-difference time domain scheme for light scattering by dielectric particles: application to aerosols,” Appl. Opt. 39, 3727-3737 (2000).
[CrossRef]

M. I. Mishchenko, L. D. Travis, and A. Macke, “Scattering of light by polydisperse, randomly oriented, finite circular cylinders,” Appl. Opt. 35, 4927-4940 (1996).
[CrossRef]

A. Macke, “Scattering of light by polyhedral ice crystals,” Appl. Opt. 32, 2780-2788 (1993).
[CrossRef]

Z. Zhang, P. Yang, G. W. Kattawar, S.-C. Tsay, B. A. Baum, Y. Hu, A. J. Heymsfield, and J. Reichardt, “Geometrical-optics solution to light scattering by droxtal ice crystals,” Appl. Opt. 43, 2490-2499 (2004).
[CrossRef]

G. H. Goedecke and S. G. O'Brien, “Scattering by irregular inhomogeneous particles via the digitized Green's function algorithm,” Appl. Opt. 27, 2431-2438 (1988).
[CrossRef]

W. Sun, Q. Fu, and Z. Chen, “Finite-difference time-domain solution of light scattering by dielectric particles with perfectly matched layer absorbing boundary conditions,” Appl. Opt. 38, 3141-3151 (1999).
[CrossRef]

P. Yang and K. N. Liou, “Geometric-optics-integral-equation method for light scattering by nonspherical ice crystals,” Appl. Opt. 35, 6568-6584 (1996).
[CrossRef]

K. Muinonen, “Scattering of light by crystals: a modified Kirchhoff approximation,” Appl. Opt. 28, 3044-3050 (1989).
[CrossRef]

E. S. Fry, J. Musser, G. W. Kattawar, and P. Zhai, “Integrating cavities: temporal response,” Appl. Opt. 45, 9053-9065 (2006).
[CrossRef]

K. N. Liou, Q. Cai, J. B. Pollack, and J. N. Cuzzi, “Light scattering by randomly oriented cubes and parallelepipeds,” Appl. Opt. 22, 3001-3008 (1983).
[CrossRef]

Astrophys. J. (3)

E. M. Purcell and C. R. Pennypacker, “Scattering and absorption of light by nonspherical dielectric grains,” Astrophys. J. 186, 705-714 (1973).
[CrossRef]

B. T. Draine, “The discrete-dipole approximation and its application to interstellar graphite grains,” Astrophys. J. 333, 848-872 (1988).
[CrossRef]

P. Drossart, “A statistical model for the scattering by irregular particles,” Astrophys. J. 361, L29-L32 (1990).
[CrossRef]

Contrib. Atmos. Phys. (1)

P. Yang and K. N. Liou, “Single-scattering properties of complex ice crystals in terrestrial atmosphere,” Contrib. Atmos. Phys. 71, 223-248 (1998).

Geophys. Res. Lett. (4)

M. Z. Jacobson, “A physically-based treatment of elemental carbon optics: implications for global direct forcing of aerosols,” Geophys. Res. Lett. 27, 217-220 (2000).
[CrossRef]

O. Dubovik, B. N. Holben, T. Lapyonok, A. Sinyuk, M. I. Mishchenko, P. Yang, and I. Slutsker, “Non-spherical aerosol retrieval method employing light scattering by spheroids,” Geophys. Res. Lett. 29, 014506 (2002).
[CrossRef]

O. V. Kalashnikova and I. N. Sokolik, “Importance of shapes and compositions of wind-blown dust particles for remote sensing at solar wavelengths,” Geophys. Res. Lett. 29, doi:10.1029/2002GL014947 (2002).
[CrossRef]

M. I. Mishchenko, A. A. Lacis, B. E. Carlson, and L. D. Travis, “Nonsphericity of dust-like tropospheric aerosols: implications for aerosol remote sensing and climate modeling,” Geophys. Res. Lett. 22, 1077-1080 (1995).
[CrossRef]

IEEE Trans. Antennas Propag. (2)

W. Gordon, “Far-field approximations to the Kirchoff-Helmholtz representations of scattered fields,” IEEE Trans. Antennas Propag. 23, 590-592 (1975).
[CrossRef]

S. K. Yee, “Numerical solution of initial boundary value problems involving Maxwell's equations in isotropic media,” IEEE Trans. Antennas Propag. 14, 302-307 (1966).
[CrossRef]

J. Aerosol Sci. (1)

Q. Feng, P. Yang, G. W. Kattawar, C. N. Hsu, S.-C. Tsay, and I. Laszlo, “Effects of particle nonsphericity and radiation polarization on retrieving dust properties from MODIS observations,” J. Aerosol Sci. 40, 776-789 (2009).
[CrossRef]

