Abstract

We describe a protocol for the use of a control feedback loop incorporating an iterative optimization routine for a range of time-independent adaptive optics applications. These applications are characterized by the quasi steady state of the aberrative effects (>0.1s) and contrast, for instance, to astronomical applications where the aberrations constantly vary at frequencies above 10Hz. For optimal performance in such time-independent applications, the control systems typically require specialized tailoring. A typical example of two different types of time-independent adaptive optics applications—an adaptive optic microscope and an adaptive optic laser platform—are detailed and compared. It is shown that implementing a number of minor, but crucial, application-specific modifications to the control system results in an improved efficiency of an already extremely successful technique for aberration compensation. We present a description of the crucial parameters to consider in a search-based adaptive optics system.

© 2010 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. K. Tyson, Principles of Adaptive Optics, 2nd ed. (Academic, 1998).
  2. M. A. Vorontsov, G. W. Carhart, D. V. Pruidze, J. C. Ricklin, and D. G. Voelz, “Adaptive imaging system for phase-distorted extended source/multiple distance objects,” Appl. Opt. 36, 3319-3328 (1997).
    [CrossRef] [PubMed]
  3. M. A. Vorontsov, G. W. Carhart, M. Cohen, and G. Cauwenberghs, “Adaptive optics based on analog parallel stochastic optimization: analysis and experimental demonstration,” J. Opt. Soc. Am. A 17, 1440-1453 (2000).
    [CrossRef]
  4. C. Paterson and J. Notaras, “Demonstration of closed-loop adaptive optics with a point-diffraction interferometer in strong scintillation with optical vortices,” Opt. Express 15, 13745-14756 (2007).
    [CrossRef] [PubMed]
  5. Flexible Optical B.V., PO Box 581, 2600 AN, Delft, The Netherlands, www.okotech.com
  6. C. Dainty, Proceedings of the 6th International Workshop on Adaptive Optics for Industry and Medicine (Imperial College Press, 2008).
  7. O. Albert, L. Sherman, G. Mourou, and T. B. Norris, “Smart microscope: an adaptive optics learning system for aberration correction in multiphoton confocal microscopy,” Opt. Lett. 25, 52-54 (2000).
    [CrossRef]
  8. M. J. Booth, M. A. A. Neil, R. Juškaitis, and T. Wilson, “Adaptive aberration correction in a confocal microscope,” Proc. Natl. Acad. Sci. USA 99, 5788-5792 (2002).
    [CrossRef] [PubMed]
  9. P. N. Marsh, D. Burns, and J. M. Girkin, “Practical implementation of adaptive optics in multiphoton microscopy,” Opt. Express 11, 1123-1130 (2003).
    [CrossRef] [PubMed]
  10. A. J. Wright, D. Burns, B. A. Patterson, S. P. Poland, G. J. Valentine, and J. M. Girkin, “Exploration of the optimization algorithms used in the implementation of adaptive optics in confocal and multiphoton microscopy,” Microsc. Res. Technol. 6, 36-44 (2005).
    [CrossRef]
  11. M. Rueckel, J. A. Mack-Bucher, and W. Denk, “Active wavefront correction in two-photon microscopy using coherence-gated wavefront correction,” Proc. Natl. Acad. Sci. USA 103, 17137-17142 (2006).
    [CrossRef] [PubMed]
  12. S. P. Poland, A. J. Wright, and J. M. Girkin, “Evaluation of fitness parameters used in an iterative approach to aberration correction in optical sectioning microscopy,” Appl. Opt. 47, 731-736 (2008).
    [CrossRef] [PubMed]
  13. A. J. Wright, S. P. Poland, J. M. Girkin, C. W. Freudiger, C. L. Evans, and X. S. Xie, “Adaptive optics for enhanced signal in CARS microscopy,” Opt. Express 15, 18209-18219(2007).
    [CrossRef] [PubMed]
  14. J. Z.Liang, D. R. Williams, and D. T. Miller, “Supernormal vision and high-resolution retinal imaging through adaptive optics,” J. Opt. Soc. Am. A 14, 2884-2892 (1997).
    [CrossRef]
  15. E. Fernandez, I. Iglesias, and P. Artal, “Closed-loop adaptive optics in the human eye,” Opt. Lett. 26, 746-748 (2001).
    [CrossRef]
  16. W. Lubeigt, G. Valentine, and D. Burns, “Enhancement of laser performance using an intracavity deformable membrane mirror,” Opt. Express 16, 10943-10955 (2008).