J. Aerosol. Sci. (1)

P. Yang, Q. Feng, G. Hong, G. W. Kattawar, W. J. Wiscombe, M. I. Mishchenko, O. Dubovik, I. Laszlo, and I. N. Sokolik, “Modeling of the scattering and radiative properties of nonspherical dust particles,” J. Aerosol. Sci. 38, 995-1014(2007).
[CrossRef]

J. Air Waste Manage. Assoc. (2)

Y. Liu, P. Koutrakis, and R. Kahn, “Estimating fine particulate mattercomponent concentrations and size distributions using satellite-retrieved fractional aerosol optical depth: part 1--method development,” J. Air Waste Manage. Assoc. 57, 1351-1359 (2007).

Y. Liu, P. Koutrakis, R. Kahn, S. Turquety, and R. M. Yantosca, “Estimating fine particulate matter component concentrations and size distributions using satellite-retrieved fractional aerosol optical depth: part 2--a case study,” J. Air Waste Manage. Assoc. 57, 1360-1369 (2007).

J. Appl. Phys. D (1)

A. A. Kokhanovsky, “Optical properties of irregularly shaped particles,” J. Appl. Phys. D 36, 915-923 (2003).
[CrossRef]

J. Atmos. Sci. (2)

A. Macke, J. Mueller, and E. Raschke, “Single scattering properties of atmospheric ice crystals,” J. Atmos. Sci. 53, 2813-2825 (1996).
[CrossRef]

J. B. Pollack and J. N. Cuzzi, “Scattering by nonspherical particles of size comparable to a wavelength: a new semi-empirical theory and its application to tropospheric aerosols,” J. Atmos. Sci. 37, 868-881 (1980).
[CrossRef]

J. Geophys. Res. (11)

O. V. Kalashnikova and R. A. Kahn, “Mineral dust plume evolution over the Atlantic from combined MISR/MODIS aerosol retrievals,” J. Geophys. Res. 113, D24204 (2008).
[CrossRef]

M. Kahnert, A. Kylling, “Radiance and flux simulations for mineral dust aerosols: assessing the error due to using spherical or spheroidal model particles,” J. Geophys. Res. 109, D09203 (2004).
[CrossRef]

C. Pilinis and X. Li, “Particle shape and internal inhomogeneity effects in the optical properties of tropospheric aerosols of relevance to climate forcing,” J. Geophys. Res. 103, 3789-3800 (1998).
[CrossRef]

T. C. Grenfell and S. G. Warren, “Representation of a nonspherical ice particle by a collection of independent spheres for scattering and absorption of radiation,” J. Geophys. Res. 104, 31697-31709 (1999).
[CrossRef]

O. V. Kalashnikova, R. Kahn, I. N. Sokolik, and W.-H. Li, “Ability of multiangle remote sensing observations to identify and distinguish mineral dust types: optical models and retrievals of optically thick plumes,” J. Geophys. Res. 110, D18S14(2005).
[CrossRef]

M. I. Mishchenko, L. D. Travis, R. A. Kahn, and R. A. West, “Modeling phase functions for dustlike troposheric aerosols using a shape mixture of randomly oriented polydisperse spheroids,” J. Geophys. Res. 102, 16831-16847 (1997).
[CrossRef]

O. Dubovik, A. Sinyuk, T. Lapyonok, B. N. Holben, M. I. Mishchenko, P. Yang, T. F. Eck, H. Volten, O. Munoz, B. Veihelmann, W. J. van der Zande, J. F. Leon, M. Sorokin, and I. Slutsker, “Application of spheroid models to account for aerosol particle nonsphericity in remote sensing of desert dust,” J. Geophys. Res. 111, D11208 (2006).
[CrossRef]

M. Kahnert, T. Nousiainen, and B. Veihelmann, “Spherical and spheroidal model particles as an error source in aerosol climate forcing and radiance computations: a case study for feldspar aerosols,” J. Geophys. Res. 110, D18S13 (2005).
[CrossRef]

I. N. Sokolik, D. Winker, G. Bergametti, D. Gillette, G. Carmichael, Y. J. Kaufman, L. Gomes, L. Schuetz, and J. Penner, “Introduction to special section on mineral dust: outstanding problems in quantifying the radiative impact of mineral dust,” J. Geophys. Res. 106, 18015-18027 (2001).
[CrossRef]