    [CrossRef] [PubMed]
  17. W. Lubeigt, G. Valentine, J. Girkin, E. Bente, and D. Burns, “Active transverse mode control and optimization of an all-solid-state laser using an intracavity adaptive-optic mirror,” Opt. Express 10, 550-555 (2002).
    [PubMed]
  18. U. Wittrock, Y. Buske, and H. M. Heuck, “Adaptive aberration control in laser amplifiers and laser resonators,” Proc. SPIE 4969, 122-136 (2003).
    [CrossRef]
  19. R. El-Agmy, H. Bulte, A. H. Greenaway, and D. Reid, “Adaptive beam profile control using a simulated annealing algorithm,” Opt. Express 13, 6085-6091 (2005).
    [CrossRef] [PubMed]
  20. P. Yang, Y. Liu, W. Yang, M. W. Ao, S. J. Hu, B. Xu, and W. H. Jiang, “Adaptive mode optimization of a continuous-wave solid-state laser using an intracavity piezoelectric deformable mirror,” Opt. Commun. 278, 377-381 (2007).
    [CrossRef]
  21. J. Sheldakova, A. Kudryashov, V. Samarkin, and A. Rukosuev, “Laser beam focusing by means of closed-loop adaptive optical system,” presented at the 7th International Workshop on Adaptive Optics for Industry and Medicine, Shatura, Moscow Region, Russia, 8-11 June 2009.
  22. N. K. Metzger, W. Lubeigt, D. Burns, M. Griffith, L. Laycock, A. A. Lagatsky, C. T. A. Brown, and W. Sibbett, “Ultrashort-pulse laser with designer optical phase,” paper presented at the European Conference on Lasers and Electro-Optics and the European Quantum Electronics Conference, CLEO Europe-EQEC 2009, Munich, Germany, 14-19 June 2009, paper CA 8.5.
  23. L. Sherman, J. Y. Ye, O. Albert, and T. B. Norris, “Adaptive correction of depth-induced aberrations in multiphoton scanning microscopy using a deformable mirror,” J. Microsc. 206, 65-71 (2002).
    [CrossRef] [PubMed]
  24. M. J. Booth, “Wave front sensor-less adaptive optics: a modal-based approach using sphere packings,” Opt. Express 14, 1339-1352 (2006).
    [CrossRef] [PubMed]
  25. A. V. Ikramov, I. M. Roshchupkin, and A. G. Safronov, “Cooled bimorph adaptive mirrors for laser optics,” Quantum Electron. 24, 613-617 (1994).
    [CrossRef]
  26. J. C. Dainty, A. V. Koryabin, and A. V. Kudryashov, “Low-order adaptive deformable mirror,” Appl. Opt. 37, 4663-4668 (1998).
    [CrossRef]
  27. T. Y. Cherezova, L. N. Kaptsov, and A. V. Kudryashov, “Cw industrial rod YAG:Nd3+ laser with an intracavity active bimorph mirror,” Appl. Opt. 35, 2554-2561 (1996).
    [CrossRef] [PubMed]
  28. W. Lubeigt, M. Griffith, L. Laycock, and D. Burns, “Reduction of the time-to-full-brightness in solid-state lasers using intra-cavity adaptive optics,” Opt. Express 17, 12057-12069(2009).
    [CrossRef] [PubMed]
  29. J. M. Girkin, S. P. Poland, and A. J. Wright, “Adaptive optics for deeper imaging of biological samples,” Curr. Opin. Biotechnol. 20, 106-110 (2009).
    [CrossRef] [PubMed]
  30. W. Koechner, Solid-State Laser Engineering, 5th ed., Springer Series in Optical Sciences (Springer, 1999).
  31. C. Sheppard, M. Gu, K. Brain, and H. Zhou, “Influence of spherical aberration on axial imaging of confocal reflection microscopy,” Appl. Opt. 33, 616-624 (1994).
    [CrossRef] [PubMed]
  32. K. F. Man, Genetic Algorithm: Concept and Designs (Springer, 1999).
    [CrossRef]
  33. S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi, “Optimization by simulated annealing,” Science 220, 671-680 (1983).
    [CrossRef] [PubMed]
  34. A. J. Wright, B. A. Patterson, S. P. Poland, J. M. Girkin, G. M. Gibson, and M. J. Padgett, “Dynamic closed-loop system for focus tracking using a spatial light modulator and a deformable membrane mirror,” Opt. Express 14, 222-228 (2006).
    [CrossRef] [PubMed]
  35. S. P. Poland, A. J. Wright, and J. M. Girkin, “Active focus locking in an optically sectioning microscope utilizing a deformable membrane mirror,” Opt. Lett. 33, 419-421 (2008).
    [CrossRef] [PubMed]

2009

W. Lubeigt, M. Griffith, L. Laycock, and D. Burns, “Reduction of the time-to-full-brightness in solid-state lasers using intra-cavity adaptive optics,” Opt. Express 17, 12057-12069(2009).
[CrossRef] [PubMed]

J. M. Girkin, S. P. Poland, and A. J. Wright, “Adaptive optics for deeper imaging of biological samples,” Curr. Opin. Biotechnol. 20, 106-110 (2009).
[CrossRef] [PubMed]

2008

2007

2006

2005

R. El-Agmy, H. Bulte, A. H. Greenaway, and D. Reid, “Adaptive beam profile control using a simulated annealing algorithm,” Opt. Express 13, 6085-6091 (2005).
[CrossRef] [PubMed]

A. J. Wright, D. Burns, B. A. Patterson, S. P. Poland, G. J. Valentine, and J. M. Girkin, “Exploration of the optimization algorithms used in the implementation of adaptive optics in confocal and multiphoton microscopy,” Microsc. Res. Technol. 6, 36-44 (2005).
[CrossRef]

2003

P. N. Marsh, D. Burns, and J. M. Girkin, “Practical implementation of adaptive optics in multiphoton microscopy,” Opt. Express 11, 1123-1130 (2003).
[CrossRef] [PubMed]

U. Wittrock, Y. Buske, and H. M. Heuck, “Adaptive aberration control in laser amplifiers and laser resonators,” Proc. SPIE 4969, 122-136 (2003).
[CrossRef]

2002

L. Sherman, J. Y. Ye, O. Albert, and T. B. Norris, “Adaptive correction of depth-induced aberrations in multiphoton scanning microscopy using a deformable mirror,” J. Microsc. 206, 65-71 (2002).
[CrossRef] [PubMed]

W. Lubeigt, G. Valentine, J. Girkin, E. Bente, and D. Burns, “Active transverse mode control and optimization of an all-solid-state laser using an intracavity adaptive-optic mirror,” Opt. Express 10, 550-555 (2002).
[PubMed]

M. J. Booth, M. A. A. Neil, R. Juškaitis, and T. Wilson, “Adaptive aberration correction in a confocal microscope,” Proc. Natl. Acad. Sci. USA 99, 5788-5792 (2002).
[CrossRef] [PubMed]

2001

2000

1998

1997

1996

1994

A. V. Ikramov, I. M. Roshchupkin, and A. G. Safronov, “Cooled bimorph adaptive mirrors for laser optics,” Quantum Electron. 24, 613-617 (1994).
[CrossRef]

C. Sheppard, M. Gu, K. Brain, and H. Zhou, “Influence of spherical aberration on axial imaging of confocal reflection microscopy,” Appl. Opt. 33, 616-624 (1994).
[CrossRef] [PubMed]

1983

S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi, “Optimization by simulated annealing,” Science 220, 671-680 (1983).
[CrossRef] [PubMed]

Albert, O.

L. Sherman, J. Y. Ye, O. Albert, and T. B. Norris, “Adaptive correction of depth-induced aberrations in multiphoton scanning microscopy using a deformable mirror,” J. Microsc. 206, 65-71 (2002).
[CrossRef] [PubMed]

O. Albert, L. Sherman, G. Mourou, and T. B. Norris, “Smart microscope: an adaptive optics learning system for aberration correction in multiphoton confocal microscopy,” Opt. Lett. 25, 52-54 (2000).
[CrossRef]

Ao, M. W.

P. Yang, Y. Liu, W. Yang, M. W. Ao, S. J. Hu, B. Xu, and W. H. Jiang, “Adaptive mode optimization of a continuous-wave solid-state laser using an intracavity piezoelectric deformable mirror,” Opt. Commun. 278, 377-381 (2007).
[CrossRef]

Artal, P.

Bente, E.

Booth, M. J.

M. J. Booth, “Wave front sensor-less adaptive optics: a modal-based approach using sphere packings,” Opt. Express 14, 1339-1352 (2006).
[CrossRef] [PubMed]

M. J. Booth, M. A. A. Neil, R. Juškaitis, and T. Wilson, “Adaptive aberration correction in a confocal microscope,” Proc. Natl. Acad. Sci. USA 99, 5788-5792 (2002).
[CrossRef] [PubMed]

Brain, K.

Brown, C. T. A.

N. K. Metzger, W. Lubeigt, D. Burns, M. Griffith, L. Laycock, A. A. Lagatsky, C. T. A. Brown, and W. Sibbett, “Ultrashort-pulse laser with designer optical phase,” paper presented at the European Conference on Lasers and Electro-Optics and the European Quantum Electronics Conference, CLEO Europe-EQEC 2009, Munich, Germany, 14-19 June 2009, paper CA 8.5.

Bulte, H.

Burns, D.