R. A. West, L. R. Doose, A. M. Eibl, M. G. Tomasko, and M. I. Mishchenko, “Laboratory measurements of mineral dust scattering phase function and linear polarization,” J. Geophys. Res. 102, 16871-16881 (1997).
[CrossRef]

D. B. Curtis, B. Meland, M. Aycibin, N. P. Arnold, V. H. Grassian, M. A. Young, and P. D. Kleiber, “A laboratory investigation of light scattering from representative components of mineral dust aerosols at a wavelength of 550 nm,” J. Geophys. Res. 113, D08210 (2008).
[CrossRef]

J. Opt. Soc. Am. A (2)

J. Quant. Spectrosc. Radiat. Transfer (10)

M. A. Yurkin and A. G. Hoekstra, “The discrete dipole approximation: an overview and recent developments,” J. Quant. Spectrosc. Radiat. Transfer 106, 558-589 (2007).
[CrossRef]

M. I. Mishchenko, L. D. Travis, and D. W. Mackowski, “T-matrix computations of light scattering by nonspherical particles: a review,” J. Quant. Spectrosc. Radiat. Transfer 55, 535-575 (1996).
[CrossRef]

Z. Zhang, P. Yang, G. W. Kattawar, and W. J. Wiscombe, “Single-scattering properties of platonic solids in geometrical-optics regime,” J. Quant. Spectrosc. Radiat. Transfer 106, 595-603 (2007).
[CrossRef]

P. Yang, B. A. Baum, A. J. Heymsfield, Y.-X. Hu, H.-L. Huang, S.-C. Tsay, and S. A. Ackerman, “Single scattering properties of droxtals,” J. Quant. Spectrosc. Radiat. Transfer 79-80, 1159-1169 (2003).

M. Hess, R. B. A. Koelemeijer, and P. Stamnes, “Scattering matrices of imperfect hexagonal ice crystals,” J. Quant. Spectrosc. Radiat. Transfer 60, 301-308 (1998).
[CrossRef]

Q. Fu, T. J. Thorsen, J. Su, J. M. Ge, and J. P. Huang, “Test of Mie-based single-scattering properties of non-spherical dust aerosols in radiative flux calculations,” J. Quant. Spectrosc. Radiat. Transfer 110, 1640-1653 (2009).
[CrossRef]

T. Nousiainen, M. Kahnert, and B. Veihelmann, “Light scattering modeling of small feldspar aerosol particles using polyhedral prisms and spheroids,” J. Quant. Spectrosc. Radiat. Transfer 101, 471-484 (2006).
[CrossRef]

G. Hong, P. Yang, F. Z. Weng, and Q. H. Liu, “Microwave scattering properties of sand particles: application to the simulation of microwave radiances over sandstorms,” J. Quant. Spectrosc. Radiat. Transfer 109, 684-702(2008).
[CrossRef]

H. Volten, O. Muñoz, J. W. Hovenier, and L. B. F. M. Waters, “An update of the Amsterdam light scattering database,” J. Quant. Spectrosc. Radiat. Transfer 100, 437-443 (2006).
[CrossRef]

T. Nousiainen, “Optical modeling of mineral dust particles: a review,” J. Quant. Spectrosc. Radiat. Transfer 110, 1261-1279 (2009).
[CrossRef]

Nature (1)

Y. J. Kaufman, D. Tanre, and O. Boucher, “A satellite view of aerosols in the climate system,” Nature 419, 215-222 (2002).
[CrossRef]

Proc. IEEE (1)

P. C. Waterman, “Matrix formulation of electromagnetic scattering,” Proc. IEEE 53, 805-812 (1965).
[CrossRef]

Q. J. R. Meteorol. Soc. (2)

J. S. Foot, “Some observations of the optical properties of clouds: II. Cirrus,” Q. J. R. Meteorol. Soc. 114, 145-164(1988).
[CrossRef]

M. Kahnert, T. Nousiainen, and P. Raisanen, “Mie simulations as an error source in mineral aerosol radiative forcing calculations,” Q. J. R. Meteorol. Soc. 133, 299-307 (2007).
[CrossRef]

Rev. Geophys. (1)

J. Haywood and O. Boucher, “Estimates of the direct and indirect radiative forcing due to troposphere aerosols: a review,” Rev. Geophys. 38, 513-544 (2000).
[CrossRef]

Science (3)

V. Ramanathan, P. J. Crutzen, J. T. Kiehl, and D. Rosenfeld, “Aerosols, climate, and the hydrological cycle,” Science 294, 2119-2124 (2001).
[CrossRef]