W. Lubeigt, M. Griffith, L. Laycock, and D. Burns, “Reduction of the time-to-full-brightness in solid-state lasers using intra-cavity adaptive optics,” Opt. Express 17, 12057-12069(2009).
[CrossRef] [PubMed]

W. Lubeigt, G. Valentine, and D. Burns, “Enhancement of laser performance using an intracavity deformable membrane mirror,” Opt. Express 16, 10943-10955 (2008).
[CrossRef] [PubMed]

A. J. Wright, D. Burns, B. A. Patterson, S. P. Poland, G. J. Valentine, and J. M. Girkin, “Exploration of the optimization algorithms used in the implementation of adaptive optics in confocal and multiphoton microscopy,” Microsc. Res. Technol. 6, 36-44 (2005).
[CrossRef]

P. N. Marsh, D. Burns, and J. M. Girkin, “Practical implementation of adaptive optics in multiphoton microscopy,” Opt. Express 11, 1123-1130 (2003).
[CrossRef] [PubMed]

W. Lubeigt, G. Valentine, J. Girkin, E. Bente, and D. Burns, “Active transverse mode control and optimization of an all-solid-state laser using an intracavity adaptive-optic mirror,” Opt. Express 10, 550-555 (2002).
[PubMed]

N. K. Metzger, W. Lubeigt, D. Burns, M. Griffith, L. Laycock, A. A. Lagatsky, C. T. A. Brown, and W. Sibbett, “Ultrashort-pulse laser with designer optical phase,” paper presented at the European Conference on Lasers and Electro-Optics and the European Quantum Electronics Conference, CLEO Europe-EQEC 2009, Munich, Germany, 14-19 June 2009, paper CA 8.5.

Buske, Y.

U. Wittrock, Y. Buske, and H. M. Heuck, “Adaptive aberration control in laser amplifiers and laser resonators,” Proc. SPIE 4969, 122-136 (2003).
[CrossRef]

Carhart, G. W.

Cauwenberghs, G.

Cherezova, T. Y.

Cohen, M.

Dainty, C.

C. Dainty, Proceedings of the 6th International Workshop on Adaptive Optics for Industry and Medicine (Imperial College Press, 2008).

Dainty, J. C.

Denk, W.

M. Rueckel, J. A. Mack-Bucher, and W. Denk, “Active wavefront correction in two-photon microscopy using coherence-gated wavefront correction,” Proc. Natl. Acad. Sci. USA 103, 17137-17142 (2006).
[CrossRef] [PubMed]

El-Agmy, R.

Evans, C. L.

Fernandez, E.

Freudiger, C. W.

Gelatt, C. D.

S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi, “Optimization by simulated annealing,” Science 220, 671-680 (1983).
[CrossRef] [PubMed]

Gibson, G. M.

Girkin, J.

Girkin, J. M.

J. M. Girkin, S. P. Poland, and A. J. Wright, “Adaptive optics for deeper imaging of biological samples,” Curr. Opin. Biotechnol. 20, 106-110 (2009).
[CrossRef] [PubMed]

S. P. Poland, A. J. Wright, and J. M. Girkin, “Active focus locking in an optically sectioning microscope utilizing a deformable membrane mirror,” Opt. Lett. 33, 419-421 (2008).
[CrossRef] [PubMed]

S. P. Poland, A. J. Wright, and J. M. Girkin, “Evaluation of fitness parameters used in an iterative approach to aberration correction in optical sectioning microscopy,” Appl. Opt. 47, 731-736 (2008).
[CrossRef] [PubMed]

A. J. Wright, S. P. Poland, J. M. Girkin, C. W. Freudiger, C. L. Evans, and X. S. Xie, “Adaptive optics for enhanced signal in CARS microscopy,” Opt. Express 15, 18209-18219(2007).
[CrossRef] [PubMed]

A. J. Wright, B. A. Patterson, S. P. Poland, J. M. Girkin, G. M. Gibson, and M. J. Padgett, “Dynamic closed-loop system for focus tracking using a spatial light modulator and a deformable membrane mirror,” Opt. Express 14, 222-228 (2006).
[CrossRef] [PubMed]

A. J. Wright, D. Burns, B. A. Patterson, S. P. Poland, G. J. Valentine, and J. M. Girkin, “Exploration of the optimization algorithms used in the implementation of adaptive optics in confocal and multiphoton microscopy,” Microsc. Res. Technol. 6, 36-44 (2005).
[CrossRef]

P. N. Marsh, D. Burns, and J. M. Girkin, “Practical implementation of adaptive optics in multiphoton microscopy,” Opt. Express 11, 1123-1130 (2003).
[CrossRef] [PubMed]

Greenaway, A. H.

Griffith, M.

W. Lubeigt, M. Griffith, L. Laycock, and D. Burns, “Reduction of the time-to-full-brightness in solid-state lasers using intra-cavity adaptive optics,” Opt. Express 17, 12057-12069(2009).
[CrossRef] [PubMed]

N. K. Metzger, W. Lubeigt, D. Burns, M. Griffith, L. Laycock, A. A. Lagatsky, C. T. A. Brown, and W. Sibbett, “Ultrashort-pulse laser with designer optical phase,” paper presented at the European Conference on Lasers and Electro-Optics and the European Quantum Electronics Conference, CLEO Europe-EQEC 2009, Munich, Germany, 14-19 June 2009, paper CA 8.5.

Gu, M.

Heuck, H. M.

U. Wittrock, Y. Buske, and H. M. Heuck, “Adaptive aberration control in laser amplifiers and laser resonators,” Proc. SPIE 4969, 122-136 (2003).
[CrossRef]

Hu, S. J.

P. Yang, Y. Liu, W. Yang, M. W. Ao, S. J. Hu, B. Xu, and W. H. Jiang, “Adaptive mode optimization of a continuous-wave solid-state laser using an intracavity piezoelectric deformable mirror,” Opt. Commun. 278, 377-381 (2007).
[CrossRef]

Iglesias, I.

Ikramov, A. V.

A. V. Ikramov, I. M. Roshchupkin, and A. G. Safronov, “Cooled bimorph adaptive mirrors for laser optics,” Quantum Electron. 24, 613-617 (1994).
[CrossRef]

Jiang, W. H.

P. Yang, Y. Liu, W. Yang, M. W. Ao, S. J. Hu, B. Xu, and W. H. Jiang, “Adaptive mode optimization of a continuous-wave solid-state laser using an intracavity piezoelectric deformable mirror,” Opt. Commun. 278, 377-381 (2007).
[CrossRef]

Juškaitis, R.

M. J. Booth, M. A. A. Neil, R. Juškaitis, and T. Wilson, “Adaptive aberration correction in a confocal microscope,” Proc. Natl. Acad. Sci. USA 99, 5788-5792 (2002).
[CrossRef] [PubMed]

Kaptsov, L. N.

Kirkpatrick, S.

S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi, “Optimization by simulated annealing,” Science 220, 671-680 (1983).
[CrossRef] [PubMed]

Koechner, W.

W. Koechner, Solid-State Laser Engineering, 5th ed., Springer Series in Optical Sciences (Springer, 1999).

Koryabin, A. V.

Kudryashov, A.

J. Sheldakova, A. Kudryashov, V. Samarkin, and A. Rukosuev, “Laser beam focusing by means of closed-loop adaptive optical system,” presented at the 7th International Workshop on Adaptive Optics for Industry and Medicine, Shatura, Moscow Region, Russia, 8-11 June 2009.

Kudryashov, A. V.

Lagatsky, A. A.

N. K. Metzger, W. Lubeigt, D. Burns, M. Griffith, L. Laycock, A. A. Lagatsky, C. T. A. Brown, and W. Sibbett, “Ultrashort-pulse laser with designer optical phase,” paper presented at the European Conference on Lasers and Electro-Optics and the European Quantum Electronics Conference, CLEO Europe-EQEC 2009, Munich, Germany, 14-19 June 2009, paper CA 8.5.

Laycock, L.

W. Lubeigt, M. Griffith, L. Laycock, and D. Burns, “Reduction of the time-to-full-brightness in solid-state lasers using intra-cavity adaptive optics,” Opt. Express 17, 12057-12069(2009).
[CrossRef] [PubMed]

N. K. Metzger, W. Lubeigt, D. Burns, M. Griffith, L. Laycock, A. A. Lagatsky, C. T. A. Brown, and W. Sibbett, “Ultrashort-pulse laser with designer optical phase,” paper presented at the European Conference on Lasers and Electro-Optics and the European Quantum Electronics Conference, CLEO Europe-EQEC 2009, Munich, Germany, 14-19 June 2009, paper CA 8.5.

Liang, J. Z.

Liu, Y.

P. Yang, Y. Liu, W. Yang, M. W. Ao, S. J. Hu, B. Xu, and W. H. Jiang, “Adaptive mode optimization of a continuous-wave solid-state laser using an intracavity piezoelectric deformable mirror,” Opt. Commun. 278, 377-381 (2007).
[CrossRef]

Lubeigt, W.

Mack-Bucher, J. A.

M. Rueckel, J. A. Mack-Bucher, and W. Denk, “Active wavefront correction in two-photon microscopy using coherence-gated wavefront correction,” Proc. Natl. Acad. Sci. USA 103, 17137-17142 (2006).
[CrossRef] [PubMed]

Man, K. F.

K. F. Man, Genetic Algorithm: Concept and Designs (Springer, 1999).
[CrossRef]

Marsh, P. N.

Metzger, N. K.