P. Chýlek and J. Coakley, “Aerosols and climate,” Science 183, 75-77 (1974).
[CrossRef]

P. Chylek, G. W. Grams, and R. G. Pinnick, “Light scattering by irregular randomly oriented particles,” Science 193, 480-482 (1976).
[CrossRef]

Tellus B (1)

S. Otto, E. Bierwirth, and B. Weinzierl, “Solar radiative effects of a Saharan dust plume observed during SAMUM assuming spheroidal model particles,” Tellus B 61, 270-296(2009).
[CrossRef]

Other (7)

A. Doicu, Y. Eremin, and T. Wriedt, Acoustic and Electromagnetic Scattering Analysis Using Discrete Sources (Academic, 2000).

E. W. Weisstein, “Hexahedron,” from MathWorld--A Wolfram Web Resource, http://mathworld.wolfram.com/Hexahedron.html

B. Veihelmann, “Sunlight on atmospheric water vapor and mineral aerosol: modeling the link between laboratory data and remote sensing,” Ph.D. thesis (Radboud University Nijmegen, 2005).

G. A. d'Almeida, P. Koepke, and E. P. Shettle, Atmospheric Aerosols: Global Climatology and Radiative Characteristics (Deepak, 1991).

M. I. Mishchenko, J. W. Hovenier, and L. D. Travis, Light Scattering by Nonspherical Particles: Theory, Measurements, and Applications (Academic, 2000), pp. 327.

H. C. van de Hulst, Light Scattering by Small Particles (Dover, 1981).

C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, 1983).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1

Symmetric and nonsymmetric hexahedra.

Fig. 2
Fig. 2

Schematic geometry for (a) the DDA method and (b) the ray-tracing process involving a nonsymmetric hexahedron.

Fig. 3
Fig. 3

Illustration of the calculation of the diffraction of a polygon by using a line-integral method.

Fig. 4
Fig. 4

Phase function of randomly oriented cubes and nonsymmetric hexahedra calculated from the IGOM.

Fig. 5
Fig. 5

Integrated scattering properties computed from the DDA method and IGOM for randomly oriented nonsymmetric hexahedra.

Fig. 6
Fig. 6

Comparison of six elements of the phase matrix of a nonsymmetric hexahedron simulated from the IGOM and ADDA. The particle is strongly absorptive. The agreement of results from the IGOM and ADDA indicates the validity of the calculation of the diffraction and external reflection in the IGOM at a size parameter of 10.

Fig. 7
Fig. 7

Same as Fig. 6, except that the nonsymmetric hexahedron is semitransparent.

Fig. 8
Fig. 8

Comparison of simulated results of hexahedra with measurements for quartz particles at the wavelength of 0.633 μm .

Fig. 9
Fig. 9

Simulated bulk-scattering properties from a single shape. The left panel is for three nonsymmetric hexahedra. The right panel is for three tri-axial ellipsoids. The size distribution is the same as that employed in Fig. 8.

Fig. 10
Fig. 10

Same as Fig. 8 but for the Pinatubo aerosol sample.

Equations (13)

Equations on this page are rendered with MathJax. Learn more.

n i · ( p p i c ) = 0 , ( i = 1 , 6 ) ,
n ^ 1 = ( sin θ cos ϕ , sin θ sin ϕ , cos θ ) .
θ = θ max ξ 1 , ϕ = 2 π ξ 2 ,
p i = p i 4 π / S ,
r eff = 3 4 V A ,
V = r 3 i = 1 6 S i ,
A dif = k 2 2 π I s ( ( cos θ s + cos 2 θ s ) / 2 0 0 ( 1 + cos θ s ) / 2 ) ,
I s = s exp ( i k r ^ · ξ ) d 2 ξ .
s exp ( i k w · ξ ) d 2 ξ = i k | w | 2 S exp [ i k w · ξ ] ( w 2 d x w 1 d y ) ,
w 1 = sin θ s cos ϕ s ,
w 2 = sin θ s sin ϕ s .
s exp ( i k w · ξ ) d 2 ξ = i k | w | 2 ( I 1 + I 2 + + I N ) ,
I n = [ w 2 ( x n + 1 x n ) w 1 ( y n + 1 y n ) ] exp ( i k [ w 1 ( x n + 1 + x n ) + w 2 ( y n + 1 + y n ) ] / 2 ) × sin [ k ( w 1 ( x n + 1 x n ) + w 2 ( y n + 1 y n ) ) / 2 ] k [ w 1 ( x n + 1 x n ) + w 2 ( y n + 1 y n ) ] / 2 .

Metrics