N. K. Metzger, W. Lubeigt, D. Burns, M. Griffith, L. Laycock, A. A. Lagatsky, C. T. A. Brown, and W. Sibbett, “Ultrashort-pulse laser with designer optical phase,” paper presented at the European Conference on Lasers and Electro-Optics and the European Quantum Electronics Conference, CLEO Europe-EQEC 2009, Munich, Germany, 14-19 June 2009, paper CA 8.5.

Miller, D. T.

Mourou, G.

Neil, M. A. A.

M. J. Booth, M. A. A. Neil, R. Juškaitis, and T. Wilson, “Adaptive aberration correction in a confocal microscope,” Proc. Natl. Acad. Sci. USA 99, 5788-5792 (2002).
[CrossRef] [PubMed]

Norris, T. B.

L. Sherman, J. Y. Ye, O. Albert, and T. B. Norris, “Adaptive correction of depth-induced aberrations in multiphoton scanning microscopy using a deformable mirror,” J. Microsc. 206, 65-71 (2002).
[CrossRef] [PubMed]

O. Albert, L. Sherman, G. Mourou, and T. B. Norris, “Smart microscope: an adaptive optics learning system for aberration correction in multiphoton confocal microscopy,” Opt. Lett. 25, 52-54 (2000).
[CrossRef]

Notaras, J.

Padgett, M. J.

Paterson, C.

Patterson, B. A.

A. J. Wright, B. A. Patterson, S. P. Poland, J. M. Girkin, G. M. Gibson, and M. J. Padgett, “Dynamic closed-loop system for focus tracking using a spatial light modulator and a deformable membrane mirror,” Opt. Express 14, 222-228 (2006).
[CrossRef] [PubMed]

A. J. Wright, D. Burns, B. A. Patterson, S. P. Poland, G. J. Valentine, and J. M. Girkin, “Exploration of the optimization algorithms used in the implementation of adaptive optics in confocal and multiphoton microscopy,” Microsc. Res. Technol. 6, 36-44 (2005).
[CrossRef]

Poland, S. P.

Pruidze, D. V.

Reid, D.

Ricklin, J. C.

Roshchupkin, I. M.

A. V. Ikramov, I. M. Roshchupkin, and A. G. Safronov, “Cooled bimorph adaptive mirrors for laser optics,” Quantum Electron. 24, 613-617 (1994).
[CrossRef]

Rueckel, M.

M. Rueckel, J. A. Mack-Bucher, and W. Denk, “Active wavefront correction in two-photon microscopy using coherence-gated wavefront correction,” Proc. Natl. Acad. Sci. USA 103, 17137-17142 (2006).
[CrossRef] [PubMed]

Rukosuev, A.

J. Sheldakova, A. Kudryashov, V. Samarkin, and A. Rukosuev, “Laser beam focusing by means of closed-loop adaptive optical system,” presented at the 7th International Workshop on Adaptive Optics for Industry and Medicine, Shatura, Moscow Region, Russia, 8-11 June 2009.

Safronov, A. G.

A. V. Ikramov, I. M. Roshchupkin, and A. G. Safronov, “Cooled bimorph adaptive mirrors for laser optics,” Quantum Electron. 24, 613-617 (1994).
[CrossRef]

Samarkin, V.

J. Sheldakova, A. Kudryashov, V. Samarkin, and A. Rukosuev, “Laser beam focusing by means of closed-loop adaptive optical system,” presented at the 7th International Workshop on Adaptive Optics for Industry and Medicine, Shatura, Moscow Region, Russia, 8-11 June 2009.

Sheldakova, J.

J. Sheldakova, A. Kudryashov, V. Samarkin, and A. Rukosuev, “Laser beam focusing by means of closed-loop adaptive optical system,” presented at the 7th International Workshop on Adaptive Optics for Industry and Medicine, Shatura, Moscow Region, Russia, 8-11 June 2009.

Sheppard, C.

Sherman, L.

L. Sherman, J. Y. Ye, O. Albert, and T. B. Norris, “Adaptive correction of depth-induced aberrations in multiphoton scanning microscopy using a deformable mirror,” J. Microsc. 206, 65-71 (2002).
[CrossRef] [PubMed]

O. Albert, L. Sherman, G. Mourou, and T. B. Norris, “Smart microscope: an adaptive optics learning system for aberration correction in multiphoton confocal microscopy,” Opt. Lett. 25, 52-54 (2000).
[CrossRef]

Sibbett, W.

N. K. Metzger, W. Lubeigt, D. Burns, M. Griffith, L. Laycock, A. A. Lagatsky, C. T. A. Brown, and W. Sibbett, “Ultrashort-pulse laser with designer optical phase,” paper presented at the European Conference on Lasers and Electro-Optics and the European Quantum Electronics Conference, CLEO Europe-EQEC 2009, Munich, Germany, 14-19 June 2009, paper CA 8.5.

Tyson, R. K.

R. K. Tyson, Principles of Adaptive Optics, 2nd ed. (Academic, 1998).

Valentine, G.

Valentine, G. J.

A. J. Wright, D. Burns, B. A. Patterson, S. P. Poland, G. J. Valentine, and J. M. Girkin, “Exploration of the optimization algorithms used in the implementation of adaptive optics in confocal and multiphoton microscopy,” Microsc. Res. Technol. 6, 36-44 (2005).
[CrossRef]

Vecchi, M. P.

S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi, “Optimization by simulated annealing,” Science 220, 671-680 (1983).
[CrossRef] [PubMed]

Voelz, D. G.

Vorontsov, M. A.

Williams, D. R.

Wilson, T.

M. J. Booth, M. A. A. Neil, R. Juškaitis, and T. Wilson, “Adaptive aberration correction in a confocal microscope,” Proc. Natl. Acad. Sci. USA 99, 5788-5792 (2002).
[CrossRef] [PubMed]

Wittrock, U.

U. Wittrock, Y. Buske, and H. M. Heuck, “Adaptive aberration control in laser amplifiers and laser resonators,” Proc. SPIE 4969, 122-136 (2003).
[CrossRef]

Wright, A. J.

Xie, X. S.

Xu, B.

P. Yang, Y. Liu, W. Yang, M. W. Ao, S. J. Hu, B. Xu, and W. H. Jiang, “Adaptive mode optimization of a continuous-wave solid-state laser using an intracavity piezoelectric deformable mirror,” Opt. Commun. 278, 377-381 (2007).
[CrossRef]

Yang, P.

P. Yang, Y. Liu, W. Yang, M. W. Ao, S. J. Hu, B. Xu, and W. H. Jiang, “Adaptive mode optimization of a continuous-wave solid-state laser using an intracavity piezoelectric deformable mirror,” Opt. Commun. 278, 377-381 (2007).
[CrossRef]

Yang, W.

P. Yang, Y. Liu, W. Yang, M. W. Ao, S. J. Hu, B. Xu, and W. H. Jiang, “Adaptive mode optimization of a continuous-wave solid-state laser using an intracavity piezoelectric deformable mirror,” Opt. Commun. 278, 377-381 (2007).
[CrossRef]

Ye, J. Y.

L. Sherman, J. Y. Ye, O. Albert, and T. B. Norris, “Adaptive correction of depth-induced aberrations in multiphoton scanning microscopy using a deformable mirror,” J. Microsc. 206, 65-71 (2002).
[CrossRef] [PubMed]

Zhou, H.

Appl. Opt.

Curr. Opin. Biotechnol.

J. M. Girkin, S. P. Poland, and A. J. Wright, “Adaptive optics for deeper imaging of biological samples,” Curr. Opin. Biotechnol. 20, 106-110 (2009).
[CrossRef] [PubMed]

J. Microsc.

L. Sherman, J. Y. Ye, O. Albert, and T. B. Norris, “Adaptive correction of depth-induced aberrations in multiphoton scanning microscopy using a deformable mirror,” J. Microsc. 206, 65-71 (2002).
[CrossRef] [PubMed]

J. Opt. Soc. Am. A

Microsc. Res. Technol.

A. J. Wright, D. Burns, B. A. Patterson, S. P. Poland, G. J. Valentine, and J. M. Girkin, “Exploration of the optimization algorithms used in the implementation of adaptive optics in confocal and multiphoton microscopy,” Microsc. Res. Technol. 6, 36-44 (2005).
[CrossRef]

Opt. Commun.

P. Yang, Y. Liu, W. Yang, M. W. Ao, S. J. Hu, B. Xu, and W. H. Jiang, “Adaptive mode optimization of a continuous-wave solid-state laser using an intracavity piezoelectric deformable mirror,” Opt. Commun. 278, 377-381 (2007).
[CrossRef]

Opt. Express

M. J. Booth, “Wave front sensor-less adaptive optics: a modal-based approach using sphere packings,” Opt. Express 14, 1339-1352 (2006).
[CrossRef] [PubMed]

W. Lubeigt, M. Griffith, L. Laycock, and D. Burns, “Reduction of the time-to-full-brightness in solid-state lasers using intra-cavity adaptive optics,” Opt. Express 17, 12057-12069(2009).
[CrossRef] [PubMed]

R. El-Agmy, H. Bulte, A. H. Greenaway, and D. Reid, “Adaptive beam profile control using a simulated annealing algorithm,” Opt. Express 13, 6085-6091 (2005).
[CrossRef] [PubMed]

A. J. Wright, B. A. Patterson, S. P. Poland, J. M. Girkin, G. M. Gibson, and M. J. Padgett, “Dynamic closed-loop system for focus tracking using a spatial light modulator and a deformable membrane mirror,” Opt. Express 14, 222-228 (2006).
[CrossRef] [PubMed]

A. J. Wright, S. P. Poland, J. M. Girkin, C. W. Freudiger, C. L. Evans, and X. S. Xie, “Adaptive optics for enhanced signal in CARS microscopy,” Opt. Express 15, 18209-18219(2007).
[CrossRef] [PubMed]

W. Lubeigt, G. Valentine, and D. Burns, “Enhancement of laser performance using an intracavity deformable membrane mirror,” Opt. Express 16, 10943-10955 (2008).
[CrossRef] [PubMed]

W. Lubeigt, G. Valentine, J. Girkin, E. Bente, and D. Burns, “Active transverse mode control and optimization of an all-solid-state laser using an intracavity adaptive-optic mirror,” Opt. Express 10, 550-555 (2002).
[PubMed]

C. Paterson and J. Notaras, “Demonstration of closed-loop adaptive optics with a point-diffraction interferometer in strong scintillation with optical vortices,” Opt. Express 15, 13745-14756 (2007).
[CrossRef] [PubMed]

P. N. Marsh, D. Burns, and J. M. Girkin, “Practical implementation of adaptive optics in multiphoton microscopy,” Opt. Express 11, 1123-1130 (2003).
[CrossRef] [PubMed]

Opt. Lett.

Proc. Natl. Acad. Sci. USA

M. Rueckel, J. A. Mack-Bucher, and W. Denk, “Active wavefront correction in two-photon microscopy using coherence-gated wavefront correction,” Proc. Natl. Acad. Sci. USA 103, 17137-17142 (2006).
[CrossRef] [PubMed]

M. J. Booth, M. A. A. Neil, R. Juškaitis, and T. Wilson, “Adaptive aberration correction in a confocal microscope,” Proc. Natl. Acad. Sci. USA 99, 5788-5792 (2002).
[CrossRef] [PubMed]

Proc. SPIE

U. Wittrock, Y. Buske, and H. M. Heuck, “Adaptive aberration control in laser amplifiers and laser resonators,” Proc. SPIE 4969, 122-136 (2003).
[CrossRef]

Quantum Electron.

A. V. Ikramov, I. M. Roshchupkin, and A. G. Safronov, “Cooled bimorph adaptive mirrors for laser optics,” Quantum Electron. 24, 613-617 (1994).
[CrossRef]

Science

S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi, “Optimization by simulated annealing,” Science 220, 671-680 (1983).
[CrossRef] [PubMed]

Other

K. F. Man, Genetic Algorithm: Concept and Designs (Springer, 1999).
[CrossRef]

J. Sheldakova, A. Kudryashov, V. Samarkin, and A. Rukosuev, “Laser beam focusing by means of closed-loop adaptive optical system,” presented at the 7th International Workshop on Adaptive Optics for Industry and Medicine, Shatura, Moscow Region, Russia, 8-11 June 2009.

N. K. Metzger, W. Lubeigt, D. Burns, M. Griffith, L. Laycock, A. A. Lagatsky, C. T. A. Brown, and W. Sibbett, “Ultrashort-pulse laser with designer optical phase,” paper presented at the European Conference on Lasers and Electro-Optics and the European Quantum Electronics Conference, CLEO Europe-EQEC 2009, Munich, Germany, 14-19 June 2009, paper CA 8.5.

W. Koechner, Solid-State Laser Engineering, 5th ed., Springer Series in Optical Sciences (Springer, 1999).

R. K. Tyson, Principles of Adaptive Optics, 2nd ed. (Academic, 1998).

Flexible Optical B.V., PO Box 581, 2600 AN, Delft, The Netherlands, www.okotech.com

C. Dainty, Proceedings of the 6th International Workshop on Adaptive Optics for Industry and Medicine (Imperial College Press, 2008).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Example of (a) an AO system with a Shack–Hartmann wavefront sensor and (b) a search-based AO system.

Fig. 2
Fig. 2

Flow chart of an uncoupled optimization system. Here, the correction does not influence the search space of the AO system.

Fig. 3
Fig. 3

Flow chart of a coupled system. Here, the correction strongly influences the search space of the AO system.

Fig. 4
Fig. 4

Example of a confocal microscope incorporating AO [10].

Fig. 5
Fig. 5

Schematic of the AO laser [16].

Fig. 6
Fig. 6

One-dimensional search space featuring local (A, B, and C) and global maxima (B) along with possible starting points of the search optimization (1, 2, 3, and 4); see main text.

Fig. 7
Fig. 7

GA optimization of a Nd : Gd VO 4 laser [16]. The fitness value of the current best individual is displayed as a function of the number of generations (note that the fitness value is directly proportional to the intensity of the frequency-doubled light produced by the second-harmonic-generation-based beam quality assessor and recorded by a photodiode [16]).

Metrics